Skip to main content
Log in

A finite difference analysis of a streamline diffusion method on a Shishkin mesh

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider streamline diffusion finite element methods applied to a singularly perturbed convection–diffusion two‐point boundary value problem whose solution has a single boundary layer. To analyse the convergence of these methods, we rewrite them as finite difference schemes. We first consider arbitrary meshes, then, in analysing the scheme on a Shishkin mesh, we consider two formulations on the fine part of the mesh: the usual streamline diffusion upwinding and the standard Galerkin method. The error estimates are given in the discrete L norm; in particular we give the first analysis that shows precisely how the error depends on the user-chosen parameter τ0 specifying the mesh. When τ0 is too small, the error becomes O(1), but for τ0 above a certain threshold value, the error is small and increases either linearly or quadratically as a function of . Numerical tests support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.B. Andreev and I.A. Savin, On uniform with respect to a small parameter convergence of a monotone scheme of A.A. Samarskij and its modification, Comput. Math. Math. Phys. 35 (1995) 739–752 (in Russian).

    MATH  MathSciNet  Google Scholar 

  2. A.F. Hegarty, J.J.H. Miller, E. O'Riordan and G.I. Shishkin, On numerical experiments with central difference operators on special piecewise uniform meshes for problems with boundary layers, in: Proc. of the 9th GAMM Seminar on Adaptive Methods – Algorithms, Theory and Applications, eds. W. Hackbusch and G. Wittum, Kiel (January 22–24, 1993), Notes on Numerical Fluid Dynamics, Vol. 46 (Vieweg, Braunschweig, 1994).

    Google Scholar 

  3. T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401.

    Article  MATH  MathSciNet  Google Scholar 

  4. T.J.R. Hughes and A.N. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in: Finite Element Methods for Convection Dominated Flows, ed. T.J.R. Hughes, AMD Vol. 34 (ASME, New York, 1979).

    Google Scholar 

  5. V. John, J.M. Maubach and L. Tobiska, Nonconforming streamline diffusion finite element methods for convection–diffusion problems, Numer. Math. 78 (1997) 165–188.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier–Stokes equations, Math. Comp. 47 (1986) 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Johnson, A.H. Schatz and L.B. Wahlbin, Crosswind smear and pointwise errors in the streamline diffusion finite element methods, Math. Comp. 49 (1987) 25–38.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Lube and L. Tobiska, A nonconforming finite element method of streamline diffusion type for the incompressible Navier–Stokes equations, J. Comput. Math. 8 (1990) 147–158.

    MATH  MathSciNet  Google Scholar 

  9. J.J. Miller, E. O'Riordan and G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems (World Scientific, Singapore, 1996).

    MATH  Google Scholar 

  10. U. Nävert, A finite element method for convection–diffusion problems, Ph.D. thesis, Chalmers University of Technology, Göteborg (1982).

    Google Scholar 

  11. K. Niijima, Pointwise error estimates for a streamline diffusion finite element scheme, Numer. Math. 56 (1990) 707–719.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.E. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations (Springer, New York, 1991).

  13. H.G. Roos, Layer-adapted grids for singular perturbation problems, Z. Angew. Math. Mech. 78 (1998) 291–309.

    Article  MATH  MathSciNet  Google Scholar 

  14. H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations (Springer, Berlin/Heidelberg/New York, 1996).

    MATH  Google Scholar 

  15. M. Schäfer and S. Turek, Benchmark computations of laminar flow around a cylinder, in: Flow Simulation with High-Performance Computers II, ed. E.H. Hirschel (Vieweg, Braunschweig, 1996) pp. 547–566.

    Google Scholar 

  16. G.I. Shishkin, Difference scheme for a singularly perturbed parabolic equation with discontinuous boundary conditions, Comput. Math. Math. Phys. 28 (1988) 1679–1692 (in Russian).

    Article  MathSciNet  Google Scholar 

  17. M. Stynes and E. O'Riordan, Analysis of singularly perturbed two-point boundary value problems with turning points, in: Proc. Discretization Methods of Singular Problems and Flow Problems, ed. L. Tobiska, Technical University “Otto von Guericke”, Magdeburg (1989) pp. 81–88.

    Google Scholar 

  18. M. Stynes and H.-G. Roos, The midpoint upwind scheme, Appl. Numer. Math. 23 (1997) 361–374.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996) 107–127.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Zhou, How accurate is the streamline diffusion finite element method?, Math. Comp. 66 (1997) 31–44.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Zhou and R. Rannacher, Pointwise superconvergence of the streamline diffusion finite element method, Numer. Methods Partial Differential Equations 12 (1996) 123–145.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stynes, M., Tobiska, L. A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numerical Algorithms 18, 337–360 (1998). https://doi.org/10.1023/A:1019185802623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019185802623

Navigation