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Partial-Padé prediction

M. Prévost, D. Vekemans ∗

June 9, 2006

Abstract

When the first terms of a sequence (called sequence to predict) are known, a prediction method
is a method which gives us an approximation of the following terms (the so-constructed sequence is
called the predicted sequence). In this paper, we expose two prediction methods respectively called
εp-prediction which are generalizations of Aitken’s ∆2-prediction of C. Brezinski and M. Redivo
Zaglia [6]- and Padé-prediction of J. Gilewicz [8]- which are very simple to use. In order to choose
among the different partial-Padé-predictions, we study some of their properties.

However, the most important points of this paper are :

• the use of an extrapolation algorithm,( the ε-algorithm) to obtain a prediction algorithm for
each partial-Padé-prediction (which avoids to solve a system).

• the results about consistency obtained for the partial-Padé-prediction , (i.e. under certain
conditions, each term of the predicted sequence converges to the analogous term of the sequence
to predict).

Introduction

The domains of application of the prediction methods are various : they are used in econometry, in
statistics, in the solution of parabolic problems (see M. Morandi Cecchi, M. Redivo Zaglia and G. Scenna
[10]), in the study of band structure in semi-conductors (see G. Allan [1] or A. Trias, M. Kiwi and M.
Weissmann [16]), . . .

The essential theme of this work is the systematical use of extrapolation methods to construct prediction
ones. It is well known that from the knowledge of the first terms of a sequence (i.e. S0, S1, . . . , SN ), we
can estimate its limit S by using extrapolation methods. However, as we will see in the sequel, we can
also predict the following terms of this sequence (i.e. SN+1, SN+2, . . .).

We call prediction method a process that transforms a vector (Si)0≤i≤N in a sequence (Si,N )i≥0 that
reproduces the terms of the vector, i.e. such that Si = Si,N , ∀i ∈ {0, 1, . . . , N}. In this case, we will say
that the sequence (Si,N )i≥0 is a predicted sequence of the vector (Si)0≤i≤N .

The use of extrapolation process to construct a prediction method is an idea that has ever been used
by using the E-algorithm (see C. Brezinski [4], C. Brezinski and M. Redivo Zaglia [6, pp. 392–395] and
D. Vekemans [18]). However, this method (called E-prediction) has a drawback : for a good use, it needs
the knowledge of a scale of comparison on which the sequence to predict has an aymptotic expansion.
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We begin this paper with two prediction methods respectively called εp-prediction and Padé-prediction.
These two methods do not require a particular knowledge on the sequence to predict and are easy to use.
The εp-prediction is built from the ε-algorithm, as the E-prediction is constructed from the E-algorithm.
However, starting from an algebraic point of view, C. Brezinski and M. Redivo Zaglia [6, pp. 389–395]
have defined Aitken’s ∆2-prediction which is a particular case of the εp-prediction, as Aitken’s ∆2-process
is a particular case of the ε-algorithm. The Padé-prediction has already been studied by J. Gilewicz [8,
pp. 424–439]. Moreover, we show how the Padé-prediction can be computed with the ε-algorithm.

In section 2, we generalize the Padé-prediction into the partial-Padé-prediction. The advantage of the
partial-Padé-prediction is that we can fix the analytic behavior of the predicted sequence (for example,
having a non-zero limit, or having a geometric asymptotic behaviour, ...). The link between the Padé-
prediction and the partial-Padé-prediction leads to an algorithm for each partial-Padé-prediction based
on the ε-algorithm.

As acceleration results are very important for extrapolation processes, we will establish Theorems con-
cerning consistency of prediction methods. These are primordial in this analysis because the definition
chosen for a prediction method is very weak.

At the end, this paper contains two numerical examples. The first one is intended to discuss the choice
among prediction methods and to observe a numerical consistency. The second one presents the case of
a non-convergent sequence.

In our paper, IK=IR or lC .

1 The εp-prediction

As we did for the E-prediction, built from the E-algorithm (see D. Vekemans [18]), we can construct the
εp-prediction by using the ε-algorithm. It is well known that the ε-algorithm is a particular case of the
E-algorithm and we will naturally get that the εp-prediction is a particular case of the E-prediction (see
D. Vekemans [17, p. 21]).

Let us remark here that other extrapolating algorithm, concisely referred in [6, pp. 57–58], could also
be used to construct prediction methods, like the Richardson’s process, the G-transform or summation
processes. The so-obtained prediction methods are also particular cases of the E-prediction.

There are few papers dealing with the εp-prediction. In [6, pp. 389–395], C. Brezinski and M. Redivo
Zaglia give a definition of the ∆2-prediction which is a particular case of the εp-prediction (as the
Aitken’s ∆2 process is a particular case of the ε-algorithm).

The ε-algorithm is an extrapolation algorithm which is due to P. Wynn [19]. For the definition of the
ε-algorithm and results about its acceleration properties, the interested reader is referred to [4], [6], [8],
[14], [19] or [20].

1.1 The algorithmic point of view of the εp-prediction

Let (Si)0≤i≤N ∈ IKN+1 be a vector to predict and p ∈ {0, 1, . . . , N}.
We form Table (1) :
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with the classical rule of the ε-algorithm :















































ε
(i)
−1 = 0, ∀i ∈ {max(0, 2p − N),max(0, 2p − N) + 1, . . . , N}

ε
(i)
0 = Si, ∀i ∈ {max(0, 2p − N),max(0, 2p − N) + 1, . . . , N}

ε
(−i)
2(i−1) = 0, ∀i ∈ {1, 2, . . . , N − 2p}

and ε
(i)
j = ε

(i+1)
j−2 +

1

ε
(i+1)
j−1 − ε

(i)
j−1

, ∀j ∈ {1, 2, . . . , 2N − 2p},

∀i ∈ {max(2p − N,−1 − [ j−1
2 ]),max(2p − N,−1 − [ j−1

2 ]) + 1, . . . , N − j}
(where, ∀x ∈ IR, [x] ∈ IN is such that [x] ≤ x < [x] + 1 ).

Then we form Table (2) ( it is a continuation of Table (1)):
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by using the progressive rule of the ε-algorithm :



































ε
(i)
2N−2p = ε

(2p−N)
2N−2p , ∀i ≥ 2p − N + 1

(the ε − prediction is obtained by giving the same value to each term of the right most column
and then going down in the table with the progressive rule of the ε − algorithm)

ε
(i)
−1 = 0, ∀i ≥ N + 1

and, ε
(i)
j = ε

(i−1)
j +

1

ε
(i−1)
j+1 − ε

(i)
j−1

, ∀j ∈ {0, 1, . . . , 2N − 2p − 1}, ∀i ≥ N − j + 1.
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We algorithmically define the εp-predicted sequence (S
(ε,p)
i,N )i≥0 from the vector (Si)0≤i≤N by

S
(ε,p)
i,N = ε

(i)
0 , ∀i ≥ max(0, 2p − N),

and
S

(ε,p)
i,N = Si, ∀i ∈ {0, 1, . . . , 2p − N − 1}.

Note that S
(ε,p)
i,N = Si, ∀i ∈ {0, 1, . . . , N} which implies that (S

(ε,p)
i,N )i≥0 is a predicted sequence of the

vector (Si)0≤i≤N . We use the notation (S
(ε,p)
i,N )i≥0 with an upper right index ε because of the name

of this prediction method and an upper right index p because this prediction method depends on this
parameter.

Remarks

1. When N = 2K and p = K, the εp-prediction will be called the ε-prediction. Then, the εp-prediction
can be thought either as the ε-prediction of the initial vector to predict preceded by N − 2p zeros
(if N − 2p > 0) or as the ε-prediction of the initial vector to predict truncated of its first terms (if
N − 2p < 0).

2. The algorithm of the εp-prediction may be break down in some particular cases : for example, if
in Table (1), the column of index N0 (N0 ∈ {0, 1, . . . , N −2p}) is constant and equal to S, (because
of division by zero) it is impossible to generate columns of index strictly greater than N0. In this
case, we may assume that the column of index N0 in Table (2) is constant and equal to S in order
to continue.

3. In the case of singularities (division by zero), the particular rules of ε-algorithm can be used (see
[6, pp. 34–38] or [7]).

4. Instead of using the classical and the progressive rules of the ε-algorithm, we can use the cross rule
of P. Wynn [20].

1.2 The algebraic point of view of the εp-prediction

Let (Si)0≤i≤N ∈ IKN+1 be a vector to predict and p ∈ {0, 1, . . . , N}.

We define (b0, b1, . . . , bN−p) as the solution (supposed to be existing) of the following system of linear
equations:



















Sp = b0S2p−N + b1S2p−N+1 + . . . + bN−p−1Sp−1 + bN−p

Sp+1 = b0S2p−N+1 + b1S2p−N+2 + . . . + bN−p−1Sp + bN−p

...
SN = b0Sp + b1Sp+1 + . . . + bN−p−1SN−1 + bN−p

with Si = 0 when i < 0.

We algebraically define the εp-predicted sequence (S
(εS,p)
i,N )i≥0 from the vector (Si)0≤i≤N by

S
(εS,p)
i,N = Si, ∀i ∈ {0, 1, . . . , N}

and the further terms of the predicted sequence by

S
(εS,p)
N+i,N = b0S

(εS,p)
p+i,N + b1S

(εS,p)
p+i+1,N + . . . + bN−p−1S

(εS,p)
N+i−1,N + bN−p, ∀i ≥ 1.
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We use the notation (S
(εS,p)
i,N )i≥0 with an upper right index ε because of the name of this prediction

method, an upper right index p because the prediction method depends on this parameter and an upper
right index S because it needs solving of a linear system.

Theorem 1 [17] Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict. If the quantities in the above equality
are defined, then

S
(ε,p)
i,N = S

(εS,p)
i,N , ∀i ∈ IN,

This Theorem establishes that the algorithmic and the algebraic points of view of the εp-prediction are
the same.

Remark

In the algorithmic point of view of the εp-prediction, we choose to give the same value to the right most
column. This choice leads to simplicity for the algebraic point of view. We could also choose to equal
the right most column to a non constant sequence (for example, if we know the limit of the predicted
sequence, we could equal the right most column to a sequence converging to the same limit). But, in this
case, we surely lost the simplicity of the algebraic point of view.

From Cramer’s identity, in the following Theorem, we can write S
(εS,p)
N+i,N , ∀i ∈ IN, as a ratio of two

determinants.

Theorem 2 Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict, then

S
(εS,p)
N+i,N = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 S
(εS,p)
p+i,N S

(εS,p)
p+i+1,N . . . S

(εS,p)
N+i−1,N

Sp 1 S2p−N S2p−N+1 . . . Sp−1

Sp+1 1 S2p−N+1 S2p−N+2 . . . Sp

...
...

...
...

...
SN 1 Sp Sp+1 . . . SN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 S2p−N S2p−N+1 . . . Sp−1

1 S2p−N+1 S2p−N+2 . . . Sp

...
...

...
...

1 Sp Sp+1 . . . SN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ∀i ∈ IN,

with the convention Si = 0 when i < 0.

1.3 Theoretical examples

We here give the expression of the terms of the εp-predicted sequence for small values of N − p.

First example

The ∆2-prediction (when N − p = 1) :

S
(ε,p)
i,N =

SN−2SN − S2
N−1

SN−2 − SN−1
− S

(ε,p)
i−1,N

SN − SN−1

SN−2 − SN−1
for i ≥ N + 1, when SN−2 − SN−1 6= 0

and S
(ε,p)
i,N = Si for i ∈ {0, 1, . . . , N} with Si = 0 when i < 0.

Second example

When N − p = 2 :

S
(ε,p)
i,N =

SN−4SN−2SN + 2SN−3SN−2SN−1 − S3
N−1 − S2

N−3SN − SN−4S
2
N−1

SN−4SN−2 + SN−3SN−1 + SN−3SN−2 − S2
N−2 − S2

N−3 − SN−4SN−1
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− S
(ε,p)
i−1,N

SN−4SN−3 + SN−2SN−1 + SN−3SN−2 − SN−4SN−1 − SN−3SN − S2
N−2

SN−4SN−2 + SN−3SN−1 + SN−3SN−2 − S2
N−2 − S2

N−3 − SN−4SN−1

− S
(ε,p)
i−2,N

SN−3SN−1 + SN−2SN + SN−2SN−1 − SN−3SN − S2
N−1 − S2

N−2

SN−4SN−2 + SN−3SN−1 + SN−3SN−2 − S2
N−2 − S2

N−3 − SN−4SN−1
for i ≥ N + 1,

when SNSN−2 + SN−3SN−1 + SN−3SN−2 − S2
N−2 − S2

N−3 − SN−4SN−1 6= 0,

and S
(ε,p)
i,N = Si for i ∈ {0, 1, . . . , N} with Si = 0 when i < 0.

1.4 Exponential extrapolation and εp-prediction

Transformation of systems of exponential equations into linear ones is known as Prony’s method (see [9,
pp. 272–280]).

Theorem 3 [17]

Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict.

If we define (Ti,N )i≥0 by

Ti,N = a1b
i
1 + . . . + aN−pb

i
N−p + c1, ∀i ∈ IN,

where (a1, a2, . . . , aN−p, b1, b2, . . . , bN−p, c1) is determined as a solution (supposed to exist) of the system
of exponential equations :



















S2p−N = a1b
2p−N
1 + . . . + aN−pb

2p−N
N−p + c1

S2p−N+1 = a1b
2p−N+1
1 + . . . + aN−pb

2p−N+1
N−p + c1

...
SN = a1b

N
1 + . . . + aN−pb

N
N−p + c1

,

with the convention Si = 0 when i < 0, then

Ti,N = S
(ε,p)
i,N , ∀i ∈ IN,

where S
(ε,p)
i,N is defined in Section 1.1.

In the above Theorem, Ti,N is a linear combination of exponential terms that are akbi
k’s, but it also

contains an additional constant term c1 which allows the predicted sequence (Ti,N )i≥0 to converge not
only to zero or infinity contrarily to the Padé-prediction (see Section 2.4).

By considering the prediction methods as exponential extrapolation, we easily exhibit the analytic
behavior of the predicted sequence, and when we want to choose between prediction methods, that is
what we have to look at.

2 The Padé-prediction

The Padé-prediction has been studied by J. Gilewicz [8, chap. 8]. This prediction method has been
obtained from Padé approximants. In this Section, we will recall the definition of the Padé-prediction
and give some of its properties.
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2.1 The Padé approximants

The Padé approximants have extensively been studied by H. Padé [11]. The properties of these approxi-
mants can be found in [8], [2] or in [3, p. 35], for the formal case.

If f is a formal series f(t) =
∑

i≥0 cit
i, where ci ∈ lC , ∀i ∈ IN, then the Padé approximant [n/m]f of f is

defined by f(t)− [n/m]f (t) = O(tm+n−1), where [n/m]f is a rational function whose degree of numerator
is lower or equal to n and whose degree of denominator is lower or equal to m.

2.2 Definition of the Padé-prediction

The Padé-predictionhas ever been defined and studied by J. Gilewicz [8, chap. 8].

Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict. We set

PN (t) =

N
∑

i=0

Sit
i ∈ IKN [t].

Then, let
w(t)

v(t)
(assumed to exist), be the Padé approximant [p/N-p] of PN (t).

J. Gilewicz defined the Padé-predicted sequence (S
(p)
i,N )i≥0 from the vector (Si)0≤i≤N such that, formally,

∑

i≥0

S
(p)
i,N ti =

w(t)

v(t)
.

We use the notation (S
(p)
i,N )i≥0 where the upper index p is the degree of the numerator of the Padé

approximant used.

The computation of (S
(p)
i,N )i≥0 is achieved by solving a system of N − p linear equations. But, this

solution of linear system can be avoided by using the ε-algorithm as explained in Section 2.5.

Remark

If 2p − N ≥ 0, S
(p)
i,N is independent for i ≥ N + 1 of the values of S0, S1, . . . , S2p−N−1 and S2p−N .

2.3 Theoretical examples

We give below the expressions of the terms of the Padé-predicted sequence for small values of N − p.

First example

When N − p = 1,

S
(p)
i,N = S

(p)
i−1,N

SN

SN−1
for i ≥ N + 1, when SN−1 6= 0

and S
(p)
i,N = Si for i ∈ {0, 1, . . . , N} with Si = 0 when i < 0.

Second example

When N − p = 2,
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S
(p)
i,N = S

(p)
i−1,N

SN−1

SN−2
− S

(p)
i−2,N

S2
N−1 − SN−2SN

S2
N−2

for i ≥ N + 1, when SN−2 6= 0,

and S
(p)
i,N = Si for i ∈ {0, 1, . . . , N} with Si = 0 when i < 0.

2.4 Exponential extrapolation and Padé-prediction

The exponential extrapolation (see [9, pp. 272–280]) and the Padé-prediction are simply connected by
the following Theorem :

Theorem 4 [17]

Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict.

If we define (Ti,N )i≥0 by
Ti,N = a1b

i
1 + . . . + aN−pb

i
N−p, ∀i ∈ IN,

where (a1, a2, . . . , aN−p, b1, b2, . . . , bN−p) is determined as a solution (supposed to exist) of the system of
exponential equations :



















S2p−N+1 = a1b
2p−N+1
1 + . . . + aN−pb

2p−N+1
N−p

S2p−N+2 = a1b
2p−N+2
1 + . . . + aN−pb

2p−N+2
N−p

...
SN = a1b

N
1 + . . . + aN−pb

N
N−p

,

with the convention Si = 0 when i < 0, then

Ti,N = S
(p)
i,N , ∀i ∈ IN.

2.5 Link between the εp-prediction and the Padé-prediction

Let us recall here that the calculation of a Padé approximant can be achieved by the ε-algorithm. This
result comes out from the expression of the terms of the ε-algorithm as a ratio of two determinants. This
last property has been established by Shanks [14].

Theorem 5 Let f(t) =
∑

i≥0 cit
i be a formal series.

We set
ε
(i)
−1 = 0, ∀i ∈ IN,

ε
(−i−1)
2i = 0, ∀i ∈ IN,

ε
(i)
0 =

∑i

j=0 cjt
j , ∀i ∈ IN,

and we define ε
(i)
k+1 by

ε
(i)
k+1 = ε

(i+1)
k−1 +

1

ε
(i+1)
k − ε

(i)
k

, ∀k ∈ IN, ∀i ≥ −1 − [
k

2
].

Then
ε
(n)
2k = [n + k/k]f(t), ∀k ∈ IN, ∀n ≥ −k.

The above Theorem shows that the ε-algorithm applied to the partial sums of a series leads to the Padé
table. The following Theorem can be viewed as a corollary of the preceding one. It allows to avoid solving
of a system of linear equations in the computation of the Padé-prediction , only by using the ε-algorithm.
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Theorem 6 Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict.

Let (Ti)0≤i≤N ∈ IKN+1 be given by Ti =
∑i

j=0 Sj , ∀i ∈ {0, 1, . . . , N}, then

S
(p)
i,N = T

(ε,p)
i,N − T

(ε,p)
i−1,N , ∀i ≥ 1,

and
S

(p)
0,N = T

(ε,p)
0,N

where (S
(p)
i,N )i≥0 is the Padé-predicted sequence of (Si)0≤i≤N ∈ IKN+1 and

(T
(ε,p)
i,N )i≥0 is the εp-predicted sequence of (Ti)0≤i≤N ∈ IKN+1.

Proof

We set
g(t) =

∑

i≥0 S
(p)
i,N ti = [p/N − p]f (t), with f(t) =

∑N

i=0 Sit
i

ε
(i)
−1 = 0, ∀i ∈ IN,

ε
(−i−1)
2i = 0, ∀i ∈ IN,

ε
(i)
0 =

∑i

j=0 S
(p)
j,N tj , ∀i ∈ IN,

and we define ε
(i)
k+1 by the classical rule of the ε-algorithm. Consequently, from Theorem 5,

ε
(2p−N)
2N−2p = [p/N − p]f (t), ∀p ∈ IN, ∀N ≥ p,

and
ε
(2p−N+i)
2N−2p = [p + i/N − p]f (t), ∀p ∈ IN, ∀N ≥ p, ∀i ∈ IN.

However [p + i/N − p]g(t) = [p/N − p]g(t), because g is a rational function of degree (p/N-p).
For t = 1, we have

ε
(2p−N+i)
2N−2p = [p + i/N − p]g(1) = [p/N − p]g(1) = ε

(2p−N)
2N−2p , ∀p ∈ IN, ∀N ≥ p, ∀i ∈ IN.

Thus the column of index 2N − 2p is constant and this shows that

S
(p)
i,N = T

(ε,p)
i,N − T

(ε,p)
i−1,N , ∀i ≥ 1,

and
S

(p)
0,N = T

(ε,p)
0,N .

The conclusion is that the Padé-prediction can be computed by the ε-algorithm.

3 The partial-Padé-prediction

3.1 The partial-Padé approximants

Partial-Padé approximants have been defined by C. Brezinski in [5] and by M. Prévost in [12]. We give
here a brief insight.
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Definition

Let f(t) =
∑

i≥0

cit
i be a formal series.

We consider x1, x2, . . . , xr, y1, y2, . . . , ys, elements of IK and we set

x(t) = (1 − x1t)(1 − x2t) . . . (1 − xrt) ∈ IKr[t]

and
y(t) = (1 − y1t)(1 − y2t) . . . (1 − yst) ∈ IKs[t].

We define (v(t), w(t)) ∈ IKq[t] × IKp[t] (supposed to exist) such that














v(0) = 1
gcd(v(t), w(t)) = 1
w(t)

v(t)
=

y(t)

x(t)
f(t) + O(tp+q+1)

.

We will say that
w(t)x(t)

v(t)y(t)
is the partial-Padé approximant [p/q] of f(t) calculated from the polynomials

x(t) and y(t).

Remark

The partial-Padé approximant [p/q] of f(t) calculated from the polynomials x(t) and y(t) is exactly the

Padé approximant [p/q] of
y(t)

x(t)
f(t).

3.2 Definition of the partial-Padé-prediction

Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict. We set

PN (t) =

N
∑

i=0

Sit
i ∈ IKN [t].

Let x1, x2, . . . , xr, y1, y2, . . . , ys be elements of IK and let
w(t)x(t)

v(t)y(t)
be the partial-Padé approximant [p/q]

of f(t) calculated from the polynomials x(t) and y(t).

We define the partial-Padé-predicted sequence (S
(p)
i,N )i≥0 calculated from the polynomials x(t) and y(t)

for the vector (Si)0≤i≤N to predict such that, formally,

∑

i≥0

S
(p)
i,N ti =

w(t)x(t)

v(t)y(t)
.

We use the same notation (S
(p)
i,N )i≥0 as for the Padé-predicted sequence, but we always specify for which

polynomials this sequence is calculated.

Particular cases of the partial-Padé-prediction

• The Padé-prediction.

When x(t) = y(t) = 1, the partial-Padé-prediction calculated from these polynomials is exactly
the Padé-prediction.

• The higher-Padé-type-prediction.

When x(t) = 1, the partial-Padé-prediction calculated from the polynomials x(t) and y(t) is called
the higher-Padé-type-prediction calculated with generating polynomial y(t).
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• The t-prediction [15] A. Sidi and D. Levin used the Padé-type prediction with generating poly-
nomials depending on the vector to predict. They also get results of consistency for this method.

3.3 Exponential extrapolation and higher-Padé-type-prediction

In this section we prove a Theorem generalizing Theorems 3 and 4. Moreover, from this Theorem one
could conclude that the Padé-prediction and the εp-prediction are both particular cases of the higher-
Padé-type-prediction.

Theorem 7 [17]

Let (Si)0≤i≤N ∈ IKN+1 be the vector to predict.

We form the partial-Padé-predicted sequence (S
(p)
i,N )i≥0 calculated from the polynomials x(t) = 1 and

y(t) = (1 − y1t)
α1(1 − y2t)

α2 . . . (1 − yσt)ασ (yi 6= yj when i 6= j, αi ∈ IN and s =
∑σ

i=1 αi).
If we define (Ti,N )i≥0 by







Ti,N = Si, ∀i ∈ {0, 1, . . . , 2p − N − s}
Ti,N = a1b

i
1 + . . . + aN−pb

i
N−p

+
∑σ

l=1(βl,0 + βl,1i + . . . + βl,αl−1i
αl−1)yi

l , ∀i ≥ 2p − N − s + 1

where (a1, a2, . . . , aN−p, β1,0, β1,1, . . . , β1,α1−1, β2,0, . . . , βσ−1,ασ−1−1, βσ,0, βσ,1, . . . , βσ,ασ−1) is determined
as a solution (supposed to exist) of the system of exponential equations :















































S2p−N−s+1 = a1b
2p−N−s+1
1 + . . . + aN−pb

2p−N−s+1
N−p

+
∑σ

l=1(βl,0 + βl,1(2p − N − s + 1) + . . . + βl,αl−1(2p − N − s + 1)αl−1)y2p−N−s+1
l

S2p−N−s+2 = a1b
2p−N−s+2
1 + . . . + aN−pb

2p−N−s+2
N−p

+
∑σ

l=1(βl,0 + βl,1(2p − N − s + 2) + . . . + βl,αl−1(2p − N − s + 2)αl−1)y2p−N−s+2
l

...
SN = a1b

N
1 + . . . + aN−pb

N
N−p

+
∑σ

l=1(βl,0 + βl,1N + . . . + βl,αl−1N
αl−1)yN

l

,

with the convention Si = 0 when i < 0, then

Ti,N = S
(p)
i,N , ∀i ∈ IN.

Proof

We have

PN (t) =
∑N

i=0 Sit
i

=
∑2p−N−s

i=0 Sit
i +
∑N

i=2p−N−s+1 Sit
i

=
∑2p−N−s

i=0 Sit
i +
∑N

i=2p−N−s+1(a1b
i
1 + . . . + aN−pb

i
N−p

+
∑σ

l=1(βl,0 + βl,1i + . . . + βl,αl−1i
αl−1)yi

l)t
i

=
∑2p−N−s

i=0 Sit
i + t2p−N−s+1

∑2N+s−2p−1
i=0 (a1b

i+2p−N−s+1
1 + . . . + aN−pb

i+2p−N−s+1
N−p

+
∑σ

l=1(βl,0 + βl,1(i + 2p − N − s + 1) + . . . + βl,αl−1(i + 2p − N − s + 1)αl−1)yi+2p−N−s+1
l )ti,

and, formally

PN (t) =

2p−N−s
∑

i=0

Sit
i + t2p−N−s+1

(

a1b
2p−N−s+1
1

1 − b1t
+ . . . +

aN−pb
2p−N−s+1
N−p

1 − bN−pt

)
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+

σ
∑

l=1

y2p−N−s+1
l (

γl,0

1 − ylt
+

γl,1

(1 − ylt)2
+ . . . +

γl,αl−1

(1 − ylt)αl
)) + O(tN+1),

where βl,0 + βl,1(i + 2p − N − s + 1) + . . . + βl,αl−1(i + 2p − N − s + 1)αl−1

= γl,0 + γl,1(i + 1) + γl,2
(i + 1)(i + 2)

2
+ . . . + γl,αl−1

(i + 1)(i + 2) . . . (i + αl − 1)

(αl − 1)!
.

We now set










































u(t) =
∑2p−N−s

i=0 Sit
i ∈ IK2p−N−s[t]

a(t)

b(t)
=

a1b
2p−N−s+1
1

1 − b1t
+ . . . +

aN−pb
2p−N−s+1
N−p

1 − bN−pt
where a(t) ∈ IKN−p−1[t] et b(t) ∈ IKN−p[t]

and
c(t)

y(t)
=

σ
∑

l=1

y2p−N−s+1
l (

γl,0

1 − ylt
+

γl,1

(1 − ylt)2
+ . . . +

γl,αl−1

(1 − ylt)αl
)

where c(t) ∈ IKs−1[t] and y(t) = (1 − y1t)
α1(1 − y2t)

α2 . . . (1 − yσt)ασ ∈ IKs[t]

.

Then, formally

PN (t) =
b(t)u(t)y(t) + t2p−N−s+1(a(t)y(t) + b(t)c(t))

b(t)y(t)
+ O(tN+1).

This implies that

[p/N − p]yPN
(t) =

b(t)u(t)y(t) + t2p−N−s+1(a(t)y(t) + b(t)c(t))

b(t)

because b(t)u(t)y(t) + t2p−N−s+1(a(t)y(t) + b(t)c(t)) ∈ IKp[t], b(t) ∈ IKN−p[t] and from the definition of
Padé approximants.
So, formally,

∑

i≥0

S
(p)
i,N ti =

2p−N−s
∑

i=0

Sit
i +

∑

i≥2p−N−s+1

(a1b
i
1 + . . . + aN−pb

i
N−p)

+

σ
∑

l=1

(βl,0 + βl,1i + . . . + βl,αl−1i
αl−1)yi

l )t
i.

Then,










S
(p)
i,N = Si, ∀i ∈ {0, 1, . . . , 2p − N − s}

S
(p)
i,N = a1b

i
1 + . . . + aN−pb

i
N−p

+
∑σ

l=1(βl,0 + βl,1i + . . . + βl,αl−1i
αl−1)yi

l , ∀i ≥ 2p − N − s + 1

and Ti,N = S
(p)
i,N , ∀i ∈ IN.

3.4 Algorithm for the partial-Padé-prediction

We have already shown a link between the Padé-prediction and the εp-prediction (see Theorem 6).

It is now time to establish the self-evident link existing between the Padé-prediction and the partial-
Padé-prediction. This link only uses applications called elementary applications avoiding the formal
product of series.

At the end, we will just have to use these properties to construct the algorithm generating the partial-
Padé-prediction. This algorithm will only need such elementary applications and the ε-algorithm.

The elementary applications
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Let us consider the applications hz and hz

hz :

{

IKIN −→ IKIN

(S0, S1, . . . , SN , . . .) −→ (S0, zS0 + S1, . . . , z
NS0 + zN−1S1 + . . . + SN , . . .).

hz :

{

IKN+1 −→ IKN+1

(S0, S1, . . . , SN ) −→ (S0, zS0 + S1, . . . , z
NS0 + zN−1S1 + . . . + SN ).

Then, the reverse applications are

h−1
z :

{

IKIN −→ IKIN

(S0, S1, . . . , SN , . . .) −→ (S0,−zS0 + S1, . . . ,−zSN−1 + SN , . . .).

h
−1

z :

{

IKN+1 −→ IKN+1

(S0, S1, . . . , SN ) −→ (S0,−zS0 + S1, . . . ,−zSN−1 + SN ).

Now, with our notations, Theorem 6 becomes

Padé-prediction= h−1
1 ◦ εp-prediction ◦h1

where the Padé-prediction is the transformation of the vector to predict into the Padé-predicted sequence
(depending on the parameter p) and the εp-prediction is the transformation of the vector to predict into
the εp-predicted sequence (depending on the same parameter p).

But we can also give the next trivial property.

When
x(t) = (1 − x1t)(1 − x2t) . . . (1 − xrt) ∈ IKr[t],

and
y(t) = (1 − y1t)(1 − y2t) . . . (1 − yst) ∈ IKs[t],

partial-Padé-prediction= h−1
x1

◦ h−1
x2

◦ . . . ◦ h−1
xr

◦ hy1
◦ hy2

◦ . . . ◦ hys
◦ Padé-prediction

◦hx1
◦ hx2

◦ . . . ◦ hxr
◦ h

−1

y1
◦ h

−1

y2
◦ . . . ◦ h

−1

ys

where the partial-Padé-prediction is the transformation of the vector to predict into the partial-Padé-
predicted sequence (depending on the parameter p) calculated from the polynomials x(t) and y(t), and
the Padé-prediction is the transformation of the vector to predict into the Padé-predicted sequence
(depending on the same parameter p).

Thus we obtain the following property :
If

x(t) ∈ IKr[t],

and
y(t) ∈ IKs[t],

partial-Padé-prediction= h−1
x1

◦ h−1
x2

◦ . . . ◦ h−1
xr

◦ hy1
◦ hy2

◦ . . . ◦ hys
◦ h−1

1 ◦ εp-prediction

◦hx1
◦ hx2

◦ . . . ◦ hxr
◦ h

−1

y1
◦ h

−1

y2
◦ . . . ◦ h

−1

ys
◦ h1
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where the partial-Padé-prediction is the transformation of the vector to predict into the partial-Padé-
predicted sequence (depending on the parameter p) calculated from the polynomials x(t) and y(t), and
the εp-prediction is the transformation of the vector to predict into the εp-predicted sequence (depending
on the same parameter p).

This very simple algorithm can generate each partial-Padé-prediction without solving a system of linear
equations (see Section 3.2) or of exponential ones (see Section 3.3).

4 Properties of the prediction of moments

In this section, we will consider that the vector to predict has components of the form
∫

Ω
xidg(x) where

g is a nondecreasing function with bounded variation on Ω, an interval of IR.

Considering the Padé-prediction, we have the

Theorem 8 For p such that 2p − N ≥ −1, let (Si)0≤i≤N ∈ IRN+1 be the vector to predict such that
Si =

∫

Ω
xidg(x), ∀i ∈ {0, 1, . . . , N}, where g is a nondecreasing function with bounded variation on Ω,

an interval of IR.

Then, the Padé-predicted sequence (S
(p)
i,N )i≥2p−N+1 satisfies

S
(p)
i,N =

∫

Ω

xidh(x), ∀i ≥ 2p − N + 1

where h is a nondecreasing function with bounded variation on Ω.

Proof

From hypothesis and Theorem 4, we obtain

S
(p)
i,N = a1b

i
1 + . . . + aN−pb

i
N−p, ∀i ≥ 2p − N + 1.

Then, from results on Gaussian quadrature, we get

1. bi ∈ Ω, ∀i ∈ {1, 2, . . . , N − p}

2. ai ≥ 0, ∀i ∈ {1, 2, . . . , N − p}.

Thus,

S
(p)
i,N =

∫

Ω

xidh(x), ∀i ≥ 2p − N + 1

where h is a nondecreasing function with bounded variation on Ω (dh =
∑N−p

i=1 aidδbi
where dδbi

is the
Dirac measure at bi).

Remarks

1. A particular case of this Theorem is the following : when the vector to predict is extracted from a
totally monotonic sequence (Haussdorf’s Theorem insures that totally monotonic sequences (Si)i≥0
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are such that Si =
∫ 1

0
xidg(x), ∀i ∈ IN where g is a nondecreasing function with bounded variation

on [0, 1]), the Padé-predicted sequence will also be totally monotonic starting from the (2p−N+1)th

term.

Also, there is a great difference for a vector (Si)0≤i≤N to be extracted from a totally monotonic
sequence or satisfying (−1)j∆jSi ≥ 0, ∀(i, j) such that i + j ≤ N . Condition (−1)j∆jSi ≥
0, ∀(i, j), i + j ≤ N , is not sufficient to obtain a totally monotonic Padé-predicted sequence
starting from the (2p − N + 1)thterm (for example, if we take N = 4, p = 2, S0 = 97, S1 =
22, S2 = 73

9 , S3 = 13
4 , S4 = 1, then (Si)0≤i≤4 satisfies (−1)j∆jSi ≥ 0, ∀(i, j) such that i + j ≤ 4,

but (S
(2)
i,4 )i≥0 is not totally monotonic because S

(2)
5,4 = −

2903409

54760000
< 0).

2. This Theorem can be used to construct a totally monotonic sequence with first terms given. Thus
we have obtained an algorithmic construction of totally monotonic sequences.

3. The assumption 2p − N ≥ −1 cannot be removed (for example, if we take N = 2, p = 0, S0 =
6, S1 = 3, S2 = 2, we have 2p − N = −2 and (Si)0≤i≤2 is extracted from the totally monotonic

sequence (
6

i + 1
)i≥0, but the Padé-predicted sequence (S

(0)
i,2 )i≥0 is not totally monotonic because

∆3S
(0)
1,2 = 1

24 > 0).

Considering the higher-Padé-type-prediction calculated from the polynomial y(t) = 1− y1t, we have the

Theorem 9 For p such that 2p − N ≥ 0, let (Si)0≤i≤N ∈ IRN+1 be the vector to predict such that
Si =

∫

Ω
xidg(x), ∀i ∈ {0, 1, . . . , N}, where g is a nondecreasing function with bounded variation on Ω,

interval of IR.

We assume that Ω is [R,R′[ or ]R′, R] where R is finite and R′ finite or infinite.

Then, the higher-Padé-type-predicted sequence (S
(p)
i,N )i≥2p−N+1 calculated from the polynomial y(t) =

1 − Rt satisfies

S
(p)
i,N =

∫

Ω

xidh(x), ∀i ≥ 2p − N

where h is a nondecreasing function with bounded variation on Ω.

Proof

We give the proof for Ω = [R,R′[.

From the hypothesis and Theorem 7 used for x(t) = 1 and y(t) = 1 − Rt, we obtain

S
(p)
i,N = a1b

i
1 + . . . + aN−pb

i
N−p + c1R

i, ∀i ≥ 2p − N.

Then, from results on Gauss-Radau quadratures, we get

1. bi ∈ Ω\{R}, ∀i ∈ {1, 2, . . . , N − p}

2. ai ≥ 0, ∀i ∈ {1, 2, . . . , N − p}

3. c1 ≥ 0.

Thus,

S
(p)
i,N =

∫

Ω

xidh(x), ∀i ≥ 2p − N
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where h is a nondecreasing function with bounded variation on Ω.

Remarks

1. When Ω is [R,R′[ or ]R′, R], we obtain the previous Theorem for higher-Padé-type-predicted se-
quence calculated from the polynomial y(t) = 1 − y1t where y1 is an extremity of Ω. What does it
happen if we consider

(a) y1 strictly included in Ω ?

Theorem 9 cannot be applied (for example, if we take N = 2, p = 1, y(t) = 1−
t

2
, S0 = 2, S1 =

17

15
, S2 =

169

225
, we have 2p − N = 0 and (Si)0≤i≤2 is extracted from the totally monotonic

sequence (
1

3i
+

4i

5i
)i≥0, but the higher-Padé-type-predicted sequence (S

(1)
i,2 )i≥0 calculated from

y(t) is not totally monotonic because ∆S
(1)
3,2 =

60917

1620000
> 0).

(b) y1 strictly out of Ω ?

Our Theorem 9 does not hold (for example, if we take N = 2, p = 1, y(t) = 1 − 2 · t, S0 =

2, S1 =
5

6
, S2 =

13

36
, we have 2p−N = 0 and (Si)0≤i≤2 is extracted from the totally monotonic

sequence ( 1
2i + 1

3i )i≥0, but the higher-Padé-type-predicted sequence (S
(1)
i,2 )i≥0 calculated from

y(t) is not totally monotonic because ∆S
(1)
4,2 =

2908457

53335584
> 0).

2. If Ω is [R,R′[ or ]R′, R], then Theorem 9 can be applied for the higher-Padé-type-predicted sequence
calculated from the polynomial y(t) = 1 − Rt.
Can we generalize this when y(t) = (1−Rt)s, for any s, only by changing the condition 2p−N ≥ 0
into 2p − N ≥ s − 1 ?

The answer is no (for example, if we take N = 3, p = 2, y(t) = (1 − t)2, S0 = 2, S1 =
5

6
, S2 =

13

36
, S3 =

35

216
, we have 2p − N = −1 and (Si)0≤i≤3 is extracted from the totally monotonic

sequence (
1

2i
+

1

3i
)i≥0, but the higher-Padé-type-predicted sequence (S

(2)
i,3 )i≥0 calculated from y(t)

is not totally monotonic because S
(2)
6,3 = −

8551439

729000000
< 0).

Then, we only have to consider the possibility when Ω is [R,R′] and y(t) = (1 − Rt)(1 − R′t) and we
get the

Theorem 10 For p such that 2p − N ≥ 1, let (Si)0≤i≤N ∈ IRN+1 be the vector to predict such that
Si =

∫

Ω
xidg(x), ∀i ∈ {0, 1, . . . , N}, where g is a nondecreasing function with bounded variation on Ω,

an interval of IR.

We assume that Ω is [R,R′] where R and R′ are finite.

Then, the higher-Padé-type-predicted sequence (S
(p)
i,N )i≥2p−N+1 calculated from the polynomial y(t) =

(1 − Rt)(1 − R′t) satisfies

S
(p)
i,N =

∫

Ω

xidh(x), ∀i ≥ 2p − N − 1

where h is a nondecreasing function with bounded variation on Ω.
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Proof

From the hypothesis and Theorem 7 applied with x(t) = 1 and y(t) = (1 − Rt)(1 − R′t), we obtain

S
(p)
i,N = a1b

i
1 + . . . + aN−pb

i
N−p + c1R

i + c2R
′i, ∀i ≥ 2p − N − 1.

Then, from results on Gauss-Lobatto quadratures, we get

1. bi ∈]R,R′[, ∀i ∈ {1, 2, . . . , N − p}

2. ai ≥ 0, ∀i ∈ {1, 2, . . . , N − p}

3. c1 ≥ 0

4. c2 ≥ 0.

Thus,

S
(p)
i,N =

∫

Ω

xidh(x), ∀i ≥ 2p − N − 1

where h is a nondecreasing function with bounded variation on Ω.

5 Consistency in column and in diagonal for the higher-Padé-

type-prediction

The term consistency means the following property : when the sequence to predict converges, then the
predicted sequence converges to the same limit.

Let (Si)i≥0 be the sequence to predict and P(y) be the higher-Padé-type-prediction method calculated
from the polynomial y(t).

In order to explain the difference between consistency in column and consistency in diagonal, let us
consider the following diagram :

S0

S1...

SN

SN+1...

Sm

Sm+1...

Sm+N...

sequence to predict

�

�

t0 ◦ P(y) ◦ t0

tm ◦ P(y) ◦ t−m

(S
(p)
i,N,0)i≥0

(S
(p)
i,N,m)i≥m

-P(y) (Si,N )i≥0

where t−j((Si)j≤i≤j+N ) = (Ti)0≤i≤N such that Sj+i = Ti, ∀i ∈ {0, 1, . . . , N}

and tj((T
(p)
i,N )i≥0) = (S

(p)
i,N,j)i≥j such that S

(p)
j+i,N,j = T

(p)
i,N , ∀i ∈ IN.
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We say that we have consistency in column for the higher-Padé-type-prediction when

lim
m→∞

S
(p)
m+N+i,N,m − Sm+N+i = 0, for i and N fixed

and consistency in diagonal when

lim
N→∞

S
(p)
m+N+i,N,m − Sm+N+i = 0, for i and m fixed.

The vocabulary used comes out from extrapolation methods. It seems to be natural to link the notion
of convergence acceleration in column with the consistency in column and the notion of convergence
acceleration in diagonal with the consistency in diagonal.

In short, consistency in column is consistency from a finite number of terms extracted farther and farther
whereas consistency in diagonal is consistency from an increasing number of terms.

The problems appearing in the proofs, when we use the expression of the predicted terms as ratios of
two determinants, are the study of the convergence of the determinantal expressions

1. of fixed dimension for the consistency in column.

2. of increasing dimension for the consistency in diagonal.

5.1 Consistency in column for the higher-Padé-type-prediction

In this subsection, we will only study the εp-prediction.

Let us begin with a result given by C. Brezinski and M. Redivo Zaglia in [6, p. 391].

Theorem 11 Let (Si)i≥0 be the sequence to predict. It is assumed to converge to S.

If ∃M,∃J , such that ∀j ≥ J,

∣

∣

∣

∣

∆Sj+1

∆Sj

∣

∣

∣

∣

≤ M , then the ∆2-prediction is consistent in column.

We generalize this Theorem in the following.

Theorem 12 Let (Si)i≥0 be the sequence to predict. It is assumed to converge to S.
If ∀N ∈ IN,∀p ∈ IN,∃M1, ∃M2, ∃J , such that ∀j ≥ J, we have :

M1 ≤ Abs































∣

∣

∣

∣

∣

∣

∣

∣

∣

∆S2p−N+j ∆S2p−N+1+j . . . ∆Sp+j

∆S2p−N+1+j ∆S2p−N+2+j . . . ∆Sp+1+j

...
...

...
∆Sp+j−1 ∆Sp+j . . . ∆SN−1+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

(l)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∆S2p−N+j ∆S2p−N+1+j . . . ∆Sp−1+j

∆S2p−N+1+j ∆S2p−N+2+j . . . ∆Sp+j

...
...

...
∆Sp+j−1 ∆Sp+j . . . ∆SN−2+j

∣

∣

∣

∣

∣

∣

∣

∣

∣































≤ M2, ∀l ∈ {1, 2, . . . , N − p},
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where

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 a1,2 . . . a1,n+1

a2,1 a2,2 . . . a2,n+1

...
...

...
an,1 an,2 . . . an,n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(m)

, ∀m ∈ {1, 2, . . . , n + 1} represents the determinant of the matrix

(ak,l)1≤k≤n,1≤l≤n+1,l 6=m, then, the εp-prediction is consistent in column.

Proof

From Theorem 2

S
(εS,p)
N+m+i,N,m − SN+m = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

SN+m 1 S
(εS,p)
p+m+i,N,m S

(εS,p)
p+m+i+1,N,m . . . S

(εS,p)
N+m+i−1,N,m

Sp+m 1 S2p−N+m S2p−N+1+m . . . Sp−1+m

Sp+1+m 1 S2p−N+1+m S2p−N+2+m . . . Sp+m

...
...

...
...

...
SN+m 1 Sp+m Sp+1+m . . . SN−1+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 S2p−N+m S2p−N+1+m . . . Sp−1+m

1 S2p−N+1+m S2p−N+2+m . . . Sp+m

...
...

...
...

1 Sp+m Sp+1+m . . . SN−1+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ∀i ∈ IN,

with the convention Si = 0 when i < 0.

Then
S

(εS,p)
N+m+i,N,m − SN+m

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

SN+m 1 S
(εS,p)
p+m+i,N,m S

(εS,p)
p+m+i+1,N,m . . . S

(εS,p)
N+m+i−1,N,m

−∆Sp+m 1 −∆S2p−N+m −∆S2p−N+1+m . . . −∆Sp−1+m

−∆Sp+1+m 1 −∆S2p−N+1+m −∆S2p−N+2+m . . . −∆Sp+m

...
...

...
...

...
−∆SN+m−1 1 −∆Sp+m−1 −∆Sp+m . . . −∆SN+m−2

0 1 Sp+m − S
(εS,p)
p+m+i,N,m Sp+1+m − S

(εS,p)
p+m+i+1,N,m . . . SN−1+m − S

(εS,p)
N+m+i−1,N,m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 S2p−N+m S2p−N+1+m . . . Sp−1+m

1 S2p−N+1+m S2p−N+2+m . . . Sp+m

...
...

...
...

1 Sp+m Sp+1+m . . . SN−1+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆S2p−N+m ∆S2p−N+1+m . . . ∆Sp−1+m ∆Sp+m

∆S2p−N+m+1 ∆S2p−N+2+m . . . ∆Sp+m ∆Sp+m+1

...
...

...
...

∆Sp+m−1 ∆Sp+m . . . ∆SN+m−2 ∆SN+m−1

S
(εS,p)
p+m+i,N,m − Sp+m S

(εS,p)
p+m+i+1,N,m − Sp+1+m . . . S

(εS,p)
N+m+i−1,N,m − SN−1+m 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆S2p−N+m ∆S2p−N+1+m . . . ∆Sp−1+m

∆S2p−N+1+m ∆S2p−N+2+m . . . ∆Sp+m

...
...

...
∆Sp+m−1 ∆Sp+m . . . ∆SN−2+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

Then, ∀m ≥ J,

|S
(εS,p)
N+i+m,N,m − SN+m| < max(|M1|, |M2|)

N−p−1
∑

j=0

∣

∣

∣S
(εS,p)
p+m+i+j,N,m − Sp+m+j

∣

∣

∣ .
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Then, recursively on i, it follows that

lim
m→∞

S
(εS,p)
N+i+m,N,m − SN+m = 0.

Consequently, as (Si)i≥0 is converging,

lim
m→∞

S
(εS,p)
N+i+m,N,m − SN+m+i = 0.

In this last Theorem, the condition concerning the ratio of two determinants is satisfied for totally
monotonic sequences as we can see in the next Theorem.

Theorem 13 Let (Si)i≥0 be a totally monotonic sequence.
Then, ∀j ≥ N − 2p, we have :

0 ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

S2p−N+j S2p−N+1+j . . . Sp+j

S2p−N+1+j S2p−N+2+j . . . Sp+1+j

...
...

...
Sp+j−1 Sp+j . . . SN−1+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

(l)
∣

∣

∣

∣

∣

∣

∣

∣

∣

S2p−N+j S2p−N+1+j . . . Sp−1+j

S2p−N+1+j S2p−N+2+j . . . Sp+j

...
...

...
Sp+j−1 Sp+j . . . SN−2+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

(

N − p
l − 1

)

, ∀l ∈ {1, 2, . . . , N − p}.

Proof

From Si =
∫ 1

0
xidα(x), ∀i ∈ IN, the Cauchy-Binet Formula gives :

∣

∣

∣

∣

∣

∣

∣

∣

∣

S2p−N+j S2p−N+1+j . . . Sp+j

S2p−N+1+j S2p−N+2+j . . . Sp+1+j

...
...

...
Sp+j−1 Sp+j . . . SN−1+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

(l)

=

∫ ∫

. . .

∫

0≤x0≤x1≤...≤xn≤1

(x0x1 . . . xN−p−1)
2p−N+jV (x0, x1, . . . , xN−p−1)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 . . . xN−p
0

1 x1 . . . xN−p
1

...
...

...

1 xN−p−1 . . . xN−p
N−p−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(l)

dα(x1)dα(x2) . . . dα(xN−p−1),

where

V (x0, x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 . . . xn
0

1 x1 . . . xn
1

...
...

...
1 xn . . . xn

n

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Then, by computing the coefficient of xl−1 in V (x, x0, x1, . . . , xN−p−1), we get :

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 . . . xN−p
0

1 x1 . . . xN−p
1

...
...

...

1 xN−p−1 . . . xN−p
N−p−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(l)

= V (x0, x1, . . . , xN−p−1)×
∑

0≤i1<i2<...<iN−p+1−l≤N−p−1

xi1xi2 . . . xiN−p+1−l
.

Then,

∣

∣

∣

∣

∣

∣

∣

∣

∣

S2p−N+j S2p−N+1+j . . . Sp+j

S2p−N+1+j S2p−N+2+j . . . Sp+1+j

...
...

...
Sp+j−1 Sp+j . . . SN−1+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

(l)

−

(

N − p
l − 1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

S2p−N+j S2p−N+1+j . . . Sp−1+j

S2p−N+1+j S2p−N+2+j . . . Sp+j

...
...

...
Sp+j−1 Sp+j . . . SN−2+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∫ ∫

. . .

∫

0≤x0≤x1≤...≤xn≤1

(x0x1 . . . xN−p−1)
2p−N+jV (x0, x1, . . . , xN−p−1)

2

×





∑

0≤i1<i2<...<iN−p+1−l≤N−p−1

xi1xi2 . . . xiN−p+1−l
−

(

N − p
l − 1

)



 dα(x1)dα(x2) . . . dα(xN−p−1) ≤ 0.

Since the sequence (Si)i≥0 is a totally monotonic sequence, (i.e. Si =
∫ 1

0
xidg(x), ∀i ∈ IN, where g is a

nondecreasing function with bounded variation on [0, 1]), (∆Si)i≥0 is also a totally monotonic sequence.
A consequence is that the ε-prediction is consistent in column for totally monotonic sequences.

5.2 Consistency in diagonal for the higher-Padé-type-prediction

This subsection will concern only the Padé-prediction.

Let us begin with this obvious Theorem :

Theorem 14 let us suppose that 2p − N ≥ −1.

Let (Si)0≤i≤N ∈ IRN+1 be the vector to predict such that Si =
∫ b

a
xidg(x), ∀i ∈ {0, 1, . . . , N}, where g

is a nondecreasing function with bounded variation on [a, b] (a and b are assumed to be finite).

Then the Padé-predicted sequence (S
(p)
i,N )i≥0 satisfies

lim
N→∞

S
(p)
N+i+m,N,m − SN+i+m

ρN
= 0, ∀ρ > max(|a|, |b|), ∀i ∈ IN.

Proof

From Theorem 8,

S
(p)
i,N =

∫ b

a

xidh(x), ∀i ≥ 2p − N + 1
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where h is a nondecreasing function with bounded variation on [a, b]. Then, obviously,

lim
N→∞

S
(p)
N+i+m,N,m

ρN
= 0, ∀ρ > R, ∀k ∈ IN.

And, as

lim
N→∞

SN+i+m

ρN
= 0, ∀ρ > R, ∀k ∈ IN,

it follows that

lim
N→∞

S
(p)
N+k,N − SN+k

ρN
= 0, ∀ρ > R, ∀k ∈ IN.

We directly deduce the three following Theorems (in these Theorems, the value of ρ, defined in the
Theorem 14, can be fixed equal to one) :

Theorem 15 2p − N ≥ −1.

Let (Si)0≤i≤N ∈ IRN+1 be the vector to predict extracted from a totally monotonic sequence such that

lim
i→∞

∆Si+1

∆Si

= µ (µ 6= 1),

i.e. linearly converging.

Then the Padé-prediction is consistent in diagonal.

Theorem 16 2p − N ≥ −1.

Let (Si)0≤i≤N ∈ IRN+1 be the vector to predict extracted from a totally oscillating sequence (i.e. Si =
∫ 0

−1
xidg(x), ∀i ∈ IN, where g is a nondecreasing function with bounded variation on [−1, 0]), such that

lim
i→∞

∆Si+1

∆Si

= µ (µ 6= −1).

Then the Padé-prediction is consistent in diagonal.

Theorem 17 2p − N ≥ −1.

Let (Si)0≤i≤N ∈ IRN+1 be the vector to predict such that Si =
∫ b

a
xidg(x), ∀i ∈ {0, 1, . . . , N}, where g

is a nondecreasing function with bounded variation on [a, b].

If we assume −1 < a < b < 1, then the Padé-prediction is consistent in diagonal.

6 Numerical applications

Prediction methods, more precisely the Padé-prediction and the Aitken’s ∆2-prediction has already been
used on physical problems as we can see in[16], [1] or in [10].

However, we choose here to exhibit sequences for which each term is known. So, we can make a
comparison between the sequence to predict and the predicted sequence.
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6.1 First Example

The sequence we will study here is given by :

S0 = 2, Si+1 =
√

1 + Si, ∀i ∈ IN.

Generally, if we consider that nothing is known on the sequence to predict, we apply the Padé-prediction

or the εp-prediction. Let us here display the differences |S
(ε,p)
i,2p −Si|, where S

(ε,p)
i,2p is the ε-predicted vector

(Si)0≤i≤2p.

We display the difference |S
(ε,p)
i,2p − Si|, for different values of p and i.

i |S
(ε,2)
i,4 − Si| ∗ 107 |S

(ε,3)
i,6 − Si| ∗ 1012 |S

(ε,4)
i,8 − Si| ∗ 1018 |S

(ε,5)
i,10 − Si| ∗ 1025 |S

(ε,6)
i,12 − Si| ∗ 1034

0 0. 0. 0. 0. 0.
1 0. 0. 0. 0. 0.
2 0. 0. 0. 0. 0.
3 0. 0. 0. 0. 0.
4 0. 0. 0. 0. 0.
5 1.40 0. 0. 0. 0.
6 2.57 0. 0. 0. 0.
7 3.21 1.66 0. 0. 0.
8 3.50 3.12 0. 0. 0.
9 3.62 3.93 1.29 0. 0.
10 3.66 4.31 2.44 0. 0.
11 3.68 4.46 3.09 0.70 0.
12 3.69 4.52 3.39 1.33 0.
13 3.69 4.55 3.52 1.68 2.79
14 3.69 4.55 3.57 1.85 5.28
15 3.69 4.56 3.58 1.91 6.69
16 3.69 4.56 3.59 1.94 7.34
17 3.69 4.56 3.59 1.95 7.61
18 3.69 4.56 3.59 1.95 7.72
19 3.69 4.56 3.59 1.96 7.76
20 3.69 4.56 3.59 1.96 7.77

Of course, since the predicted sequence reproduces the known terms, the difference between the first
known terms and the terms of the predicted sequence is zero.

6.2 Second Example

Let us now deal with the moments on the Cantor set on [0,1]. These moments are linked by a recurrence
relation with an increasing numbers of terms:

S0 = 1, Sn =
1

3n − 1

n
∑

j=0

(

n
j

)

2n−j−1Sj .

We display the relative error (in percentage) between the exact terms of the sequence (Sn)n and the

Padé-predicted one. S
(p)
i,m is the predicted term of Si with the Padé-prediction method based on the

knowledge of S0, . . . , Sm+p. (we recall that S
(p)
i,m is the i-th coefficient of the Taylor series of the Padé

approximant [p/m − p] to the polynomial
∑m+p

j=0 Sjt
j). S

(p)
i,m is computed with ε-algorithm as explained

in Section 5.4. See Section 4 for the notations.
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i (S
(2)
i,4 − Si)/Si ∗ 100 (S

(3)
i,6 − Si)/Si ∗ 100 (S

(4)
i,8 − Si)/Si ∗ 100 (S

(5)
i,10 − Si)/Si ∗ 100

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 -0.77 0 0 0
6 -2.6 0 0 0
7 -5.3 -0.056 0 0
8 -8.9 -0.24 0 0
9 -13. -0.6 -0.0033 0
10 -17. -1.2 -0.017 0
11 -22. -2. -0.053 -0.00019
12 -27. -3. -0.12 -0.0012
13 -32. -4.3 -0.24 -0.0043
14 -36. -5.7 -0.41 -0.012
15 -41. -7.3 -0.65 -0.025
16 -45. -9. -0.96 -0.049
17 -49. -11. -1.4 -0.086
18 -53. -13. -1.8 -0.14
19 -57. -15. -2.4 -0.21
20 -60. -17. -3. -0.31

This prediction method has been proved to be consistent in diagonal for sequence of moments, i.e.

∀i fixed ∈ IN, limp→∞ |S
(p)
2p+i,2p − S2p+i| = 0.
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[8] J. GILEWICZ, ”Approximants de Padé”, LNM 667, Springer-Verlag, Berlin, 1978.

[9] C. LANCZOS,” Applied Analysis”, Prentice Hall, Englewood Cliffs, 1956.

[10] M. MORANDI CECCHI, M. REDIVO ZAGLIA et G.SCENNA, Approximation of the numerical
solution of parabolic problems, Computational and Applied Mathematics I, (1992), 71-80.

24



[11] H. PADE, Sur la représentation approchée d’une fonction par des fractions rationnelles, Ann. Ec.
Norm. Sup.,9 (1892), 1-93, 1892.

[12] M. PREVOST, Determinantal expression for partial Padé approximants, Appl. Numer. Math., 6
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