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Temporal abstraction is the task of abstracting higher-level concepts from time-stamped
data in a context-sensitive manner. We have developed and implemented a formal know-
ledge-based framework for decomposing and solving that task that supports acquisition,
maintenance, reuse, and sharing of temporal-abstraction knowledge. We present the logical
model underlying the representation and runtime formation of interpretation contexts. Inter-
pretation contexts are relevant for abstraction of time-oriented data and are induced by input
data, concluded abstractions, external events, goals of the temporal-abstraction process, and
certain combinations of interpretation contexts. Knowledge about interpretation contexts is
represented as a context ontology and as a dynamic induction relation over interpretation
contexts and other proposition types. Induced interpretation contexts are either basic, com-
posite, generalized, or nonconvex. We provide two examples of applying our model using
an implemented system; one in the domain of clinical medicine (monitoring of diabetes
patients) and one in the domain of traffic engineering (evaluation of traffic-control actions).
We discuss several distinct advantages to the explicit separation of interpretation-context
propositions from the propositions inducing them and from the abstractions created within
them.

1. Introduction: the temporal-abstraction task

Many domains require the collection of substantial numbers of data over time and
the abstraction of those data into higher-level concepts, meaningful for that domain.
Much work had been done regarding the structure of time and the nature of general tem-
poral reasoning. Our main interest, however, concerns the specific temporal-reasoning
task of context-sensitive abstraction and interpretation of time-stamped data.

We will employ examples mainly from the domain of clinical medicine. As
will be apparent, the ideas are quite general and are applicable to other time-oriented
domains; we include one example (traffic control).

Most clinical tasks require measurement and capture of numerous patient data.
Physicians who have to make decisions based on these data may be overwhelmed by
the number of data if their ability to reason with the data does not scale up to the data-
storage capabilities. Most data include a time stamp in which each particular datum
was valid; an emerging pattern over a span of time, especially in a specific context (e.g.,
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Figure 1. Abstraction of platelet and granulocyte values during administration of the prednisone/azathiop-
rine (PAZ) clinical protocol for treating patients who have chronic graft-versus-host disease (CGVHD).
The time line starts with a bone-marrow transplantation (BMT) event. = event; • = platelet
counts; ∆ = granulocyte counts; = open context interval; = closed abstraction interval;

M [n] = myelotoxicity (bone-marrow-toxicity) grade n.

therapy with a particular drug), has much more significance than an isolated finding
or even a set of findings. Thus, it is highly desirable for an automated knowledge-
based decision-support tool that assists physicians who monitor patients over significant
periods to provide short, informative, context-sensitive summaries of time-oriented
clinical data stored on electronic media. Such a tool should be able to answer queries
at various levels of abstraction about abstract concepts that summarize the data. Data
summaries are valuable to the physician, support an automated system’s diagnostic or
therapeutic recommendations, and monitor plans suggested by the physician or by the
decision-support system. A meaningful summary cannot use only time points, such as
data-collection dates; it must be able to characterize significant features over periods of
time, such as “2 weeks of grade-II bone-marrow toxicity in the context of therapy for
potential complications of a bone-marrow transplantation event” (figure 1) and more
complex patterns. The temporal-abstraction (TA) task is thus an interpretation task:
given time-stamped data and external events, produce context-specific, interval-based,
relevant abstractions of the data (a more formal definition will be stated in section 3,
when we present the formal ontology – terms and relations – of the TA task).

Temporal abstractions, however, are meaningful only within the temporal span
of a relevant context, such as the (possibly delayed) effect of the drug AZT. Contexts
create a relevant frame of reference for the interpretation process. On one hand, con-
texts enable the creation of context-sensitive abstractions (e.g., the meaning of many
measurements depends on the context in which they were made); on the other hand,
contexts focus the computation process on a limited set of data, for which the abstrac-
tion is relevant (e.g., reasoning about complications of bone-marrow transplantations
is relevant only if a bone marrow transplantation event occurred in the past, possibly
even within a particular time window).
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In this paper, we focus on one of the key TA subtasks: formation of appropri-
ate temporal contexts for interpretation of the time-oriented data. In section 3, we
define briefly the formal ontology used by all the TA mechanisms. In section 4, we
present the context-forming mechanism, which uses that ontology, when mapped to
the matching domain knowledge, to create temporal contexts for interpretation of the
data in a context-sensitive manner. We also explain the meaning of the distinctions
made by the context-forming mechanism among various types of interpretation con-
texts. In section 5, we present two examples of the application of the KBTA method
and in particular of the interpretation-context model to a clinical (diabetes therapy)
domain and to an engineering (traffic-control) domain, two of the domains in which
the RÉSUMÉ system was employed. In section 6, we relate our approach to several
general formalisms for the representation of and reasoning about contexts, and to sev-
eral somewhat more domain-specific frameworks and systems (in particular, in medical
domains) that solve tasks comparable to the TA task. Section 7 concludes with a brief
summary and discussion of limitations and advantages of our approach.

2. Knowledge-based temporal abstraction

A method solving the TA task encounters several conceptual and computational
problems:

(1) both the input data and the required output abstractions might include several data
types (e.g., symbolic, numeric) and can exist at various abstraction levels;

(2) input data might arrive out of temporal order, and existing interpretations must be
revised nonmonotonically;

(3) several alternate interpretations might need to be maintained and followed over
time;

(4) parameters have context-specific temporal properties, such as expected persistence
of measured values and classification functions (e.g., the meaning of the value low
of the hemoglobin-state abstraction depends on the context);

(5) acquisition of knowledge from domain experts and maintenance of that knowledge
should be facilitated.

The method should enable reusing its domain-independent knowledge for solving the
TA task in other domains, and enable sharing of domain-specific knowledge with other
tasks in the same domain.

The framework that we are using for solving the TA task is based on our work
on temporal-abstraction mechanisms [21,22,24,25,27]. We have defined a general
problem-solving method [6] for interpreting data in time-oriented domains, with clear
semantics for both the method and its domain-specific knowledge requirements: the
knowledge-based temporal-abstraction (KBTA) method. The KBTA method com-
prises a knowledge-level representation of the TA task and of the knowledge required
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Figure 2. The knowledge-based temporal-abstraction method and its mechanisms. = task;

= method or mechanism; 3 = knowledge type; = DECOMPOSED-INTO relation;
= SOLVED-BY relation; = USED-BY relation.

to solve that task. The KBTA method has a formal model of input and output entities,
their relations, and their properties – the KBTA ontology [21,22].

The KBTA method decomposes the TA task into five parallel subtasks (figure 2):

(1) Temporal-context restriction: creation of contexts relevant for data interpretation
(e.g., effect of a drug), to focus and limit the scope of the inference (we elaborate
on this task in section 4).

(2) Vertical temporal inference: inference from values of contemporaneous input
data or abstractions (e.g., results of several different blood tests conducted during
the same day) into values of higher-level concepts (e.g., classification into bone-
marrow toxicity Grade II). Note that classification functions are often context
sensitive (e.g., different clinical guidelines define differently MODERATE ANEMIA,
a state abstraction of the hemoglobin-level clinical parameter).
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(3) Horizontal temporal inference: inference from similar-type propositions that
hold over different time intervals (e.g., joining different-value abstractions of the
same parameter that hold over two meeting time intervals and computing the
new abstraction’s value). In fact, two subtasks are involved: temporal-semantic
inference infers specific types of interval-based logical conclusions, given interval-
based propositions, using a deductive extension of Shoham’s temporal semantic
properties [28]. For instance, unlike two anemia periods, two episodes of 9-month
pregnancies can never be summarized as an episode of an 18-month pregnancy –
even if they followed each other – since they are not concatenable, a temporal-
semantic property. Similarly, a week-long episode of coma implies an abstraction
of coma during each day (i.e., it has the downward-hereditary temporal-semantic
property); that is not necessarily true for the abstraction “a week of oscillating
blood pressure.” Temporal horizontal inference determines the domain value of
an abstraction created from two joined abstractions (e.g., for most parameters
and interpretation contexts, DECREASING and SAME might be concatenated into
NONINCREASING). Although more stable than classification functions, temporal-
semantic properties might be sensitive to the context.

(4) Temporal interpolation: bridging of gaps between similar-type but temporally
disjoint point- or interval-based propositions to create longer intervals (e.g., join-
ing two disjoint episodes of anemia, occurring during different days, into a longer
episode, bridging the gap between them). We use local (forward and backward
from an abstraction interval) and global (between two abstraction intervals) truth-
persistence functions to model a belief in the value of an abstraction [21]. Global
truth-persistence (∆) functions return the maximal temporal-gap threshold that can
be bridged (with a high-enough probability) between two temporally disjoint ab-
stractions, given the parameter involved, its value(s), the length of each abstrac-
tion, and the interpretation context of the abstractions. Both local and global
truth-persistence functions are highly dependent on context.

(5) Temporal-pattern matching: creation of intervals by matching patterns over dis-
joint intervals, over which propositions of various types (including other patterns)
hold. For example, in the domain of bone-marrow transplantation (see figure 1),
quiescent-onset chronic graft-versus-host disease (GVHD) is a pattern-abstraction
parameter defined as “chronic GVHD starting at least 100 days after a bone-
marrow transplantation event, but within one month of the end of a preceding
acute GVHD.” Temporal patterns might be meaningful only for certain contexts
and should not be created (and their creation should not be attempted) in others.

The five subtasks of the KBTA method are solved by five temporal-abstraction
mechanisms (nondecomposable computational modules) that we have defined (see
figure 2). The temporal-abstraction mechanisms depend on four well-defined domain-
specific knowledge types: structural knowledge (e.g., IS-A, PART-OF and ABSTRACTED-
INTO relations), classification (functional) knowledge (e.g., mapping of hemoglobin
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values into hemoglobin states), temporal-semantic (logical) knowledge (e.g., the CON-
CATENABLE property [28]), and temporal-dynamic (probabilistic) knowledge (e.g., tem-
poral persistence functions that bridge gaps between temporally disjoint intervals
[21]). Values for the four knowledge types are specified as the domain’s temporal-
abstraction ontology when developing a temporal-abstraction system for a particular
domain and task.

We have implemented the KBTA method as the RÉSUMÉ system [24] and
applied it with encouraging results to several clinical domains such as chronic graft-
versus-host disease [24], monitoring of children’s growth [14], therapy of AIDS pa-
tients [21], and therapy of patients who have diabetes [25]. We also have used the
KBTA method and the RÉSUMÉ system to model and solve a spatiotemporal traffic-
monitoring task [18,23]. The RÉSUMÉ system is currently used within the Tzolkin
temporal-mediator server, a part of the EON architecture for support of clinical-
guideline-based therapy [19].

3. The temporal-abstraction ontology

Informally, the KBTA temporal model includes both time intervals and time
points. Time points are the basic temporal primitives, but propositions, such as oc-
currence of events and existence of parameter values, can be interpreted only over
time intervals. Therefore, all propositions are fluents [17] and, in our model, must be
interpreted over a particular time period (e.g., the value of the temperature parameter
during time interval [t1, t2]). The knowledge-based TA ontology [22] contains the
following entities:

1. Time stamps, τi ∈ T , comprise the basic primitives of time. A time-standardization
function, fS(τi), can map a time stamp into an integer amount of any pre-defined
temporal granularity unit Gi ∈ Γ (e.g., hour). Time stamps are measured in Gi
units with respect to a zero-point time stamp. There is a time unit G0 of the lowest
granularity. A finite positive or negative amount of Gi units is a time measure.
There is a total order on time stamps. Subtraction of any time stamp from another
must be defined and should return a time measure. Addition or subtraction of a
time measure to or from a time stamp must return a time stamp.

2. A time interval is an ordered pair of time stamps that denote the endpoints, [I.start,
I.end], of the interval. A zero length interval in which I.start = I.end is a time
point.

3. An interpretation context ξ ∈ Ξ is a proposition representing a state of affairs rele-
vant to interpretation (e.g., “the drug insulin exerts its effect during this interval”).
When an interpretation context exists during a particular time interval, parameters
may be interpreted differently within that time interval. IS-A and SUBCONTEXT

relations are defined over the set of interpretation contexts. Basic interpretation
contexts are atomic propositions. Composite interpretation contexts are created
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by the conjunction of a basic or a composite interpretation context and one of
its subcontexts. Intuitively, composite interpretation contexts permit the definition
of a hierarchy of increasingly specific contexts. Unlike the propositions inducing
them, interpretation contexts are assumed as a default to have the concatenable
[28] temporal-semantic property. Generalized and nonconvex interpretation con-
texts are special types of interpretation contexts (see sections 4.2 and 4.3).

4. A context interval is a structure 〈ξ, I〉 containing an interpretation context ξ and
a time interval I (i.e., an interpretation context during an interval).

5. An event proposition or event e ∈ E is the occurrence of an external willful act
or process, such as the administration of a drug. Events are instantiated event
schemata; an event schema has a series ai of event attributes (e.g., drug dose) that
must be mapped to attribute values νi. A PART-OF (or subevent) relation is defined
over event schemata.

6. An event interval is a structure 〈e, I〉, consisting of an event proposition e and a
time interval I that represents the duration of the event.

7. A parameter schema or parameter π ∈ Π is a measurable or describable state of
the world. Parameters may represent raw input data (e.g., a hemoglobin level) or
abstractions from the raw data (e.g., a state of anemia). Parameter schemata have
various properties, such as a domain Vπ of possible symbolic or numeric values,
measurement units, temporal-semantic properties, or temporal persistence. An ex-
tended parameter is a combination 〈π, ξ〉 of a parameter π and an interpretation
context ξ. An extended parameter is also a parameter and can have properties.
Extended parameters have a special property, a value ν ∈ Vπ, which is typically
known only at runtime (i.e., parameter values require a context). A parameter
proposition is the combination of a parameter, a parameter value, and an inter-
pretation context, 〈π, ν, ξ〉 (e.g., “the state of hemoglobin is low in the context of
chemotherapy”).

8. A parameter interval 〈π, ν, ξ, I〉 is a parameter proposition and a time interval,
representing the value of a parameter in a specific context during a particular time
interval.

9. An abstraction function θ ∈ Θ is a unary or multiple-argument function from
one or more parameters to an abstract parameter. The abstract parameter has
one of three abstraction types: state, gradient, and rate. An additional type of
abstraction is pattern which defines a temporal pattern of several other parameters.
An abstraction of a parameter is a parameter (thus, both hemoglobin and the state
of hemoglobin are parameters, with distinct properties).

10. An abstraction is a parameter interval 〈π, ν, ξ, I〉 where π is an abstract parameter.
Abstractions may be abstraction points or abstraction intervals.
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11. An abstraction goal ψ ∈ Ψ is a proposition that indicates a goal or intention
that is relevant to the TA task (e.g., the intention to control a diabetes patient’s
blood-glucose values).

12. An abstraction-goal interval is a structure 〈ψ, I〉, where ψ is a temporal-abstraction
goal that is posted during the interval I . An abstraction-goal interval induces
interpretation contexts.

13. Interpretation contexts are dynamically induced by (or inferred from) event, para-
meter, or abstraction-goal propositions. The time intervals over which the inducing
propositions exist impose temporal constraints on the interval in which the inferred
context will be valid. For example, the interpretation context of insulin’s effect on
blood-glucose values might begin at least 30 minutes following the event of insulin
administration and end up to 8 hours after terminating the administration. These
constraints are represented formally in a dynamic induction relation of a context
interval (DIRC). A DIRC is a relation over propositions and time measures, in
which each member is a structure of the form 〈ξ,ϕ, ss, se, es, ee〉. Intuitively, the
inducing proposition is assumed, at runtime, to be interpreted over some time
interval I with known end points. The symbol ξ is the induced interpretation
context. The symbol ϕ ∈ P represents the inducing proposition, an event, an
abstraction-goal, or a parameter proposition. Each of the other four symbols is
either the “wild card” symbol *, or a time measure, which denote, respectively, the
temporal distance between the start point of I and the start point of the induced
context interval, the distance between the start point of I and the end point of
the induced context interval, the distance between the end point of I and the start
point of the context interval, and the distance between the end point of I and the
end point of the induced context interval (figure 3). Note that the resultant context
interval need not span the same temporal scope as the inducing proposition, but
can have any of Allen’s 13 relations to it [1] (see figure 3b). A context-forming
proposition is an inducing proposition in at least one DIRC.

A TA ontology of a domain is an event ontology, a context ontology, a para-
meter ontology, a set of abstraction-goal propositions, and the set of all DIRCs for
a particular domain. The event ontology of a domain consists of the set of all the
relevant event schemata and propositions. The context ontology defines the set of all
the relevant contexts and subcontexts. The parameter ontology is composed of the
set of all the relevant parameter propositions and their properties. The TA task also
assumes the existence of a set of temporal queries, expressed in a predefined temporal-
abstraction language. A temporal query is a set of temporal and value constraints over
the components of a set of parameter and context intervals [21].

The TA task solved by the KBTA method is thus the following: given at least
one abstraction-goal interval, a set of event intervals, a set of parameter intervals, and
the domain’s TA ontology, produce an interpretation – that is, a set of context intervals
and a set of new abstractions such that the interpretation can answer any temporal
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Figure 3. Dynamic induction relations of context intervals (DIRCs). (a) An AZT-toxicity interpreta-
tion context induced by an AZT-administration event within the context of a CCTG-522 AIDS-therapy
experimental-protocol event (which induces a contemporaneous CCTG-522 context interval). The AZT-
toxicity interpretation context starts 2 weeks after the start of the inducing AZT-administration event,
and ends 4 weeks after its end. In this case, the result is a composite (nested) interpretation context,
CCTG-522 AZT-toxicity, since AZT-toxicity is a subcontext of CCTG-522 in the context ontology (see
section 4). (b) Prospective (chronic active hepatitis) and retrospective (hepatitis B prodrome) interpreta-
tion contexts induced by the hepatitis B parameter proposition. = event interval; = closed

context interval; = open context interval; = closed abstraction interval.

query about all the abstractions derivable from the transitive closure of the input data
and the domain’s TA ontology.

The four types of domain-specific knowledge required by the TA mechanisms,
apart from the event and context ontologies, are represented in the RÉSUMÉ system in
the parameter-properties ontology, a representation of the parameter ontology [24].
The parameter-properties ontology is a frame hierarchy that represents knowledge
about parameter propositions (e.g., classification knowledge about various values of
the hemoglobin state abstraction) and specializes that knowledge within different in-
terpretation contexts (e.g., therapy by different drugs). Figure 4 shows a part of the
RÉSUMÉ parameter-properties ontology in the domain of protocol-based care.

Note that the knowledge regarding the granulocyte-state abstract parameter is spe-
cialized in the context of the CCTG-522 experimental protocol for therapy of patients
who have AIDS, in the context of the prednisone/azathioprine (PAZ) experimental
protocol for treating chronic graft-versus-host disease, and in the subcontext of each
part of the PAZ protocol.
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Figure 4. A portion of the RÉSUMÉ parameter-properties ontology in the domain of protocol-based
care, showing a specialization of the temporal-abstraction properties for the granulocyte state abstraction
(GSA) abstract parameter in the context of the prednisone/azathioprine (PAZ) experimental protocol for
treating chronic graft-versus-host disease, and in the context of each part of that protocol. = class;

= property; = IS-A relation; = PROPERTY-OF relation. = ABSTRACTED-
INTO relation.

4. Dynamic induction of context intervals

Abstractions are meaningful only within the span of a relevant context interval,
such as administration of the drug AZT as part of a particular clinical protocol for ther-
apy of AIDS. Context intervals create a relevant frame of reference for interpretation,
and thus enable a TA mechanism to conclude abstractions for – and only for – that
context. Thus, interpretation contexts enable creation of context-sensitive abstractions,
while focusing the computation process on a highly limited set of data.

Context intervals are created by the context-forming mechanism. The input of
the context-forming mechanism is a set of event intervals, parameter intervals, and
abstraction goals, and the domain’s TA ontology (in particular, the context ontology
and the set of DIRCs). The output of the mechanism is a set of context intervals
induced by the transitive closure of the input data and the domain-specific knowledge.

As explained in section 3, DIRCs represent relationships between context inter-
vals and several types of propositions that can induce them. Context intervals might be
induced by the existence of an abstraction-goal interval, such as “therapy of insulin-
dependent diabetes,” or by the existence of an event interval, that is, an external
process or action, such as treatment in accordance with a particular clinical protocol.
A context interval can also be induced by the existence of a parameter interval that
includes a context-forming (see section 3) parameter proposition 〈π, ν, ξ〉 – namely,
the value ν of the parameter π, in the context ξ, is sufficiently important to change



Y. Shahar / Temporal abstraction 169

the frame of reference for one or more other parameters (e.g., the LOW value of the
hemoglobin-state abstract parameter in the context of protocol CCTG-522 might affect
the interpretation of values of the platelet-value parameter).

A composite interpretation context (see section 3) can be composed by the
context-forming mechanism at runtime from a conjunction of two or more concluded
basic interpretation contexts that hold contemporaneously, such that basic context ξi+1

has a SUBCONTEXT relation to basic context ξi. The composite interpretation context
would be interpreted over a context interval formed from a temporal intersection of
the two or more corresponding context intervals. For example, components of a com-
posite interpretation context are often induced by an event chain – a connected series
of events 〈e1, e2, . . . , en〉, where ei+1 is a subevent of ei. In that case, the composite
interpretation context would denote an interpretation context induced by the most spe-
cific subevent, such as administration of a particular drug as part of a certain protocol.
(Subevents of an event often induce interpretation contexts that have a SUBCONTEXT

relation to the interpretation context induced by the event.) This knowledge is used
as a default in the context ontology, and can also be exploited during a manual or
automated process of acquisition of knowledge, either for knowledge elicitation or for
knowledge verification and cross-validation. Interpretation contexts can be extended
by concatenating two meeting [1] equal-context intervals, since they are assumed by
default to be concatenable [28], unlike the propositions inducing them, which do not
necessarily have that property.

Dynamic induction of context intervals by parameter propositions might lead to
new interpretations of existing parameter intervals, and thus might induce new context
intervals, within which another parameter proposition, or even the original inducing
parameter proposition might have new interpretations (e.g., another state abstraction
of the same parameter during the same time, but with a different value). However,
we can prove [21] that no contradictions or infinite loops can be generated by the
context-forming process.

Claim 1 (consistency). The context-forming process has no “oscillation cycles”
among different interpretations of the same parameter (i.e., the same parameter propo-
sition can never be retracted and eventually reasserted). That is, no inherent inconsis-
tencies can be created at any point.

Justification. Parameter propositions are not retracted by the addition of a new inter-
pretation context. Rather, a new abstraction specific to the new interpretation context
is simply added to the set of true parameter propositions. (Retractions can occur due to
the nonmonotonic nature of temporal abstraction, but in different circumstances, such
as arrival of new data with a present transaction time but with an old valid time, which
might conflict with previous nonmonotonic conclusions, forcing a view update [21].)
Thus, if a parameter proposition 〈π, ν1, ξ1〉 holds over time interval I and either that
proposition or another one induces a new interpretation context ξ2 over the same inter-
val I , and within the scope of the new context interval the parameter π is interpreted
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to have another value ν2, a new parameter proposition 〈π, ν2, ξ2〉 would be inferred
and added to the set of true propositions. This, of course, creates no contradictions
since the parameter π – or, more typically, an abstraction of π, such as state(π) – is
interpreted (concurrently) within two different contexts and can thus have two different
values at the same time. �

Claim 2 (stability). The context-forming process is finite.

Justification. The total number of different interpretation contexts that, potentially,
can be inferred (including composite ones) is limited by the number of runtime input
data intervals of al types and by a predefined upper bound: the size of the context
ontology and the number and depth (in the context-ontology tree) of potential subcon-
text chains (which can form composite contexts) of interpretation contexts that have
SUBCONTEXT relations. Furthermore, for each parameter π, the number of possible
induced context intervals is bound by the number of DIRCs in which a parameter
proposition including π is an inducing proposition.

The process is finite also even if we allow for any (finite) amount of DIRCs that
represent induction of prospective and retrospective context intervals. Assume that a
parameter proposition induces context interval prospectively (or retrospectively); the
new context, together with certain parameter propositions that happen to exist within
its scope (and an appropriate DIRC), might induce another prospective or retrospective
context interval, etc. The process, however, can only continue for a finite number of
steps, since it is limited by both the number of input parameter propositions and the
number of DIRCs in the TA ontology of the domain. That is, there cannot be, for in-
stance, an infinite “flip flop” loop between past (retrospective) and future (prospective)
context intervals: if the induced contexts affect the interpretation of the same data,
they are subject to limitations imposed by the finite nature of the context ontology and
the number of DIRCs; if they affect the interpretation of other data, they are subject
to the finite size of the input.

Since claim 1 ascertained that there are no retraction/assertion loops (due to
inconsistencies) either, the process must end for any finite number of input proposi-
tions. �

4.1. Advantages of explicit contexts and DIRCs

Explicit interpretation contexts, separate from the propositions inducing them and
from abstractions using them, have significant conceptual and computational advan-
tages for context-specific interpretation of time-stamped data.

1. Since the four temporal measures of a DIRC, representing temporal constraints over
an induced context interval with respect to the start time and the end time of the
inducing proposition, can be positive, negative, or infinite time measures, the con-
text interval induced by a context-forming proposition can have any one of Allen’s
[1] 13 binary temporal relations (e.g., BEFORE, AFTER, or OVERLAPS) to the time
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interval over which the inducing proposition is interpreted (see figure 3). Thus, a
context-forming proposition interval can create, in addition to a direct (concurrent)
context interval, retrospective context intervals (e.g., that allows for a potential in-
terpretation of past data as preceding symptoms of a disease), prospective context
intervals (e.g., that allows for a potential interpretation of future data as complica-
tions of a disease), or both (see figure 3). Intuitively, retrospective interpretation
contexts represent a form of abductive reasoning (e.g., from effects to causes, such
as preceding events), while prospective interpretation contexts represent a form of
deductive reasoning (e.g., from an event to potential complications), or foresight.
(Note, however, that we infer only an interpretation context, which has the potential
for allowing a TA mechanism to create a new abstraction, but not the abstraction
itself.) The context-forming mechanism creates retrospective and prospective con-
texts mainly to enable the use of context-specific TA functions, such as the correct
mapping functions related to ABSTRACTED-INTO relations and the relevant temporal-
persistence functions [21], that should not be considered in other contexts. Creation
of explicit contexts enables the TA mechanisms to focus on the abstractions appro-
priate for particular contexts, such as potential consequences of a certain event,
and to avoid unnecessary computations in other contexts. In addition, the ability to
create dynamically retrospective contexts enables a form of hindsight [20], since
the interpretation of present data can induce new interpretation contexts for the past
and thus shed new light on old data. Note that the representations of both hind-
sight and foresight are outside of the scope of formalisms intended for projection
or simulation tasks, such as the event calculus [13], in which, in effect, events must
directly and instantaneously create state transitions. No delay is permitted for fu-
ture effects, and past effects are impossible. In our formalism, which geared more
towards interpretation, a proposition cannot create directly another proposition, but
can induce, over any temporal interval relative to the proposition’s temporal scope,
an environment (i.e., a context) which enables a TA mechanism to infer another
proposition, if the appropriate TA knowledge has been defined for that context
(e.g., classification knowledge, which has a functional nature, or temporal-semantic
knowledge, which uses logical axioms).

2. Since a context-forming proposition can be an inducing proposition in more than one
DIRC, the same proposition can induce dynamically several interpretation contexts,
either in the past, the present, or the future, relative to the temporal scope of the
interval over which it is interpreted. Thus, we can model, for instance, several
potential effects of the same action, each of which creates a different interpretation
context, or several inferences from the same temporal pattern, once detected.

3. The same interpretation context (e.g., potential bone-marrow toxicity) might be in-
duced by different propositions, possibly even of different types and occurring over
different periods (e.g., different types of chemotherapy and radiotherapy events).
The domain’s TA ontology would then be representing the fact that, within the
particular interpretation context induced by any of these propositions (perhaps with
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different temporal constraints for each proposition), certain parameters would be in-
terpreted in the same way (e.g., we can represent the properties of the hemoglobin-
state parameter within the scope of a bone-marrow-toxicity context interval, without
the need to list all the events that can lead to the creation of such a context interval).
Thus, the separation of interpretation contexts from their inducing propositions also
facilitates maintenance and reusability of the TA knowledge base. As mentioned in
section 2 when discussing the conceptual requirements of the TA task, facilitation
of acquisition and maintenance of TA knowledge has been a major goal in the
creation of this framework.

4. Since several context intervals, during which different interpretation contexts hold,
can exist contemporaneously, it is possible to represent several abstraction intervals
in which the same abstract parameter (e.g., the state of the hemoglobin level) has
different values at the same time – one for each valid and relevant context (e.g.,
“LOW hemoglobin state” in the context of having AIDS without complications, and
“NORMAL hemoglobin state” in the context of being treated by the drug AZT, which
has expected side effects). Thus, the context-forming mechanism supports mainte-
nance of several concurrent views of the abstractions in the abstraction database,
denoting several possible interpretations of the same data. This is one of the reasons
that parameter propositions (including temporal-pattern queries to the abstraction
database) must include an interpretation context: the parameter value alone might
otherwise be meaningless.

4.2. Generalized interpretation contexts

Additional distinctions important for the TA task are enabled by the explicit
use of interpretation contexts and DIRCs. A simple interpretation context is a ba-
sic or a composite interpretation context. Our discussion till now concerned sim-
ple interpretation contexts. Usually, abstractions are specific to a particular simple
interpretation context, and cannot be joined (by the temporal-inference or temporal-
interpolation mechanisms) to abstractions in other interpretation contexts (e.g., two
“LOW hemoglobin state” abstractions might denote different ranges in two different
subcontexts of the same interpretation context induced by a chemotherapy-protocol
event). This restriction is reasonable, since the primary reason for having contexts is
to limit the scope of reasoning and of the applicability of certain types of knowledge.

However, it is both desirable and possible to denote that, for certain classes
of parameters, contexts, and subcontexts, the abstractions are sharable among two
meeting different context intervals (i.e., with different interpretation contexts). Such
abstractions denote the same state, with respect to the task-related implications of
the state, in all sharing contexts. For instance, two meeting “LOW hemoglobin state”
abstractions in two different contexts might indeed denote different ranges in the two
contexts, and the hemoglobin-state parameter might even have only two possible values
in one context, and three in the other, but the domain expert still might want to
express the fact that the LOW value of the hemoglobin-state abstraction can be joined



Y. Shahar / Temporal abstraction 173

meaningfully to summarize a particular hematological state of the patient during the
joined time period. The sharable abstraction values would then be defined within
a new generalized interpretation context that is equivalent to neither of the two
shared subcontexts (e.g., those induced by two different parts of the same clinical
protocol), nor to their parent context (e.g., the one induced by the clinical protocol itself,
within which the hemoglobin-state parameter might have yet another, default, low
hemoglobin-state range). This generalized context can be viewed as a generalization
of two or more subcontexts of the parent interpretation context. The proposition
“LOW hemoglobin-state (within the generalized context)” would then have the logical
concatenable [28] property and can thus be joined across the temporal scope of two
different subcontexts.

4.3. Nonconvex interpretation contexts

Sometimes, we might want to abstract the state of a parameter such as glucose
in the preprandial (before meals) interpretation context, over two or more temporally
disjoint, but semantically equivalent, preprandial interpretation contexts (e.g., the PRE-
LUNCH and PRESUPPER interpretation contexts are both PREPRANDIAL interpretation
contexts) (see section 5.1). We might even want to create such an abstraction within
only a particular preprandial context (e.g., several PRESUPPER interpretation contexts)
skipping intermediate preprandial contexts (e.g., PREBREAKFAST and PRELUNCH inter-
pretation contexts). This interpolation is different from sharing abstractions in a gen-
eralized interpretation context, since the abstractions in this case were created within
the same interpretation contexts, but the interpolation operation joining them needs to
skip temporal gaps, including possibly context intervals over which different interpre-
tation contexts hold. The output is a new type of a parameter interval, with respect to
temporal scope – a nonconvex interval, as defined by Ladkin [15]. A “LOW glucose
state” abstraction would be defined, therefore, within the nonconvex interpretation
context of “prebreakfast episodes”. Note that parameter propositions including such
a nonconvex context will have different temporal-semantic inference properties [21]
from the same parameter propositions except for a simple, convex, context. For in-
stance, propositions will usually not be downward hereditary [28] in the usual sense of
that property (i.e., the proposition holds within any subinterval of the original interval)
unless subintervals are confined to only the convex or nonconvex intervals that the
nonconvex superinterval comprises (e.g., only morning times).

Thus, the interpretation context of a parameter proposition is a combination of
simple, generalized, and nonconvex interpretation contexts. Assume that a Gen (gen-
eralize) operator returns the generalizing-context parent (if it exists) of a parameter
proposition in the parameter-properties ontology. Assume that a Gen∗ operator, that
generalizes the Gen operator, returns the least common generalizing-context ancestor
(if it exists) 〈π, ν, ξg〉 of two parameter propositions 〈π, ν, ξ1〉, 〈π, ν, ξ2〉, in which the
parameter π and the value ν are the same, but the interpretation context is different.
Assume that an NC (nonconvex) operator returns the nonconvex-context extension (if
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it exists) of a parameter proposition. Then, the parameter proposition that represents
the nonconvex join (over disjoint temporal spans) of two parameter propositions in
which only the interpretation context is different can be represented as

NC
(
Gen∗

(
〈π, ν, ξ1〉, 〈π, ν, ξ2〉

))
.

Thus, we first look for a generalizing interpretation context for glucose-state abstrac-
tions in the PRELUNCH and PRESUPPER interpretation contexts, in this case the PREPRAN-
DIAL one. Then we represent the parameter proposition “LOW preprandial glucose-state
values” as the LOW value of the glucose-state parameter in the nonconvex extension
of the PREPRANDIAL interpretation context. This proposition would be interpreted
over some time interval to form a (nonconvex) parameter interval. (Generalized and
nonconvex interpretation contexts belong to the context ontology; the corresponding
extended-parameter propositions belong to the parameter ontology.)

4.4. Implementation notes: efficiency and complexity

The parameter-properties ontology of the RÉSUMÉ system does not contain a
parameter-properties class specialized for every interpretation context. A missing spe-
cialization in some context signifies that, for that particular context, the abstraction
is not relevant (i.e., should not be created for the application), thereby cutting down
on unnecessary inferences. Furthermore, each particular TA application in the same
domain need not contain instances of every class in the parameter-properties ontology,
thus effectively cutting down on possible inferences. In addition, the RÉSUMÉ system
enables the designer to prespecify for any application what are the types of desired
output parameters (e.g., gradient abstractions) that should be abstracted and which
TA mechanisms (e.g., temporal interpolation) should be used [24]. Furthermore, in
the EON architecture for guideline-based medical care [19], the RÉSUMÉ system
is embedded within a temporal-mediator module, Tzolkin, which answers temporal-
abstraction queries by analyzing these queries, then loading from the patient database
and from the knowledge base only input data and TA knowledge, respectively, that
are potentially relevant to the query. For instance, if certain bone-marrow toxicity
abstractions within the PAZ context are required, only data and knowledge within the
abstraction tree defined by the (recursive) ABSTRACTED-FROM relation and rooted at
the bone-marrow-toxicity class need to be retrieved (e.g., granulocyte-value parame-
ter intervals and granulocyte-state TA properties) as well as events that can induce
the PAZ context. (If a parameter proposition is an inducing proposition for a rel-
evant context, the process repeats itself recursively, since the parameter proposition
might be abstracted from other parameters, perhaps even in some other context.) Thus,
a combination of structural constraints and goal-oriented queries reduces the amount of
abstractions generated by RÉSUMÉ, which by itself operates mainly in a data-driven
mode. Indeed, operating the RÉSUMÉ system in a pure data-driven mode to produce
all possible intermediate and top-level abstractions (which is often useful for certain
applications, such as for visualization of the time-oriented data at several abstraction
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levels, while enabling the user to navigate among all levels) is quite slow. Thus, a
delicate balance needs to be struck between highly efficient, but narrow-scoped, goal-
driven queries (which might lead to inefficiency when repeated over time), and the
slow full data-driven process, which leads to broader-scoped conclusions and which
automatically caches intermediate patterns for additional queries (e.g., during a con-
sultation session).

Polynomial limits exist on the complexity of both horizontal classification and
temporal interpolation [22]. Temporal-pattern matching can be, in the worst case,
exponential in the number of parameter propositions, event propositions, and context
intervals. In practice, most patterns involve constraints on only two or three intervals,
and the pattern matching is highly constrained by the specified parameter types (e.g.,
hemoglobin state abstractions), implying essentially a polynomial complexity, albeit
with a potentially large constant.

Selective retraction of outdated nonmonotonic conclusions when new data ar-
rive (often with a past time stamp) or when inconsistencies are detected is handled
efficiently by an underlying truth-maintenance system [21,24].

5. Application of interpretation contexts

We have applied the RÉSUMÉ system to several different domains. To emphasize
the generality of the framework presented in this paper and to give the reader the flavor
of the use of dynamic interpretation contexts in some of these applications, we present
briefly two examples, one taken from an evaluation of the KBTA framework and the
RÉSUMÉ system in a clinical domain (therapy of patients who have insulin-dependent
diabetes) and one from an application of the KBTA method to an engineering domain
(evaluation of traffic-control actions).

5.1. Interpretation contexts in management of diabetes patients

We have evaluated the RÉSUMÉ system in the domain of monitoring the therapy
of patients who have insulin-dependent diabetes mellitus (DM) [25]. We collaborated
with two endocrinologists, acquiring within several meetings a TA ontology from one
of the experts. We created a parameter-properties ontology for the domain of insulin-
dependent diabetes (figure 5), an event ontology (e.g., insulin therapy, meals, physical
exercise) (figure 6), and a context ontology (e.g., preprandial [measured at fasting
time, before a meal] and postprandial [after a meal] contexts and subcontexts, and
postexercise contexts) (figure 7).

In the diabetes-therapy ontology, administrations of regular insulin and of iso-
phane insulin suspension (NPH) are events (see figure 6), inducing different insulin-
action interpretation contexts that are subcontexts of the DM interpretation context
(see figure 8(a)) which represents the context of treating diabetes. Meals are events
that induce preprandial and postprandial contexts (see figure 8(b)). Thus, values for
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Figure 5. Part of the diabetes parameter-properties ontology. The Glucose parameter is abstracted into
the Glucose state parameter. This abstract parameter has a specialized subclass in the DM context, and is
abstracted in that context into the Glucose state state parameter. The Glucose state DM class is further
specialized in the preprandial and postprandial contexts, each of which has several subclasses corre-
sponding to the different relevant premeal contexts. = class; = property; = IS-A

relation; = ABSTRACTED-INTO relation; = PROPERTY-OF relation; DM = diabetes mellitus.

the Glucuse state DM prebreakfast (the state of glucose in the context of DM and
measurement before breakfast) parameter (see figure 5) can be created, when relevant,
regardless of absolute time.

The Glucose state parameter is a new parameter with six values defined from cor-
responding ranges used by the domain expert (HYPOGLYCEMIA, LOW, NORMAL, HIGH,
VERY HIGH, EXTREMELY HIGH). These values are sensitive to the context in which they
are generated; for instance, postprandial values allow for a higher range of the normal
value. Glucose state propositions (for all allowed values) have the value TRUE for
the temporal-semantic property concatenable (see section 2) in the same meal-phase
context. The Glucose state state parameter is a higher-level abstraction of the Glu-
cose state parameter, which maps its six values into three (LOW, NORMAL, HIGH, or
L, N, H for short). It has different semantic properties, and allows creation of daily
horizontal-inference patterns within a nonconvex preprandial context (see section 4.3)
representing abstraction over several meal phases, such as LLH (LOW, LOW and HIGH
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Figure 6. Part of the diabetes event ontology. = class; = induced interpretation context;
= IS-A relation; = PART-OF relation; = INDUCED-BY relation.

Figure 7. Part of the context ontology in the diabetes-therapy domain. = class; = IS-A

relation; = SUBCONTEXT relation; DM = diabetes therapy context. Preprandial and postprandial
contexts are induced before and after meal events, respectively. The post-physical-exercise interpretation

context has a subcontext relationship to both the DM context and the regular-insulin-action context.
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Figure 8. Formation of contexts in the diabetes-treatment domain. (a) Creation of a Regular insulin action
context, induced by a Regular insulin administration event, and of the corresponding DM subcontext.
(b) Creation of the Postprandial and Preprandial (prospective and retrospective, respectively) context
intervals, induced by a Meal event, and formation of the corresponding DM subcontexts. =

event; = closed context interval. DM = diabetes mellitus (therapy context).

Glucose state state values over breakfast, lunch, and supper, respectively). Patterns
such as LLH values for the Glucose state state parameter, especially in the preprandial
subcontext, are extremely useful when a physician must decide how to modify a pa-
tient’s insulin regimen. Furthermore, once created, the prevalence of such patterns can
be calculated – an important step in determining whether the pattern is a common one
for the patient. Glucose state state values that are measured within different phases
(e.g., prelunch and presupper), but within the same day, can be joined by interpolation
within the same generalized (see section 4.2) interpretation context (actually, a noncon-
vex version of the generalized PREPRANDIAL context interval; see section 4.3) creating
an abstraction comprising several preprandial abstractions, up to 6 to 8 hours apart.
The maximal gap is defined by a interphase ∆ function. Diurnal state abstractions that
are measured in the same phase but over different (usually consecutive) days, such
as several values of the Glucuse state DM prebreakfast parameter, can be joined by
interpolation within the same interpretation context (e.g., a nonconvex PREBREAKFAST

context interval, that comprises all breakfasts within a given interval), up 24 to 28
hours apart, using another interphase ∆ function.



Y. Shahar / Temporal abstraction 179

Figure 9. Abstraction of data by the RÉSUMÉ system in case 3. The DM-therapy abstraction goal induces
a retrospective interpretation context, within which abstractions of blood glucose can be formed. =

(open) context interval; = abstraction interval; 2 = prebreakfast glucose; • = prelunch glucose;
∆ = presupper glucose; DM = diabetes mellitus therapy context; GLSS DM PS = Glucose state state
abstraction in the DM and presupper context; GLSS DM PREPRANDIAL = Glucose state state abstraction

in the DM and preprandial context.

The two experts formed (independently) temporal abstractions from more than
800 points of data, representing two weeks of glucose and insulin data from each
of eight patients. The RÉSUMÉ system created 132 (80.4%) of the 164 temporal
abstractions noted by both experts [25]. Several temporal patterns were not detected,
such as certain periodic patterns, partially due to the limited expressivity of the current
pattern-matching language, and partially due to lack of general domain knowledge
(e.g., recurrence of high blood glucose during noon time at weekends is due to the
patient’s lessened diet control) [25].

An example of the RÉSUMÉ output is shown in figure 9. In the particular time
window shown, two significant abstractions are demonstrated:

(1) A period of 5 days of HIGH presupper blood-glucose values was created by the
abstraction process. This abstraction was returned in response to a query for a
period of at least 3 days of the Glucose state state parameter, with value HIGH, in
the presupper [nonconvex] context.

(2) A set of three Glucose state state abstractions representing a repeating diurnal
pattern, consisting of NORMAL or LOW blood-glucose levels during the morning
and lunch measurements, and HIGH glucose levels during the presupper measure-
ments. Individual abstractions in the set were created by the abstraction process;
the whole set was returned in response to a query for Glucose state state val-
ues in the preprandial [nonconvex generalized] context (i.e., the context in which
blood-glucose values, measured before several different consecutive meals, are
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abstracted). The combined pattern is in fact a well-known one for experts, and
suggests that an adjustment of the intermediate-acting insulin (e.g., NPH) may be
indicated. This pattern was noted in the data by both experts.

Examination of the output for the first three cases by one of the experts showed
that the expert agreed with almost all (97%) of the produced abstractions – a result
similar to the one we found in the domain of growth monitoring [14,21]. We ex-
pected this high predictive value, since the domain’s TA ontology directly reflected
that expert’s knowledge about these low- and intermediate-level abstractions.

5.2. Interpretation contexts in evaluation of traffic-control actions

We have applied the RÉSUMÉ system to a task that involves both spatial and
temporal abstraction: evaluation of traffic control actions [18,23]. In the traffic-control
domain, the RÉSUMÉ system was used to model the task of monitoring traffic-control
actions, and to create a prototype for solving that task [23]. The task of monitor-
ing traffic-control actions receives as input recent values of different road parameters
(speed, flow, and occupancy) measured by sensors located along several highways, and
a set of recent control actions (e.g., traffic diversion) undertaken by traffic controllers.
It returns an evaluation of the adequacy of the control actions. Performance of this task
requires both temporal reasoning (e.g., about durations, rates, and trends of traffic pa-
rameters over time, for a given location) and linear spatial reasoning (e.g., about queue
lengths along the highway, at a given time). We used the RÉSUMÉ system to model
and solve both tasks [23] by generalizing it into a knowledge-based linear-abstraction
method. This method can then be used twive, once to solve a spatial-abstraction
(SA) task and once to solve a TA task. In fact, two copies of the method, using
different domain-specific knowledge, can be assembled to create a spatiotemporal-
abstraction method [18]. One of the copies can be viewed as the KBTA method, and
the other as a knowledge-based spatial-abstraction (KBSA) method.

5.2.1. Spatial abstraction in the traffic-control domain
We defined a spatial-abstraction ontology, using the TA ontology knowledge

structures, to describe properties of spatial parameters, such as CONGESTION, along the
highway-distance dimension (figure 10). We used this ontology to create linear spatial
abstractions in each highway zone, such as a spatial interval [1500, 2000] of length 500
meters in zone 1 in which the SATURATION-level parameter has the value critical. Such
a spatial abstraction holds, of course, only for an instantaneous temporal snapshot.

The primitive parameters and respective units in the traffic domain are the three
basic magnitudes recorded by sensors which are the inputs of the system: speed (km/h),
flow (vehicle/hr), and occupancy (percentage). The abstract parameters are high-level
qualitative variables representing the state of the traffic and several intermediate vari-
ables in the abstraction process, such as SATURATION degree (percentage), CIRCULATION

(on of FLUID, UNSTABLE, CONGESTED), and SATURATION level (one of FREE, CRITICAL).



Y.
Shahar

/
Tem

poral
abstraction

181

Figure 10. A part of the spatial-abstraction (SA) parameter ontology in the traffic-control domain. Note the specialization by the lane-type interpretation
contexts.
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The SATURATION level is abstracted from the SATURATION degree. The CIRCULATION

parameter is abstracted from speed and occupancy.
Interpretation contexts in the SA task within the traffic-control domain include,

for example, the number of lanes of the highway (see figure 10). Interpretation contexts
are induced also by events such as the presence of an accident blocking one or more
lanes, a road construction reducing the capacity of a freeway section, or the state
of a reversible lane. Interpretation contexts determine how parameters such as the
SATURATION degree should be abstracted (e.g., the SATURATION degree for one lane is
100× flow/1600, but is 100× flow/3500 for two lanes).

Other types of knowledge are represented in the traffic-domain’s SA ontology, be-
sides vertical-classification knowledge. One is the ∆ (maximal-gap) global persistence
function which expresses the maximal distance between successive disjoint parameter
intervals that still allows joining them into a new parameter interval through interpo-
lation. Thus, in the case of the CIRCULATION parameter and the CONGESTED value,
this distance could be established as 3 km (i.e., two CIRCULATION-parameter intervals
with the CONGESTED value would be joined into a longer interval when the distance
between the endpoint locations was less than 3 km; if the distance was bigger, they
would be interpreted as two different problems). This particular feature of the KBSA
method is especially useful in the traffic domain since sometimes sensors do not work,
certain data are missing, and the system must be able to interpolate using other sensors
and heuristics.

Values for the SA knowledge type depend on particular highways. The approach
we used here was to consider each highway (and even highway zone) as a different
interpretation context, and specialize the SA ontology by these contexts. Using the
SA ontology, we created spatial abstractions using a spatial-abstraction version of
RÉSUMÉ and values from simulated highway data sensors (figure 11).

5.2.2. Temporal abstraction in the traffic-control domain
We created a TA ontology (figure 12) to describe the properties of the temporal

evolution of the spatial abstractions at each location or highway zone (each of which
is an instantaneous snapshot) over time. We used the TA ontology to form and detect
crucial traffic-control spatiotemporal patterns. In this case, the primitive parameters
include values provided by the output of the SA task and values provided by sensors
at critical points outside the highway, such as ramps or intersections: CONGESTION

length (meters), FLOW at point Pi (vehicles/hr) (the number i of these points is usually
less than 5 per highway).

For the sake of clarity, we assume that a highway can have at most one problem
at a time. In fact this is normally true. However, reasoning about multiple problems is
not difficult; several zones, as they are often called, must be defined, with each zone
corresponding to a spatial interval between two consecutive message-sign devices.
Zones can be represented as subcontexts (a part of the TA and SA interpretation-
context ontologies). A traffic queue usually has a fixed starting point where there is
a lack of capacity (an accident, a bottleneck, etc.) and the end of the congested area
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Figure 11. Spatial abstraction of a highway section. At the bottom, a scheme of the highway is presented
showing different densities of traffic. Above that, respective values are presented for different magnitudes
recorded by sensors at consecutive locations (SPEED, OCCUPANCY and FLOW). At the top, different intervals
are shown as a result of the spatial abstraction. The figure shows only top-level abstraction intervals
although different intermediate intervals are also created during the inference process. 2 = FLOW;

∆ = SPEED; ◦ = OCCUPANCY; = context interval; = closed abstraction interval.

evolves according to the demand. This means that if there were several problems on
the same highway, each one could be identified by the zone of their starting point.
Figure 13 presents an example of a temporal evolution of the CONGESTION-length
parameter in one zone.

Temporal interpretation contexts in the traffic-control domain are typically in-
duced by events (execution of traffic-control actions), such as the action of turning on
a congestion warning at a certain zone, or the creation of a path diversion.

The abstract parameters of the TA ontology for the control-monitoring task in the
traffic domain include: CONGESTION-length gradient (one of INCREASING, DECREASING,
CONSTANT); FLOW gradient at point Pi (one of INCREASING, DECREASING, CONSTANT);
SATURATION level at point Pi (one of FREE, CRITICAL).

The CONGESTION-length gradient is necessary to decide if the control action is
having an effect on the existing problem. Flow gradients monitor whether control
actions such as diversion are followed by drivers. The SATURATION level at critical
points is useful to determine whether a new problem may appear as a consequence of
the control action. Vertical-classification tables for the SATURATION level are special-
ized by each subcontext created by each point Pi. The horizontal-inference knowledge
for gradient interpolation includes values of variations significant to the values of the
parameters abstracted (e.g., 1000 m for CONGESTION length, 500 vehicles/hr for the
FLOW parameter).
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Figure 12. A part of the temporal-abstraction parameter ontology in the traffic-control domain. Note the specialization by geographic-region interpretation
contexts.



Y. Shahar / Temporal abstraction 185

Figure 13. The input for the temporal abstraction task in the domain of traffic is a sequence of qualitative
instantaneous views of the same segment of the highway. The figure presents the temporal evolution of
the state of a highway in which the congestion-length gradient in a certain zone can be abstracted as
increasing over successive temporal snapshots (at T = 1 min, T = 3 min, T = 5 min, and T = 7 min).

Finally, to determine the adequacy of a control action it is necessary to define
temporal patterns. For each control action we defined the following set of TA patterns
representing its adequacy: APPROPRIATE, USELESS, NEGATIVE, UNKNOWN, SOLVED and
INSUFFICIENT. Each pattern is expressed as a set of parameter intervals and temporal
and value constraints among them. The values of these patterns (one of TRUE, FALSE)
supplied the final answer to the control-action monitoring task. Figure 14 shows an
example of a temporal abstraction of the spatial data abstracted from one highway
section, showing an evolution of its (abstract) parameters over time.

6. Related work

Several general frameworks have been proposed for explicitly representing the
context of inference [3–5,9,16] and for enabling reasoners to lift axioms from one
context to another [9]. Our framework is more task specific, focusing on the TA task
and on contexts as being interpreted only over time intervals, and can be viewed as
an engineering approach to the representation of contexts over time.

DIRCs (and, in a certain sense, the various types of interpretation contexts) rep-
resent explicitly the source of the contexts (i.e., induction by context-forming proposi-
tions and formation by certain operations on context intervals), a point often neglected
in logical frameworks that assume the existence of contexts as primitive propositions.

Parameter intervals represent explicitly the parameter’s value within a specific
context and time. These propositions could also be represented as a parameter value
that holds within a temporal specialization of the context [16]. Primitive-parameter
propositions, such as values of sensor readings at a particular location and time, which
are otherwise independent of context (and are thus considered to be in a null, or empty
context) can be compared to time-oriented propositions that hold in the outermost
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Figure 14. Temporal abstraction of a highway section. At the bottom is the evolution of the highway
state over time; a queue first increases and then decreases. Above that, values are presented for the queue
length and for values measured by sensors at critical spatial locations. At the top are inferred temporal

abstraction intervals. = context interval; = closed abstraction interval.

context, or context C0 [16], which can be dropped to decontextualize raw data. Alter-
natively, the parameter’s value (as an independent proposition) could be considered to
be holding in the outermost context, specialized only by time.

Both the IS-A and the SUBCONTEXT relations in the TA context ontology are
specializing relations in McCarthy’s [16] sense. However, unlike in McCarthy’s case,
inheritance typically works only from the super context to the subcontext or the descen-
dent context, since typically the TA properties of the parameter in the more specialized
context are somewhat different and override the properties of that parameter in the more
general context (else, the domain expert would not have defined that specialization).
The IS-A relation specializes contexts in the regular sense. The SUBCONTEXT relation
creates composite contexts, or nested contexts, as in McCarthy’s [16] construction,
thus bestowing on contexts what Buvac et al. [4,5] refer to as the non-flatness prop-
erty. That is, the path by which the same context is arrived at is important; in our
case, it is the context chain in a composite context.

Generalized contexts, as we define them (see section 4.2), enable sharing spe-
cific parameter propositions (i.e., specific values) and their meaning across different
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contexts, which can be considered as a special relation, or lifting rule, among contexts
[9,16]. Nonconvex contexts are more akin to nonconvex temporal intervals, for which
Ladkin [15] has defined a detailed taxonomy and algebra.

Somewhat related to induction of contexts by propositions is Kowalski and Ser-
got’s [13] event calculus, in which states are initiated by events. That formalism,
however, is intended mainly for a forecasting or a projection task, and less for an
interpretation task, such as the TA task. Thus, it is well suited for projection of future
results of various operations in a database, for instance, and for simulation or predic-
tion of likely immediate results of actions, tasks for which the KBTA framework is
not intended and therefore cannot perform. However, the KBTA framework, due to
the specialized task it performs, represents explicitly the interpretation contexts cre-
ated by either past or future events and states; furthermore, any quantitative temporal
constraint can be defined to hold between the inducing and the induced proposition.
Both past and delayed effects are outside of the scope of formalisms such as the event
calculus, in which events directly and instantaneously create (future) state transitions.
Note that DIRCs do not represent effects, but rather, the context(s) induced by either
the presence of the proposition, the potential effects of the proposition, or the abductive
inferences from realizing the existence of the proposition. Thus, there is no intent to
simulate a real sequence of actions and effects.

In the medical domain, several systems have been applied to the abstraction of
meaningful time-oriented patterns from clinical data. Several of these systems represent
the context explicitly or implicitly, and thus can be compared to the KBTA method
and to the RÉSUMÉ system.

Fagan’s VM system was one of the first knowledge-based systems that included
an explicit representation for time. It was designed to assist physicians who are man-
aging patients who were on ventilators in intensive-care units [7,8]. VM was designed
as a rule-based system inspired by MYCIN [2], but it was different in several respects:
VM could reason explicitly about time units, accept time-stamped measurements of
patient parameters, and calculate time-dependent concepts such as rates of change.
In addition, VM relied on a state-transition model of different intensive-care thera-
peutic situations, or contexts (in the VM case, different ventilation modes). In each
context, different expectation rules would apply to determine what, for instance, is
an ACCEPTABLE mean arterial pressure in a particular context. Except for such state-
specific rules, the rest of the rules could ignore the context in which they were applied,
since the context-specific classification rules created a context-free, “common denom-
inator,” symbolic-value environment. Thus, similar values of the same parameter that
appeared in meeting intervals (e.g., IDEAL mean arterial pressure) could be joined and
aggregated into longer intervals, even though the meaning of the value could be dif-
ferent, depending on the context in which the symbolic value was determined. The
fact that the system changed state was inferred by special rules, since VM was not
connected directly to the ventilator output.

The role of the context-forming mechanism in RÉSUMÉ (namely, to create cor-
rect interpretation contexts for temporal abstraction) is not unlike that of the state-
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detection rules in VM, although the mechanism’s operation is different and its output
is more flexible (e.g., the temporal extension of an interpretation context can have any
of Allen’s 13 temporal relations to the event or abstraction which induced it, not just
a contemporaneous scope).

The RÉSUMÉ methodology is similar in some respects to the VM model. Most
of the domain-specific knowledge that is represented in the domain’s ontology of pa-
rameters and their temporal properties is specialized by contexts. This knowledge is
used by the temporal-abstraction mechanisms. Thus, although, strictly speaking, the
same domain-independent rules (the TA mechanisms) apply to every context, their
parameters (e.g., classification tables, maximal-gap-bridging functions) are specific to
the context. However, the various values and classification functions possible for the
same parameter or a combination of parameters in each context can be quite differ-
ent. Thus, the GRADE IV value of the SYSTEMIC TOXICITY abstract parameter (and,
often, the whole parameter schema itself) makes no sense when a patient received no
toxic chemotherapy, even though the same hematological parameters might still be
monitored. This context-specific terminology is termed the context’s vocabulary by
Buvac and Mason [5]. Therefore, additional conditions must be specified before meet-
ing parameter intervals with the same parameter value can be joined. As explained
in sections 4.2 and 4.3, the KBTA method makes several finer distinctions with re-
spect to joining parameter values over different contexts: typically, an interpretation
of the same parameter in different contexts cannot be joined to an interpretation of
that parameter in different contexts. However, the RÉSUMÉ system allows the de-
veloper to define generalizing, interpretation contexts for joining interpretations of
the same parameter in different contexts over meeting time intervals (e.g., the state of
the hemoglobin parameter over two meeting but different treatment regimens within
the same clinical protocol), and nonconvex interpretation contexts for joining inter-
pretations of the same parameter in the same context, but over nonconsecutive time
intervals (e.g., prebreakfast blood-glucose values over several days). Note that, in the
terms of the TA ontology defined in section 4.2, all of VM’s parameter propositions are
sharable, for all parameter values. This phenomenon was enabled by the fact that all
contexts in VM had the same vocabulary, in particular with respect to the parameters’
domain of values and its meaning.

The TrenDx system of Haimowitz and Kohane [10] builds on Kohane’s [12]
constraint-satisfaction temporal-utilities package, and defines domain-specific patterns
called trend templates (TTs). TrenDx is useful in detecting that the data is consistent
with one or more TTs, including TTs of which only a part is observed. Like RÉSUMÉ,
TrenDx assumes implicitly an ill-defined domain that cannot be modeled easily quan-
titatively, and therefore requires detection of essentially associative temporal patterns.
However, the goal of TrenDx is different from that of RÉSUMÉ. TrenDx does not cre-
ate any intermediate abstractions or context intervals, since its goal is not to abstract,
summarize, or answer new queries about the data, as it is in the TA task, but rather to
match data efficiently against a set of predefined patterns. Data can only be accepted at
the lowest level; thus, no input of intermediate-level abstractions is possible. Contexts
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are therefore an implicit part of the pattern, and no metalevel knowledge exists about
them. No explicit domain ontology of parameters, events, and contexts exists, and
a constraint (e.g., significant change in a parameter) might be repeated with the same
implicit role in different TTs (when used within what might be referred to as the same
[implicit] context) and even in different parts of the same TT.

Kahn’s TOPAZ system [11] integrates a quantitative physiological model and a
symbolic model for aggregation of clinically significant intervals. TOPAZ can associate
interpretation methods with an interval representing a context of interest. RÉSUMÉ
extends this capability by the context-forming mechanism, which uses an explicit
context ontology to enable creation of context-specific abstractions and activation of
specific functions, but does not limit generated interpretation contexts to the temporal
extent of the parent event, allowing any desired relation between the generating interval
and the generated context.

7. Discussion: advantages and limitations

Interpretation contexts enable temporal abstractions to be sensitive to the most
specific context known at the time of interpretation, while limiting the computation by
focusing the attention of the TA mechanisms on a small portion of the input (i.e., to
parameter propositions within the temporal scope of a context interval).

As explained in section 6, the KBTA method is effective mainly for interpretation
tasks, but not for forecasting, simulation, or projection tasks. In addition, the explicit
context ontology must be acquired from domain experts and has to be defined ahead
of time (although context intervals are induced or extended automatically at run time).
Thus, the KBTA method implies a certain knowledge-acquisition (KA) cost, and all
relevant interpretation-context combinations used in the parameter ontology have to
be valid composite contexts that are defined (explicitly or implicitly) in the context
ontology. To facilitate KA and validation, we have created an automated graphic KA
tool for acquisition of TA knowledge [29]. The TA KA tool is generated automati-
cally by tools from the PROTÉGÉ project for automatic generation of KA tools for
knowledge-based systems [30].

The TA mechanisms (except for context formation) operate within the temporal
span of context intervals and do not depend on the event and context ontologies. These
mechanisms assume the existence of context intervals and of interpretation contexts as
part of the input parameter propositions. The context-forming mechanism is thus the
only interface to the domain’s event and abstraction-goal ontologies, and shields the
rest of the mechanisms from any need to know about external events, their structure,
or the interpretation contexts they induce.

The introduction of explicit interpretation contexts as independent mediating en-
tities, separate from the propositions inducing them and from abstractions using them,
has significant conceptual and computational advantages for context-specific interpre-
tation of time-stamped data. Advantages include:
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(1) Any temporal relation can hold between a context interval and its inducing propo-
sition; interpretation contexts might be induced concurrently, in the future, and in
the past, enabling a form of foresight and hindsight.

(2) The same context-forming proposition can induce one or more context intervals.

(3) The same interpretation context might be induced by different propositions. The
separation of interpretation contexts from their inducing propositions facilitates
maintenance and reusability of temporal-abstraction knowledge.

(4) Parameter propositions include an explicit interpretation context, thus enabling a
representation of several abstractions in which the same abstract parameter (e.g.,
the “state of hemoglobin-level” parameter) has different values at the same time –
one for each of the context intervals that hold during the relevant period. Thus,
interpretation contexts support maintenance of several concurrent interpretations
of the same data.

Apart from its demonstrated usefulness in several clinical domains, such as the
diabetes-therapy domain example presented in section 5.1, the interpretation-context
model has been useful also in modeling other tasks involving matching of context-
sensitive linear patterns in which the relevant distance measure has properties similar
to the temporal model defined in the TA ontology (see section 3). One example is
modeling the retrieval of full-text documents, given key words that should be found
within a given semantic text context [26]. In that task, the linear distance measure
was position within the text, the parameters were text strings, and the interpretation
contexts were conceptual textual contexts (e.g., a POPULATION-SELECTION subcontext
within a clinical research paper). Another example, discussed in section 5.2, was
assistance in the formation of both temporal and spatial abstractions to solve a traffic-
control task. The linear distance measure was either time or space, respectively, and
the KBTA method and the RÉSUMÉ system were used for both tasks [23]. Indeed,
a spatio-temporal abstraction method was assembled by reusing two copies of a gen-
eralized knowledge-based linear-abstraction method [18] and mapping the inputs and
outputs of that method to either a spatial-abstraction or a temporal-abstraction domain
ontology, as necessary.

Thus, the interpretation-context model presented in this paper might also be
viewed as a general model for knowledge-based creation of interpretation contexts
for a linear-abstraction task. The necessary conditions include an distance measure
analog to the temporal one defined in the TA ontology. To make the knowledge-
based linear-abstraction method not only applicable but also useful, however, there are
also several additional requirements for successful reuse [18]. For instance, certain
functional specifications of the task make this method more valuable (e.g., parameters
exist at several levels of abstraction, and data values might arrive out of the linear
order) and certain domain-specific TA knowledge or its equivalent must be available
(e.g., context-forming classification knowledge and ABSTRACTED-INTO relations over
the parameter space).
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[24] Y. Shahar and M.A. Musen, RÉSUMÉ: A temporal-abstraction system for patient monitoring,
Computers and Biomedical Research 26(3) (1993) 255–273. Reprinted in: Yearbook of Medical
Informatics 1994, eds. J.H. van Bemmel, T. McRay and F.K. Schattauer (The International Medical
Informatics Association, Stuttgart, 1994) pp. 443–461.

[25] Y. Shahar and M.A. Musen, Knowledge-based temporal abstraction in clinical domains, Artificial
Intelligence in Medicine 8(3) (1996) 267–298.

[26] Y. Shahar and G. Purcell, The context-sensitive pattern-matching task, in: Working Notes of the
Workshop on Modelling Context in Knowledge Representation and Reasoning, Internat. Joint Conf.
Artificial Intelligence, Montreal, Québec, Canada (1995) pp. 133–143.
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II to protocol-based decision support, Artificial Intelligence in Medicine 7(3) (1995) 257–289.


