Skip to main content
Log in

A “Look-around Lanczos” algorithm for solving a system of linear equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Two algorithms for the solution of a large sparse linear system of equations are proposed. The first is a modification of Lanczos' method and the second is based on one of Brezinski's methods. Both the latter methods are iterative and they can break down. In practical situations, serious numerical error is far more likely to occur because an ill-conditioned pair of polynomials is (implicitly) used in the calculation rather than complete breakdown arising because a large square block of exactly defective polynomials is encountered. The algorithms proposed use a method based on selecting well-conditioned pairs of neighbouring polynomials (in the associated Padé table), and the method is equivalent to going round the blocks instead of going across them, as is done in the well-known look-ahead methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Axelsson, Iterative Solution Methods (Cambridge, 1994).

  2. G.A. Baker Jr. and P.R. Graves-Morris, Padé Approximants (Cambridge Univ. Press, Cambridge, 1995).

  3. D.L. Boley, S. Elhay, G.H. Golub and M.H. Gutknecht, Non-symmetric Lanczos and finding orthogonal polynomials associated with indefinite weights, Numer. Algorithms 1 (1991) 21–43.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Brezinski, Padé-type approximation and general orthogonal polynomials, in: ISNM 50 (Birkhäuser, Basel, 1980).

  5. C. Brezinski, Généralisation de la transformation de Shanks, de la table de Padé et de l'ε-algorithme, Calcolo 12 (1975) 317–360.

    MathSciNet  Google Scholar 

  6. C. Brezinski, A transpose-free “Lanczos-Orthodir” algorithm for linear systems, Comptes Rendus Acad. Sci. Paris 324 (1997) 349–354.

    MATH  MathSciNet  Google Scholar 

  7. C. Brezinski, M. Redivo-Zaglia and H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algorithms 1 (1991) 261–284.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Brezinski, M. Redivo-Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math. 63 (1992) 29–38.

    MATH  MathSciNet  Google Scholar 

  9. C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods: Theory and Practice (North-Holland, Amsterdam, 1991).

  10. C. Brezinski and M. Redivo-Zaglia, A look-ahead strategy for the implementation of some old and new extrapolation methods, Numer. Algorithms 11 (1996) 35–55.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Brezinski and M. Redivo-Zaglia, Transpose-free implementation of Lanczos' method for nonsymmetric linear systems, Report ANO-32, Unversité des Sciences et Technologies de Lille (June 1997).

  12. C. Brezinski and H. Sadok, Lanczos-type algorithms for solving systems of linear equations, Appl. Numer. Math. 11 (1993) 443–473.

    MATH  MathSciNet  Google Scholar 

  13. C. Brezinski and H. Sadok, Some vector sequence transformations with applications to systems of equations, Numer. Algorithms 3 (1992) 75–80.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Brezinski and J. Van Iseghem, Padé Approximations, Vol. 3 of Handbook of Numerical Analysis, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1994)

  15. C.G. Broyden, Look-ahead block-CG algorithms, Università di Bologna Report, Bologna (1997).

    Google Scholar 

  16. S. Cabay and R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices, SIAM J. Matrix Anal. Appl. 14 (1993) 735–765.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Cullum and R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations (Birkhäuser, Boston, 1985).

  18. R. Fletcher, Conjugate gradient methods for indefinite systems, in: Numerical Analysis, Dundee, 1975, Lecture Notes in Mathematics 506, ed. G.A. Watson (Springer, Berlin) pp. 73–89.

  19. R.W. Freund, E.H. Golub and N.M. Nachtigal, Iterative solution of linear systems, Acta Numerica 1 (1992) 57–100.

    MathSciNet  Google Scholar 

  20. R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 14 (1993) 137–158.

    MATH  MathSciNet  Google Scholar 

  21. W. Gander, E.H. Golub and D. Gruntz, Solving linear equations by extrapolation, in: Supercomputing, Trondheim, 1989, Comp. Systems Science 62 (Springer, Berlin, 1989) pp. 279–293.

  22. C.R. Garibotti and M. Villani, Continuation in the coupling constant for the total K and T matrices, Nuovo Cimento 59A (1969) 107–123.

    Google Scholar 

  23. G.H. Golub and R. Underwood, The block Lanczos method for computing eigenvalues, in: Mathematical Software III, ed. J. Rice (Academic Press, New York, 1977) pp. 364–377.

  24. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, 2nd ed., 1989).

  25. W.B. Gragg, The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972) 1–62.

    MATH  MathSciNet  Google Scholar 

  26. W.B. Gragg, Matrix interpretations and applications of the continued fraction algorithm, Rocky Mountain J. Math. 4 (1974) 213–225.

    MATH  MathSciNet  Google Scholar 

  27. J.A. Grant and P.R. Graves-Morris, Lanczos type algorithms for linear integral equations, in: First UK Conference on Boundary Integral Equations, eds. L. Elliott, D.B. Ingham and D. Lesnic (University of Leeds, Leeds, 1997) pp. 108–121.

  28. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J. Matrix Anal. Appl. 13 (1992) 594–639.

    Article  MATH  MathSciNet  Google Scholar 

  29. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II, SIAM J. Matrix Anal. Appl. 15 (1994) 15–58.

    Article  MATH  MathSciNet  Google Scholar 

  30. M.H. Gutknecht, Lanczos-type solvers for non-symmetric linear systems of equations, Acta Numerica 6 (1997) 271–397.

    MATH  MathSciNet  Google Scholar 

  31. M.H. Gutknecht and M. Hochbruck, Optimised look-ahead recurrences for adjacent rows in the Padé table, BIT 36 (1996) 264–286.

    MATH  MathSciNet  Google Scholar 

  32. M. Hochbruck, The Padé table and its relation to certain numerical algorithms, Habilitationschrift, Tübingen (1996).

    Google Scholar 

  33. W.D. Joubert, Lanczos methods for the solution of nonsymmetric systems of linear equations, SIAM J. Matrix Anal. Appl. 13 (1992) 926–943.

    MATH  MathSciNet  Google Scholar 

  34. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Standards 45 (1950) 255–281.

    MathSciNet  Google Scholar 

  35. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau Standards 49 (1952) 33–53.

    MathSciNet  Google Scholar 

  36. N.M. Nachtigal, A look-ahead variant of the Lanczos algorithm and its application to the quasiminimal residual method for non-Hermitian linear systems, Ph.D. thesis, Department of Mathematics, MIT (1991).

  37. D.P. O'Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appl. 29 (1980) 293–322.

    Article  MATH  MathSciNet  Google Scholar 

  38. E.L. Ortiz and T.J. Rivlin, A collection of papers to commemorate the Cornelius Lanczos Centennial, parts 1, 2, Comput. Math. Appl. 33 (1997).

  39. B.N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl. 13 (1992) 567–593.

    MATH  MathSciNet  Google Scholar 

  40. B.N. Parlett, D.R. Taylor and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp. 44 (1985) 105–124.

    MATH  MathSciNet  Google Scholar 

  41. J.K. Reid, On the method of conjugate gradients for the solution of large sparse systems of linear equations, in: Large Sparse Sets of Linear Equations, ed. J.K. Reid (Academic Press, New York, 1971) pp. 231–253.

  42. M. Rotenberg, Continuation and optimization of the Born expansion in non-relativistic quantum theory, Ann. Phys. 21 (1963) 579–592.

    MATH  MathSciNet  Google Scholar 

  43. R.C.E. Tan, Implementation of the topological ε-algorithm, SIAM J. Sci. Statist. Comput. 9 (1988) 839–848.

  44. D.R. Taylor, Analysis of the look ahead Lanczos algorithm, Ph.D. thesis, Department of Mathematics, University of California, Berkeley (1982).

    Google Scholar 

  45. P.K.W. Vinsome, Orthomin, an iterative method for solving sparse sets of simultaneous linear equations, in: Proceedings 4th Symposium on Reservoir Simulation (Society of Petroleum Engineers of AIME, 1976) pp. 149–159.

  46. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford Univ. Press, Oxford, 1965).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graves-Morris, P. A “Look-around Lanczos” algorithm for solving a system of linear equations. Numerical Algorithms 15, 247–274 (1997). https://doi.org/10.1023/A:1019162308133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019162308133

Keywords

Navigation