Skip to main content
Log in

Newton Generalized Hessenberg method for solving nonlinear systems of equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we give and analyze a Finite Difference version of the Generalized Hessenberg (FDGH) method. The obtained results show that applying this method in solving a linear system is equivalent to applying the Generalized Hessenberg method to a perturbed system. The finite difference version of the Generalized Hessenberg method is used in the context of solving nonlinear systems of equations using an inexact Newton method. The local convergence of the finite difference versions of the Newton Generalized Hessenberg method is studied. We obtain theoretical results that generalize those obtained for Newton-Arnoldi and Newton-GMRES methods. Numerical examples are given in order to compare the performances of the finite difference versions of the Newton-GMRES and Newton-CMRH methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17–29.

    MATH  MathSciNet  Google Scholar 

  2. P.N. Brown, A local convergence theory for combined inexact Newton/finite difference projection methods, SIAM J. Numer. Anal. 24 (1987) 407–434.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput. 11 (1990) 450–481.

    Article  MATH  MathSciNet  Google Scholar 

  4. P.N. Brown and Y. Saad, Convergence theory of nonlinear Krylov algorithms, SIAM J. Optim. 4 (1994) 297–330.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.C.P. Bus, Numerical Solution of Systems of Nonlinear Equations (Mathematisch Centrum, Amsterdam, 1980).

  6. R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400–408.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall International Series in Computational Mathematics (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  8. M. Heyouni, Méthode de Hessenberg généralisée et applications, Thèse de doctorat, Université de Lille I (Décembre 1996).

  9. M. Heyouni and H. Sadok, On a variable smoothing procedure for Krylov subspace methods, Linear Algebra Appl. 268 (1998) 131–149.

    Article  MATH  MathSciNet  Google Scholar 

  10. A.S. Householder and F.L. Bauer, On certain methods for expanding the characteristic polynomial, Numer. Math. 1 (1959) 29–37.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Saad, Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 5 (1984) 203–228.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms, to appear.

  14. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, UK, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyouni, M. Newton Generalized Hessenberg method for solving nonlinear systems of equations. Numerical Algorithms 21, 225–246 (1999). https://doi.org/10.1023/A:1019130001657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019130001657

Keywords

Navigation