Skip to main content
Log in

Second-kind integral formulations of the capacitance problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The standard approach to calculating electrostatic forces and capacitances involves solving a surface integral equation of the first kind. However, discretizations of this problem lead to ill-conditioned linear systems and second-kind integral equations usually solve for the dipole density, which can not be directly related to electrostatic forces. This paper describes a second-kind equation for the monopole or charge density and investigates different discretization schemes for this integral formulation. Numerical experiments, using multipole accelerated matrix–vector multiplications, demonstrate the efficiency and accuracy of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.E. Atkinson, The numerical solution of Laplace's equation in three dimensions, II, in: Numerical Treatment of Integral Equations, eds. J. Albrecht and L. Collatz (Birkhäuser, Basel, 1980).

    Google Scholar 

  2. K.E. Atkinson, User's guide to a boundary elemant package for solving integral equations on piecewise smooth surfaces, Reports on Computational Mathematics 43, The University of Iowa (1993). Available via anonymous ftp at ftp.math.uiowa.edu.

  3. K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind(Cambridge University Press, 1997).

  4. K.E. Atkinson and D. Chien, Piecewise polynomial collocation for boundary integral equations, SIAM J. Sci. Statist. Comput. 16 (1995) 651-681.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Greenbaum, L. Greengard and G.B. Mc Fadden, Laplace's equation and the Dirichlet-Neumann map in multiply connected domains, J. Comput. Phys. 105 (1993) 267-278.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems(MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  7. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325-348.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Hackbusch and Z. Novak, On the fast matrix multiplication in the boundary element method by panel clustering, Numer. Math. 54 (1989) 463-491.

    Article  MATH  MathSciNet  Google Scholar 

  9. E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics(Chelsea, New York, 1965).

  10. O.D. Kellogg, Foundations of Potential Theory(Dover, New York, 1959).

  11. S.G. Mikhlin, Integral Equations(Pergamon Press, New York, 1957).

    Google Scholar 

  12. K. Nabors, F.T. Korsmeyer, F.T. Leighton and J. White, Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory, SIAM J. Sci. Statist. Comput. 15(3) (1994) 713-735.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Nabors and J. White, Fastcap: A multipole accelerated 3-D capacitance extraction program, IEEE Trans. Computer-Aided Design Integrated Circuits and Systems 11(10) (1991) 1447-1459.

    Article  Google Scholar 

  14. J.N. Newman, Distribution of sources and normal dipoles over a quadrilateral panel, J. Engrg. Math. 20 (1986) 113-126.

    Article  Google Scholar 

  15. V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60(2) (1985) 187-207.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7(3) (1986) 105-126.

    Article  MathSciNet  Google Scholar 

  17. I. Sloan, Error analysis of boundary integral methods, Acta Numerica (1991) 287-339.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tausch, J., White, J. Second-kind integral formulations of the capacitance problem. Advances in Computational Mathematics 9, 217–232 (1998). https://doi.org/10.1023/A:1018973019922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018973019922

Keywords

Navigation