Skip to main content
Log in

Front tracking for one-dimensional quasilinear hyperbolic equations with variable coefficients

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new front tracking method is developed for the variable coefficient equation \(u_t + \;V(x,t)f(u)_x = 0\). The method is a generalization of Dafermos' method for the constant coefficient case and is well-defined also for certain discontinuous velocity fields V. We give an explicit inequality stating the stability with respect to flux function, velocity field, and initial data. The numerical method is unconditionally stable and has linear convergence. It is well suited for numerical calculations, as is demonstrated in four examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.M. Barker, Swap-a computer program for shock wave analysis, Technical Report No. SC4796(RR), Sandia Nat. Labs., Albuquerque, NM (1963).

    Google Scholar 

  2. F. Bratvedt, K. Bratvedt, C.F. Buchholz, T. Gimse, H. Holden, L. Holden and N.H. Risebro, FRONTLINE and FRONTSIM: two full scale, two-phase, black oil reservoir simulators based on front tracking, Surveys Math. Indust. 3(3) (1993) 185-215.

    MATH  MathSciNet  Google Scholar 

  3. A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for n × n systems of conservation laws, Mem. Amer. Math. Soc., to appear.

  4. A. Bressan and P. LeFloch, Uniqueness of weak solutions to systems of conservation laws, Arch. Rational Mech. Anal. 140(4) (1997) 301-317.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Bürger, S. Evje, K.H. Karlsen and K.-A. Lie, Numerical methods for the simulation of the settling of flocculated suspensions, Preprint 99/03, Sonderforschungsbereich 404, University of Stuttgart, Stuttgart, Germany.

  6. C.M. Dafermos, Polygonal approximation of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972) 33-41.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Evje, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Front tracking and operator splitting for nonlinear degenerate convection-diffusion equations, in: Parallel Solution of Partial Differential Equations, eds. P. Bjø rstad and M. Luskin, The IMA Volumes in Mathematics and its Applications, Vol. 120 (Springer, New York, 2000) pp. 209-227.

    Google Scholar 

  8. T. Gimse, Conservation laws with discontinuous flux function, SIAM J. Math. Anal. 24(2) (1993) 279-289.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Gimse and N.H. Risebro, Riemann problems with a discontinuous flux function, in: Proc. of the 3rd Internat. Conf. on Hyperbolic Problems, Uppsala (1991) pp. 488-502.

  10. T. Gimse and N.H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal. 23(3) (1992) 635-648.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Haugse, K.H. Karlsen, K.-A. Lie and J.R. Natvig, Numerical solution of the polymer system by front tracking, Transport in Porous Media, to appear.

  12. G.W. Hedstrom, Some numerical experiments with Dafermos's method for nonlinear hyperbolic equations, in: Numerische Lösung nichtlinearer partieller Differential-und Integrodifferentialgleichungen, Tagung, Math. Forschungsinstitut, Oberwolfach (1971), Lecture Notes in Mathematics, Vol. 267 (Springer, Berlin, 1972) pp. 117-138.

    Google Scholar 

  13. G.W. Hedstrom, The accuracy of Dafermos' method for nonlinear hyperbolic equations, in: Proc. of Equadiff III, 3rd Czechoslovak Conf. on Differential Equations and their Applications, Brno (1972), Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph., Tomus 1, Purkynae Univ., Brno (1973) pp. 175-178.

  14. H. Holden and L. Holden, On scalar conservation laws in one-dimension, in: Ideas and Methods in Mathematics and Physics, eds. S. Albeverio, J.E. Fenstad, H. Holden and T. Lindstrø m (Cambridge Univ. Press, Cambridge, 1988) pp. 480-509.

    Google Scholar 

  15. H. Holden, L. Holden and R. Hø egh-Krohn, A numerical method for first order nonlinear scalar conservation laws in one-dimension, Comput. Math. Appl. 15(6-8) (1988) 595-602.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Holden, K.H. Karlsen and K.-A. Lie, Operator splitting methods for degenerate convection-diffusion equations II: Numerical examples with emphasis on reservoir simulation, Preprint (1999).

  17. L. Holden, The Buckley-Leverett equation with spatially stochastic flux function, SIAM J. Appl. Math. 57(5) (1997) 1443-1454.

    Article  MATH  MathSciNet  Google Scholar 

  18. K.H. Karlsen and K.-A. Lie, An unconditionally stable splitting for a class of nonlinear parabolic equations, IMA J. Numer. Anal. 19(4) (1999) 609-635.

    Article  MATH  MathSciNet  Google Scholar 

  19. K.H. Karlsen, K.-A. Lie, N.H. Risebro and J. Frø yen, A front-tracking approach to a two-phase fluid-flow model with capillary forces, In Situ 22(1) (1998) 59-89.

    Google Scholar 

  20. C. Klingenberg and N.H. Risebro, Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior, Comm. Partial Differential Equations 20(11/12) (1995) 1959-1990.

    MATH  MathSciNet  Google Scholar 

  21. S.N. KruŽkov, First order quasi-linear equations in several independent variables, Math. USSR-Sb. 10(2) (1970) 217-243.

    Article  Google Scholar 

  22. N.N. Kuznetsov, Accuracy of some approximative methods for computing the weak solutions of a first-order quasi-linear equation, Comput. Math. Math. Phys. 16(6) (1976) 105-119.

    Article  Google Scholar 

  23. J.O. Langseth, On an implementation of a front tracking method for hyperbolic conservation laws, Adv. in Engrg. Software 26(1) (1996) 45-63.

    Article  Google Scholar 

  24. R.J. LeVeque, Large time step shock-capturing techniques for scalar conservation laws, SIAM J. Numer. Anal. 19(6) (1982) 1091-1109.

    Article  MATH  MathSciNet  Google Scholar 

  25. R.J. LeVeque, A large time step generalization of Godunov's method for systems of conservation laws, SIAM J. Numer. Anal. 22(6) (1985) 1051-1073.

    Article  MATH  MathSciNet  Google Scholar 

  26. K.-A. Lie, A dimensional splitting method for nonlinear equations with variable coefficients, BIT 39(4) (1999) 683-700.

    Article  MATH  MathSciNet  Google Scholar 

  27. B.J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp. 46(173) (1986) 59-69.

    Article  MATH  MathSciNet  Google Scholar 

  28. O.A. Oleinik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. Ser. 2 26 (1963) 95-172.

    MathSciNet  Google Scholar 

  29. O.A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Amer. Math. Soc. Transl. Ser. 2 33 (1963) 285-290.

    Google Scholar 

  30. N.H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc. 117(4) (1993) 1125-1139.

    Article  MATH  MathSciNet  Google Scholar 

  31. N.H. Risebro and A. Tveito, Front tracking applied to a nonstrictly hyperbolic system of conservation laws, SIAM J. Sci. Statist. Comput. 12(6) (1991) 1401-1419.

    Article  MATH  MathSciNet  Google Scholar 

  32. N.H. Risebro and A. Tveito, A front tracking method for conservation laws in one dimension, J. Comput. Phys. 101(1) (1992) 130-139.

    Article  MATH  MathSciNet  Google Scholar 

  33. B.K. Swartz and B. Wendroff, AZTEC: a front tracking code based on Godunov's method, Appl. Numer. Math. 2(3-5) (1986) 385-397.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Tveito and R. Winther, Existence, uniqueness, and continuous dependence for a system of hyperbolic equations modeling polymer flooding, SIAM J. Math. Anal. 22(4) (1991) 905-933.

    Article  MATH  MathSciNet  Google Scholar 

  35. Y.S. Zheng, A note on Dafermos' polygonal approximation method, J. Math. Res. Exposition 4(1) (1984) 65-66 (in Chinese).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lie, KA. Front tracking for one-dimensional quasilinear hyperbolic equations with variable coefficients. Numerical Algorithms 24, 275–298 (2000). https://doi.org/10.1023/A:1019157629824

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019157629824

Navigation