Skip to main content
Log in

A discrete divergence-free basis for finite element methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The divergence-free finite element method (DFFEM) is a method to find an approximate solution of the Navier–Stokes equations in a divergence-free space. That is, the continuity equation is satisfied a priori. DFFEM eliminates the pressure from the calculations and significantly reduces the dimension of the system to be solved at each time step. For the standard 9-node velocity and 4-node pressure DFFEM, a basis for the weakly divergence-free subspace is constructed such that each basis function has nonzero support on at most 4 contiguous elements. Given this basis, weakly divergence-free macroelements are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Amit, C. Hall and T. Porsching, An application of network theory to the solution of implicit Navier-Stokes difference equations, J. Comput. Phys. 40 (1981) 183–201.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, Berlin, 1991).

    Google Scholar 

  3. M. Crouzeix and P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, RAIRO R-3 (1973) 33–76.

  4. J. Ellison, C. Hall and T. Porsching, An unconditionally stable convergent finite difference method for Navier-Stokes problem on curved domains, SIAM J. Numer. Anal. 24(6) (1987) 1233–1248.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Fortin, Old and new finite elements for incompressible flow, Internat. J. Numer. Methods Fluids 1 (1981) 347–364.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations (Springer, Heidelberg, Berlin, 1986).

    Google Scholar 

  7. J.W. Goodrich and W.Y. Soh, Time dependent viscous incompressible Navier-Stokes equations: the finite difference Galerkin formulations and stream function algorithms, J. Comput. Phys. 79(1) (1988) 113–134.

    Article  MATH  MathSciNet  Google Scholar 

  8. D.F. Griffiths, Finite element for incompressible flow, Math. Methods Appl. Sci. 1 (1979) 16–31.

    MATH  MathSciNet  Google Scholar 

  9. D.F. Griffiths, The construction of approximately divergence-free finite element, in: The Mathematics of Finite Element and its Applications, Vol. 3, ed. J.R. Whiteman (Academic Press, New York, 1979).

    Google Scholar 

  10. D.F. Griffiths, An approximately divergence-free 9-node velocity element for incompressible flows, Internat. J. Numer. Methods Fluids 1(4) (1981) 323–346.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Gustafson and R. Hartman, Divergence-free basis for finite element schemes in hydrodynamics, SIAM J. Numer. Anal. 20 (1983) 697–721.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Gustafson and R. Hartman, Graph theory and fluid dynamics, SIAM J. Alg. Discrete Methods 6(4) (1985) 643–656.

    MATH  MathSciNet  Google Scholar 

  13. C. Hall, Numerical solution of Navier-Stokes problems by the dual variable method, SIAM J. Alg. Discrete Methods 6(2) (1985) 220–236.

    MATH  Google Scholar 

  14. C. Hall, J. Peterson, T. Porsching and F. Sledge, The dual variable method for finite element discretizations of Navier-Stokes equations, J. Numer. Methods Engrg. 21 (1985) 883.

    Article  MATH  Google Scholar 

  15. C. Hall and T. Porsching, Numerical Analysis of Partial Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1990).

    Google Scholar 

  16. C. Hall and X. Ye, Construction of null bases for the divergence operator associated with incompressible Navier-Stokes equations, J. Linear Algebra Appl. 171 (1992) 9–52.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Heath, R. Plemmons and R. Ward, Sparse orthogonal schemes for structural optimization using the force method, SIAM J. Sci. Statist. Comput. 5 (1984) 514–532.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation, in: Finite Element Methods in Flow Problems, ed. J.T. Oden (UAH Press, Huntsville, AL, 1974) pp. 121–131.

    Google Scholar 

  19. Kaneko, M. Lawo and G. Theirauf, On computational procedure for the force method, Internat. J. Numer. Methods Engrg. 19 (1982) 1469–1495.

    Article  Google Scholar 

  20. R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984) 9–23.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.B. Stephens, J.B. Bell, J.M. Solomon and L.B. Hackerman, A finite-difference Galerkin formulation for the incompressible Navier-Stokes equations, J. Comput. Phys. 53 (1984) 152–172.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1977).

    Google Scholar 

  23. X. Ye, Construction of divergence-free spaces for incompressible Navier-Stokes equations, Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA, and Technical Report ICMA–90–153 (August 1990).

  24. O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Hall, C.A. A discrete divergence-free basis for finite element methods. Numerical Algorithms 16, 365–380 (1997). https://doi.org/10.1023/A:1019159702198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019159702198

Keywords

Navigation