Skip to main content
Log in

Efficacy of floor control protocols in distributed multimedia collaboration

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Distributed multipoint applications for group interaction across wide-area networks, such as for simulation and telecollaboration, are becoming increasingly popular. While reliable multicasting has made significant advances in recent years, effective mechanisms to synchronize and coordinate work within large multicast groups and across long distances are still lacking. Synchronous sharing of resources, whose operational semantics prohibits parallel usage, typically creates race conditions among users, which can be resolved through an access discipline called floor control. Existing solutions on floor control, implemented either at the session or application layer, are mostly proprietary, limited in scope and not scalable. Furthermore, no performance comparison of floor control protocols has been attempted to date. We present a novel taxonomy and comparative performance analysis of known classes of floor control protocols, ranging from socially mediated control to protocols operating on ring and tree topologies. We find that aggregation and selective transmission of control information in a tree structure is the most promising solution with regard to scalability, efficacy, and robustness. The principal operation of such a tree protocol is outlined, which dynamically organizes participants in a multi-level control tree and aggregates resource sharing directives on the paths between interacting stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.M. Abdel-Wahab, S.-U. Guan and J. Nievergelt, Shared workspaces for group collaboration: an experiment using Internet and Unix interprocess communications, IEEE Comm. Mag. 26(11) (1988) 10-16.

    Article  Google Scholar 

  2. L. Aguilar, J.J. Garcia-Luna-Aceves, D. Moran, E.J. Craighill and R. Brungardt, Architecture for a multimedia teleconferencing system, in: Proc. ACM SIGCOMM (August 1986) pp. 126-136.

  3. S.R. Ahuja and J.R. Ensor, Coordination and control of multimedia conferencing, IEEE Comm. Mag. 30(5) (1992) 38-43.

    Article  Google Scholar 

  4. E. Amir, S. McCanne and R. Katz, Receiver-driven bandwidth adaptation for light-weight sessions, in: Proc. ACM Multimedia, Seattle, WA (November 1997).

  5. D. Bertsekas and R. Gallager, Data Networks (Prentice-Hall, Englewood Cliffs, NJ, 2nd ed., 1992).

    Google Scholar 

  6. J.F. Buford, Multimedia Systems (Addison-Wesley/ACM Press, New York, 1994).

    Google Scholar 

  7. E. Craighill, R. Lang, M. Fong and K. Skinner, CECED: A system for informal multimedia collaboration, in: Proc. ACM Multimedia, Anaheim, CA (August 1993).

  8. T. Crowley, P. Milazzo, E. Baker, H. Forsdick and R. Tomlinson, MMConf: An infrastructure for building shared multimedia applications, in: Proc. ACM CSCW, Los Angeles, CA (October 1990) pp. 637-650.

  9. S. Deering, Host extensions for IP multicasting, RFC-1112, August 1989.

  10. H.-P. Dommel and J.J. Garcia-Luna-Aceves, Floor control for multimedia conferencing and collaboration, Multimedia Systems 5(1) (1997) 23-38.

    Article  Google Scholar 

  11. H.-P. Dommel and J.J. Garcia-Luna-Aceves, Network support for turn-taking in multimedia collaboration, in: Proc. IS&T SPIE Multimedia Computing and Networking, San Jose, CA (February 1997) pp. 304-315.

  12. E.A. Edmonds, L. Candy, R. Jones and B. Soufi, Support for collaborative design: Agents and emergence, Comm. of the ACM 37(7) (1994) 41-47.

    Article  Google Scholar 

  13. C.A. Ellis, S.J. Gibbs and G.L. Rein, Groupware — some issues and experiences, Comm. of the ACM 34(1) (1991) 38-58.

    Article  Google Scholar 

  14. S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu and L. Zhang, A reliable multicast framework for light-weight sessions and application level-framing, in: Proc. ACM SIGCOMM, Cambridge, MA (August/September 1995) pp. 342-356.

  15. F. Fluckiger, Understanding Networked Multimedia: Applications and Technology (Prentice-Hall, Englewood Cliffs, NJ, 1995).

    Google Scholar 

  16. J.J. Garcia-Luna-Aceves, E. Craighill and R. Lang, Floor management and control for multimedia conferencing, in: Proc. IEEE Multimedia, 2nd COMSOC Int. Multimedia Comm. Workshop, Ottawa, Canada (April 1989).

  17. M. Handley, I. Wakeman and J. Crowcroft, The conference control channel protocol (CCCP): A scalable base for building conference control applications. in: Proc. ACM SIGCOMM, Cambridge, MA (August/September 1995) pp. 275-287.

  18. E.A. Isaacs and J.C. Tang, What video can and cannot do for collaboration: a case study, Multimedia Systems J. 2(2) (1994) 63-73.

    Article  Google Scholar 

  19. K.A. Lantz, An experiment in integrated multimedia conferencing, in: Computer Supported Cooperative Work: A Book of Readings (Morgan Kaufmann, San Mateo, CA, 1988) pp. 533-556.

    Google Scholar 

  20. B.N. Levine and J.J. Garcia-Luna-Aceves, Improving internet multicast with routing labels, in: Proc. IEEE ICNP, Atlanta, GA (October 1997) pp. 241-250.

  21. B.N. Levine, D. Lavo and J.J. Garcia-Luna-Aceves, The case for concurrent reliable multicasting using shared ack trees, in: Proc. ACM Multimedia, Boston, MA (November 1996).

  22. J. Liebeherr and B.S. Sethi, A scalable control topology for multicast communication, in: Proc. IEEE Infocom, San Francisco (March/April 1998).

  23. R. Malpani and L. Rowe, Floor control for large MBone seminars, in: Proc. ACM Multimedia, Seattle, CA (November 1997) pp. 155-163.

  24. S. McCanne and V. Jacobson, vic: A flexible framework for packet video, in: Proc. ACM Multimedia, San Francisco (November 1995) pp. 511-522.

  25. A. Pang, C. Wittenbrink and T. Goodman, CSpray: A collaborative scientific visualization application, in: Proc. IS&T SPIE Multimedia Computing and Networking, San Jose, CA (February 1995).

  26. S. Paul, K.K. Sabnani, J.C.-H. Lin and S. Bhattacharyya, Reliable multicast transport protocol (RMTP), IEEE J. Selected Areas Comm. 15(3) (1997) 407-421.

    Article  Google Scholar 

  27. M.O. Pendergast, Multicast channels for collaborative applications: design and performance evaluation, Comput. Comm. Rev. 23(2) (1993) 25-38.

    Article  Google Scholar 

  28. K. Raymond, A tree-based algorithm for distributed mutual exclusion, ACM Trans. Comput. Syst. 7(1) (1989) 61-77.

    Article  MathSciNet  Google Scholar 

  29. H.M. Robert, Robert's Rules of Order (Bantam Books, Toronto/New York, 1986).

    Google Scholar 

  30. S. Sarin and I. Greif, Computer-based real-time conferencing systems, in: Computer-Supported Cooperative Work: A Book of Readings (Morgan Kaufmann, San Mateo, CA, 1988) pp. 397-420.

    Google Scholar 

  31. E.M. Schooler, Conferencing and collaborative computing, Multimedia Systems J. 4(5) (1996) 210-225.

    Article  Google Scholar 

  32. S. Shirmohammadi, J.C. De Oliveira and N.D. Georganas, Applet-based telecollaboration: a network-centric approach, IEEE Multimedia J. 5(2) (1998) 64-73.

    Article  Google Scholar 

  33. M. Singhal, A taxonomy of distributed mutual exclusion, J. Parallel and Distributed Syst. 18(1) (1993) 94-101.

    Article  MATH  Google Scholar 

  34. K. Srinivas, R. Reddy et al., MONET: A multimedia system for conferencing and application sharing in distributed systems, TR CERC-TN-RN-91-009, Concurrent Engineering Research Center, West Virginia University, Morgantown, WV (February 1992).

    Google Scholar 

  35. R. Steinmetz, Synchronization properties in multimedia systems, IEEE J. Selected Areas Comm. 8(3) (1990) 401-411.

    Article  Google Scholar 

  36. C. Szyperski and G. Ventre, Efficient group communication with guaranteed quality-of-service, in: Proc. IEEE 4th Workshop on Future Trends of Distributed Comp. Syst., Lisbon, Portugal (September 1993) pp. 150-156.

  37. H. Takagi and L. Kleinrock, Output processes in contention packet broadcasting systems, IEEE Trans. Comm. 33(11) (1985) 1191-1199.

    Article  MATH  MathSciNet  Google Scholar 

  38. International Telecommunication Union, Recommendation T.120 on data protocols for multimedia conferencing (July 1996), http://www.itu.int.

  39. H.M. Vin, P.V. Rangan and S. Ramanathan, Hierarchical conferencing architectures for inter-group multimedia collaboration, in: ACM SIGOIS Bulletin, Proc. Org. Comput. Syst., Atlanta, GA (November 1991) pp. 43-54.

  40. K. Watabe, S. Sakata, K. Maeno, H. Fukuoka and K. Marbara, Distributed multiparty desktop conferencing system: MERMAID, in: Proc. ACM CSCW, Los Angeles, CA (October 1990) pp. 27-38.

  41. R. Yavatkar, MCP: A protocol for coordination and temporal synchronization in multimedia collaborative applications, in: Proc. of the 12th IEEE Int. Conf. on Distributed Comput. Syst. (June 1991).

  42. R. Yavatkar, J. Griffioen and M. Sudan, A reliable dissemination protocol for interactive collaborative applications, in: Proc. ACM Multimedia, San Francisco (November 1995) pp. 333-344.

  43. C. Ziegler, G. Weiss and E. Friedman, Implementation mechanisms for packet switched voice conferencing, IEEE J. Selected Areas Comm. 7(5) (1989) 698-706.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dommel, HP., Garcia-Luna-Aceves, J. Efficacy of floor control protocols in distributed multimedia collaboration. Cluster Computing 2, 17–33 (1999). https://doi.org/10.1023/A:1019010221393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019010221393

Keywords

Navigation