Skip to main content
Log in

Finite difference solution of Euler equations arising in variational image segmentation

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper deals with finite-difference approximations of Euler equations arising in the variational formulation of image segmentation problems. We illustrate how they can be defined by the following steps: (a) definition of the minimization problem for the Mumford–Shah functional (MSf), (b) definition of a sequence of functionals Γ-convergent to the MSf, and (c) definition and numerical solution of the Euler equations associated to the kth functional of the sequence. We define finite difference approximations of the Euler equations, the related solution algorithms, and we present applications to segmentation problems by using synthetic images. We discuss application results, and we mainly analyze computed discontinuity contours and convergence histories of method executions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Ambrosio, Variational problems in SBV and image segmentation, Acta Appl. Math. 17 (1989) 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 39–62.

    MATH  MathSciNet  Google Scholar 

  3. L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 1–38.

    MATH  MathSciNet  Google Scholar 

  4. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γconvergence, Comm. Pure Appl. Math. 43 (1990) 999–1036.

    MATH  MathSciNet  Google Scholar 

  5. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems, elliptic functionals, Boll. Un. Mat. Ital. B 6 (1992) 105–123.

    MathSciNet  Google Scholar 

  6. A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 485–528.

    MATH  MathSciNet  Google Scholar 

  7. A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977) 333–355.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Dal Maso, An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications, Vol. 8 (Birkhäuser, Boston, MA, 1993).

    Google Scholar 

  9. G. David, C 1 arcs for the minimizers of the Mumford–Shah functional, SIAM J. Appl. Math. 56 (1996) 783–888.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 82 (1988) 199–210.

    MATH  MathSciNet  Google Scholar 

  11. E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal. 108 (1989) 195–218.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Birkhäuser, Boston, MA, 1984).

    Google Scholar 

  13. W. Hackbusch, Multigrid Methods and Applications (Springer, Heidelberg, 1985).

    Google Scholar 

  14. R. March, Visual reconstruction with discontinuities using variational methods, Image and Vision Computing 10 (1992) 30–38.

    Google Scholar 

  15. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989) 577–685.

    MATH  MathSciNet  Google Scholar 

  16. P. Nesi, Variational approach to optical flow estimation managing discontinuities, Image Vision Comput. 11 (1993) 419–439.

    Google Scholar 

  17. J. Shah, Segmentation by nonlinear diffusion II, in: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (1992).

  18. R.M. Spitaleri, Computational and visual advances in multigrid grid generation, Appl. Numer. Math. 30 (1998) 141–152.

    Article  MathSciNet  Google Scholar 

  19. R.M. Spitaleri and L. Corinaldesi, A multigrid semi-implicit finite difference method for the twodimensional shallow water equations, Internat. J. Numer. Methods Fluids 25 (1997) 1–12.

    Article  Google Scholar 

  20. R.M. Spitaleri and V. Regolo, Multiblock multigrid grid generation methods overcoming multigrid anisotropy, Appl. Math. Comput. 84 (1997) 247–276.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitaleri, R.M., March, R. & Arena, D. Finite difference solution of Euler equations arising in variational image segmentation. Numerical Algorithms 21, 353–365 (1999). https://doi.org/10.1023/A:1019184724430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019184724430

Navigation