Skip to main content
Log in

Two-dimensional block partitionings for the parallel sparse Cholesky factorization

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents a discussion on 2D block mappings for the sparse Cholesky factorization on parallel MIMD architectures with distributed memory. It introduces the fan-in algorithm in a general manner and proposes several mapping strategies. The grid mapping with row balancing, inspired by Rothberg's work (1994), is proved to be more robust than the original fan-out algorithm. Even more efficient is the proportional mapping, as shown by the experiments on a 32 processor IBM SP1 and on a Cray T3D. Subforest-to-subcube mappings are also considered and give good results on the T3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.R. Amestoy, T.A. Davis and I.S. Duff, An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal. Appl. 17(4) (1996) 886–905.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Ashcraft, S.C. Eisenstat and J.W.H. Liu, A fan-in algorithm for distributed sparse numerical factorization, SIAM J. Sci. Statist. Comput. 11(3) (1990) 593–599.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Ashcraft and R. Grimes, The influence of relaxed supernode partitions on the multifrontal method, ACM Trans. Math. Software 15(4) (1989) 291–309.

    Article  MATH  Google Scholar 

  4. C. Ashcraft, R. Grimes, J. Lewis, B. Peyton and H. Simon, Progress in sparse matrix methods for large linear systems on vector supercomputers, Internat. J. Supercomput. Appl. 1 (1987) 10–29.

    Article  Google Scholar 

  5. G. Cavalheiro and M. Doreille, ATHAPASCAN: A C++ library for parallel programming, in: Stratagem '96, INRIA, Sophia Antipolis, France (July 1996) p. 75.

    Google Scholar 

  6. J.J. Dongarra, J. Du Croz, S. Hammarling and I. Duff, A set of level-3 basic linear algebra subprograms, ACM Trans. Math. Software 16 (1990) 1–17, 18-28.

    Article  MATH  Google Scholar 

  7. I.S. Duff, Sparse numerical linear algebra: direct methods and preconditioning, Technical Report TR/PA/96/22, CERFACS (1996).

  8. L. Facq and J. Roman, Distribution par bloc pour une factorisation parallèle de Cholesky, in: Parallèlisme et Applications Irrégulières, eds. G. Authié et al. (Hermès, 1995) pp. 135–147.

  9. G.A. Geist and E. Ng, Task scheduling for parallel sparse Cholesky factorization, Internat. J. Parallel Programming 18 (1989) 291–314.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. George, M.T. Heath, J. Liu and E. Ng, Sparse Cholesky factorization on a local-memory multiprocessor, SIAM J. Sci. Statist. Comput. 9(2) (1988) 327–340.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Gupta, G. Karypis and V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization, Technical Report 94-63, Department of Computer Science, University of Minnesota, Minneapolis (1994).

    Google Scholar 

  12. M.T. Heath, E. Ng and B.W. Peyton, Parallel algorithms for sparse linear systems, SIAM Rev. 33(3) (1991) 420–460.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Hulbert and E. Zmijewski, Limiting communication in parallel sparse Cholesky factorization, SIAM J. Sci. Statist. Comput. 12(5) (1991) 1184–1197.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Karypis and V. Kumar, METIS - Unstructured graph partitioning and sparse matrix ordering system, version 2.0, Technical Report, Department of Computer Science, University of Minnesota, Minneapolis (1995).

    Google Scholar 

  15. J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11(1) (1990) 134–172.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Ng and B.W. Peyton, A supernodal Cholesky factorization algorithm for shared-memory multiprocessors, SIAM J. Sci. Comput. 14(4) (1993) 761–769.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Pothen and C. Sun, A mapping algorithm for parallel sparse Cholesky factorization, SIAM J. Sci. Comput. 14(5) (1993) 1253–1257.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Rothberg, Exploiting the memory hierarchy in sequential and parallel sparse Cholesky factorization, Ph.D. thesis, Stanford University (January 1993).

  19. E. Rothberg, Performance of panel and block approaches to sparse Cholesky factorization on the IPSC/860 and Paragon multicomputers, SIAM J. Sci. Comput. 17(3) (1996) 699–713.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Rothberg and A. Gupta, An efficient block-oriented approach to parallel sparse Cholesky factorization, SIAM J. Sci. Comput. 15(6) (1994) 1413–1439.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Rothberg and R. Schreiber, Improved load distribution in parallel sparse Cholesky factorization, in: '94 (1994) pp. 783–792.

  22. R. Schreiber, Scalability of sparse direct solvers, in: Graph Theory and Sparse Matrix Compution, The IMA Volumes in Mathematics and its Applications, Vol. 56, eds. A. George, J.R. Gilbert and J.W.H. Liu (1993) pp. 191–209.

  23. M. Snir, S.W. Otto, S. Hess-Lederman, D. Walker and J.J. Dongarra, MPI: The Complete Reference (MIT Press, Cambridge, MA, 1996). Available electronically: http://www.netlib.org/utk/papers/mpibook.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, B., Doreille, M., Roch, JL. et al. Two-dimensional block partitionings for the parallel sparse Cholesky factorization. Numerical Algorithms 16, 17–38 (1997). https://doi.org/10.1023/A:1019122726788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019122726788

Navigation