Skip to main content
Log in

Chebyshev splines and shape parameters

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A parametric spline curve is defined whose restriction to each sub-interval belongs to a 4-dimensional piecewise Chebyshev subspace depending on coefficients which play the role of shape parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Barry, De Boor–Fix dual functionals and algorithms for Tchebycheffian B-splines curves, Constr. Approx. 12 (1996) 385–408.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.J. Barry, N. Dyn, R.N. Goldman and C.A. Micchelli, Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Math. 42 (1991) 123–136.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.J. Barry, R.N. Goldman and C.A. Micchelli, Knot insertion algorithms for piecewise polynomial spaces determined by connection matrices, Adv. Comput. Math. 1 (1993) 139–171.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Dyn, A. Edelman and C.A. Micchelli, On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987) 313–341.

    MATH  MathSciNet  Google Scholar 

  5. N. Dyn and C.A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves, Numer. Math. 54 (1988) 319–337.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Dyn and A. Ron, Recurrence relations for Tchebycheffian B-splines, J. Anal. Math. 51 (1988) 118–138.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.N. Goldman, Dual polynomial bases, J. Approx. Theory 79 (1994) 311–346.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Karlin, Total Positivity (Stanford University Press, Stanford, 1968).

    MATH  Google Scholar 

  9. S. Karlin and W.J. Studden, Tchebycheff Systems (Wiley Interscience, New York, 1966).

    MATH  Google Scholar 

  10. S. Karlin and Z. Ziegler, Chebyshevian spline functions, SIAM J. Numer. Anal. 3 (1966) 514–543.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Kulkarni and P.-J. Laurent, Q-splines, Numer. Algorithms 1 (1991) 45–74.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Kulkarni, P.-J. Laurent and M.-L. Mazure, Non affine blossoms and subdivision for Q-splines, in: Mathematical Methods in Computer Aided Geometric Design, Vol. 2, eds. T. Lyche and L.L. Schumaker (Academic Press, New York, 1992) pp. 367–380.

    Google Scholar 

  13. P.-J. Laurent, M.-L. Mazure and G. Morin, Shape effects with polynomial Chebyshev splines, in: 3rd Conf.on Curves and Surfaces, Chamonix, France (June 27–July 3, 1996).

  14. T. Lyche, A recurrence relation for Chebyshevian B-splines, Constr. Approx. 1 (1985) 155–173.

    Article  MATH  MathSciNet  Google Scholar 

  15. M.-L. Mazure, Blossoming of Chebyshev splines, in: Mathematical Methods for Curves and Surfaces (Vanderbilt University Press, 1995) pp. 355–364.

  16. M.-L. Mazure, Chebyshev spaces, RR 952M IMAG, Université Joseph Fourier, Grenoble (1996).

    Google Scholar 

  17. M.-L. Mazure, Chebyshev blossoming, RR 953M IMAG, Université Joseph Fourier, Grenoble (1996).

  18. M.-L. Mazure, Blossoming: a geometric approach, RR 968M IMAG, Université Joseph Fourier, Grenoble (January 1997), to appear in Constr. Approx.

  19. M.-L. Mazure, Vandermonde type determinants and blossoms, in: 4th Int.Conf.on Mathematical Methods for Curves and Surfaces, Lillehammer, Norway (July 3–8, 1997), RR 979M IMAG, Université Joseph Fourier, Grenoble (September 1997).

  20. M.-L. Mazure and P.-J. Laurent, Affine and non affine blossoms, in: Computational Geometry (World Scientific, 1993) pp. 201–230.

  21. M.-L. Mazure and P.-J. Laurent, Marsden identities, blossoming and de Boor–Fix formula, in: Advanced Topics in Multivariate Approximation (World Scientific, 1996) pp. 227–242.

  22. M.-L. Mazure and P.-J. Laurent, Piecewise smooth spaces in duality: application to blossoming, RR 969M IMAG, Université Joseph Fourier, Grenoble (January 1997), to appear in J. Approx. Theory.

  23. M.-L. Mazure and P.-J. Laurent, Nested sequences of Chebyshev spaces and shape parameters, in: Int.Workshop on Computer Aided Geometric Design, New Trends and Applications, Anogia, Greece (June 16–20, 1997), RR 978M IMAG, Université Joseph Fourier, Grenoble (September 1997).

  24. M.-L. Mazure and P.-J. Laurent, Polynomial Chebyshev Splines, to appear.

  25. M.-L. Mazure and H. Pottmann, Tchebycheff curves, in: Total Positivity and its Applications (Kluwer Academic, 1996) pp. 187–218.

  26. C.A. Micchelli, Mathematical aspects of geometric modeling, in: Proc.of CBMS-NSF Regional Conference, Series in Appl. Math. 65 (SIAM, Philadelphia, PA, 1995).

    Google Scholar 

  27. M. Neamtu, Null spaces of differential operators, polar forms and splines, J. Approx. Theory 86 (1996) 81–107.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Pottmann, The geometry of Tchebycheffian splines, Comput. Aided Geom. Design 10 (1993) 181–210.

    Article  MATH  MathSciNet  Google Scholar 

  29. L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom. Design 6 (1989) 323–358.

    Article  MATH  MathSciNet  Google Scholar 

  30. L.L. Schumaker, Spline Functions: Basic Theory (Wiley/Interscience, New York, 1981).

    Google Scholar 

  31. H.-P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling Numer. Anal. 26 (1992) 149–176.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, PJ., Mazure, ML. & Maxim, V.T. Chebyshev splines and shape parameters. Numerical Algorithms 15, 373–383 (1997). https://doi.org/10.1023/A:1019114424971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019114424971

Navigation