
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article professionnel Article 1998 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

A survey of theories for mobile agents

Di Marzo Serugendo, Giovanna; Muhugusa, Murhimanya; Tschudin, Christian

How to cite

DI MARZO SERUGENDO, Giovanna, MUHUGUSA, Murhimanya, TSCHUDIN, Christian. A survey of

theories for mobile agents. In: World wide web, 1998, vol. 1, n° 3, p. 139–153. doi:

10.1023/A:1019219916118

This publication URL: https://archive-ouverte.unige.ch//unige:48257

Publication DOI: 10.1023/A:1019219916118

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:48257
https://doi.org/10.1023/A:1019219916118

World Wide Web 1 (1998) 139–153 139

A survey of theories for mobile agents ∗

Giovanna Di Marzo Serugendo a, Murhimanya Muhugusa b and Christian F. Tschudin c

a Centre Universitaire d’Informatique (CUI), University of Geneva, 24, rue Général-Dufour, CH-1211 Geneva 4, Switzerland
E-mail: Giovanna.Dimarzo@cui.unige.ch

b Microcell Labs Inc., 1250, Blvd. René-Lévesque Ouest, Suite 400, Montréal (Québec), H3B 4W8 Canada
c International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704, USA

This paper presents a comparative survey of formalisms related to mobile agents. It describes the π-calculus and its extensions,
the Ambient calculus, Petri nets, Actors, and the family of generative communication languages. Each of these formalisms defines a
mathematical framework that can be used to reason about mobile code; they vary greatly in their expressiveness, in the mechanisms
they provide to specify mobile code based applications and in their practical usefulness for the validation and the verification of such
applications. In this paper we show how these formalisms can be used to represent the mobility and communication aspects of two
mobile code environments: Obliq and Messengers. We compare and classify the different formalisms with respect to mobility and
discuss some shortcomings and desirable extensions. We also point to other emerging concepts in formalisms for mobile code systems.

1. Introduction

Mobile agents, mobile computations and mobile code in
general are becoming more and more popular. We have a
feeling that these paradigms will enable a wide range of
exciting new distributed applications. But beyond the fas-
cination and basic engineering challenges, they are also the
source of serious security concerns (“what happens with
malicious agents, or inside malicious hosts?”), validation
concerns (“has the application the correct functionality?”)
and verification concerns (“is the application implemented
in a correct way?”). In order to obtain a conclusive an-
swer to these questions, it is necessary to introduce formal
methods providing a mathematical framework useful for
specifying and verifying these applications.

This paper focuses on agent mobility and on the way
agents interact with each other. It considers formalisms
that either explicitly address code and process mobility or
may be used for that purpose, even though they do not
offer explicit means for that. These formalisms are either
process algebra or Petri nets, and they all have features
of varying levels of expressiveness that may be used to
formalize mobility.

After a brief presentation of two mobile code environ-
ments, this paper summarizes several formalisms address-
ing the problem of mobility: the π-calculus and its ex-
tensions, the Ambient calculus, Petri nets, Actors, and the
family of generative communication languages. For each
of them, a possible (not necessarily the best) application to
the two mobile agent environments is proposed. The paper
ends with a comparison of the presented formalisms and
gives some suggestions on the way to use them. This pa-
per does not address the variety of agent types used in
the AI community (intelligent agents, believable agents,

∗ This work is supported by the Swiss National Science Foundation
(FNRS) grant 20-47162.96.

autonomous agents, distributed artificial intelligence, etc.)
and a possible formalization thereof.

2. Mobile computation (agent) environments

Making the computations mobile means that applications
have to explicitly decide where in the net a computation
should take place. Locality is made explicit in the hope
that the network can be used more efficiently or because
we realize that building a system that tries to completely
hide the network (and thus locality) is impossible or in-
appropriate [Waldo et al. 1994]. Applications should be
able to react in their specific way to various (network) fail-
ures instead of delegating this task to some general purpose
distributed, but transparent, execution platform.

The term mobile agent captures best the view that com-
putations can decide for themselves to move or to stay.
There have been various systems proposed to implement
mobile agents. The common element is the mobility of
code between the nodes. Each node becomes an agent
execution environment (i.e., virtual machine or interpreter
for portability reasons) that understands a common set of
agent instructions or a common programming language.
But there are different ways of organizing code mobility
and interprocess communication: Java [Lea 1997] realizes
code mobility by enabling Web browsers to download byte-
codes, objects communicate via method invocation, syn-
chronization between threads is obtained by the means of
locks associated to each object; Aglets [Lange et al. 1997]
are Java objects that can execute on one host and suddenly
halt execution, dispatch to a remote host, and restart an
execution there. When an aglet moves, it takes along its
program code as well as state information; Obliq [Cardelli
1995] objects can be copied to remote sites and references
can be adjusted accordingly, they communicate via local
or remote method calls; Messengers [Tschudin 1993] are

 Baltzer Science Publishers BV

140 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

computations that can start new threads in remote hosts,
they communicate via local shared memory only.

To give the flavor of different formalizations of a mo-
bile agent environment, we chose the Obliq and Messen-
ger environments as test cases. Obliq can be characterized
as a language approach for extending the object-oriented
framework to a distributed environment. Obliq’s commu-
nication style is determined by the requirement that objects
should remain callable although they reside on different
hosts. The messenger approach is based on another com-
munication model and imposes all communications to be
local and indirect. This divergence, among others, helps
to work out the differences between the formalisms, and
how they could be used to model the notions of mobility,
communication and synchronization. Before looking at the
formalisms, we briefly introduce the Obliq and the Mes-
senger systems. A more thorough description of these and
other mobile agent environments, as well as a comparison
of them can be found in [Di Marzo et al. 1996].

2.1. Obliq

Obliq is an object-oriented interpreted language. The
Obliq environment consists of sites that are address spaces
containing locations [Cardelli 1995]. Locations contain val-
ues and can be embedded. A value can be a location, an
array, an object, etc. Two different kinds of entities can be
moved from a site to another: procedures and objects ref-
erences. First, the environment allows to move procedure
code together with all the bindings (location, site) they need
for retrieving values that are in their original site. More pre-
cisely, a procedure code is moved and executed in a site
that is not its original site. The values that this code needs
or creates are invoked or overridden at the original site.
This way of retrieving/updating values at the original site
is called distributed lexical scoping. Second, the reference
to an object is allowed to migrate, but not the object itself.
However, it is possible to create a clone of an object and to
put it in a remote site. In addition to cloning, it is possible
to perform aliasing of the original object to the cloned ob-
ject. This results in every method invocation on the original
object being redirected to the cloned object. The clone has
the same state as the object itself and it accesses the values
stored in the original site by distributed lexical scoping. In-
teraction and data exchange between objects occur through
method calls.

2.2. Messengers

The messenger concept strives at reducing mobile agents
to their essence, namely the sending of code instructions
in order to realize communication [Tschudin 1993]. Mes-
sengers are anonymous and independent mobile threads of
execution inside a messenger execution platform. They can
send arbitrary code sequences (messenger packets) to neigh-
boring platforms which are interconnected by unreliable
channels. Each received messenger packet becomes a new

sequential process (thread) executing the packet’s code in
parallel with other messenger threads. Messengers coordi-
nate their execution indirectly by the means of (1) a shared
dictionary and (2) queues. The dictionary is a strictly local
shared data structure accessible to all messengers inside the
same platform. Messengers can insert new data, change or
remove old data into/from the dictionary. Messengers are
able to insert themselves into queues – their execution is
then stopped as long as they do not arrive at the head of
the queue. Queues, which are dynamically created, have a
name and an associated state (stop/go). They can, for exam-
ple, be used to serialize the access to the shared dictionary.
A heavily used data type in the implementation of messen-
gers are “keys” [Tschudin 1997]. Keys are bit strings used
to name queues or, e.g., to identify session related data in
the dictionary. These names are usually created by selecting
randomly a new key which avoids complex cross-platform
coordination of the name space.

3. π-calculus and its extensions

The π-calculus and its extensions are process alge-
bra that focus on process mobility. Processes communi-
cate using channels. The channels define the configura-
tion of the system. Processes send a channel name in
the monadic π-calculus, tuples of channel names in the
polyadic π-calculus, and tuples of processes and channel
names in the higher-order π-calculus.

3.1. Monadic π-calculus

“The π-calculus is a way of describing and analyzing
systems consisting of agents which interacts among each
other, and whose configuration or neighborhood is con-
tinually changing” [Milner 1993]. The philosophy behind
π-calculus is heavily based on channel names. The basic
entity is a (channel) name (with no structure) with which
more complex entities called processes are built.

• A monadic π-calculus process is given by the following
syntax:

P ::=
∑
i∈I

αi.Pi | P1|P2 | P1 + P2 | νxP | !P ,

α ::= x(y) | xy.

Here x, y stand for names, . is the prefixing operator,
+ is the sum operator, | is the parallel operator, ν is the
restriction operator, νxP makes the name x local to P :
only P can use x, i.e., x is used nowhere except in P ,
! is the replication operator (means P |P | . . .). Prefixes
α are atomic actions, they are of two forms: (1) input
prefix x(y) which means that the name y is received over
channel x, (2) output prefix xy which means that the
name y is sent over channel x. Names refer to channels.
Given a π-calculus P : the bound names of P , noted
bn(P) are names restricted by ν or names y appearing

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 141

in input prefixes x(y); the free names of P , noted fn(P)
are the names appearing in P but not bound.
Example: process xy|x(u).uv will behave like yv after
the channel name y has been sent. Indeed, the first
process xy sends the channel name y along channel x,
while the second one x(u).uv is waiting for the channel
name u along the channel x, in order to use it for sending
name v.

• The operational semantics is roughly sketched; it is
inspired from the operational semantics of polyadic
π-calculus given in [Sangiorgi 1993]. There are three la-
bels for the transitions: the silent step τ , the input action
x〈y〉 and the output action x〈y〉. We present here only
the transitions related to input, output, and interaction
between two processes by channel-passing.
Output action:

xy.P
x〈y〉−→ P

means that after having sent message y (a channel name)
over channel x, process xy.P behaves like P .
Input action:

x(y).P
x〈z〉−→ P{z/y}

means that if message z (a channel name) is sent over
channel x, then the process x(y).P , waiting for a chan-
nel name on x, receives it and instantiates the channel
name to z, it then behaves like P , where all occurrences
of y are replaced by z. 〈·〉 stands for real parameters,
while (·) stands for formal parameters.
Interaction between two processes:

P
(νy)x〈y〉−→ P ′ Q

x〈y〉−→ Q′

P |Q τ−→ νy(P ′|Q′)
, y ∩ fn(Q) = ∅,

means that if an output action causes P to become P ′,
and the corresponding input action causes Q to become
Q′, then P and Q in parallel become P ′ and Q′ in
parallel, and the private (bound) name y emitted by P
becomes a private (bound) name of P ′|Q′.
The particularity of the π-calculus is to allow names of

channels to be passed as parameters. If a process moves,
its neighborhood changes and with it the channels it uses
for communication.

Transition x(y).P
x〈z〉−→ P{z/y} means that message z is

sent along channel x. If we consider that z is not a sim-
ple value but a channel name, then the resulting process
P{z/y} is able to use this name as a channel for further
communications. The actual value of the channel is instan-
tiated during the execution of the process.

3.2. Polyadic π-calculus

The polyadic π-calculus extends monadic π-calculus
with typing [Milner 1993]. Contrary to monadic π-calculus
which allows only channel names to be output in chan-
nels, polyadic π-calculus allows tuples of names as well as

sorts, data structures and functions to be output. Polyadic
π-calculus introduces the notions of abstraction and concre-
tion. Abstractions are used for the definition of processes
with formal parameters, concretions are used for effectively
employing processes with actual parameters.

• A polyadic π-calculus process is given by the following
syntax:

P ::=
∑
i∈I

αi.Pi | P1|P2 | P1 + P2 |

νxP | [x = y]P | D〈x̃〉,
α ::= x(ỹ) | x〈ỹ〉.

Here x, y stand for names, x̃, ỹ stand for tuples (finite or
infinite) of names, . is the prefixing operator, + is the
sum operator, | is the parallel operator, ν is the restriction
operator, [·] is the matching operator andD is a constant.

Constants are defined by equations of the form D
def
=

(x̃)P , with x̃ the (bound) list of formal parameters of
P . Prefixes can be input ones (x(ỹ)) or output ones
(x〈ỹ〉).
The intuitive meaning of the syntax is the following:
x(ỹ).P is an input-prefixed process waiting for some
tuple z̃ to be transmitted along channel x. Once z̃ has
been transmitted, the process behaves like P with ỹ in-
stantiated with z̃. The notation x〈ỹ〉.P expresses an
output-prefixed process sending the tuple ỹ along chan-
nel x. Once ỹ has been sent, the process behaves like P .
| is the parallel operator (interleaving). + is the choice
operator, P + Q behaves non-deterministically like P
or Q. A sum can be of length 0 (the inactive process),
of finite or even infinite length. νxP makes the name
x local to P . [x = y]P is a matching used to test
the equality of x and y. Constants are useful for defin-

ing infinite processes and recursion. If D
def
= (x̃)P has

formal parameters (x̃), the process D〈ỹ〉 has real para-
meters ỹ of the same length than the formal parameters.
Constants have to be seen as functions with parameters.

• Abstractions and concretions: D and (x̃)P are called ab-
stractions, whereas 〈x̃〉P are called concretions. a(x̃).P
is noted a.(x̃)P , and a〈x̃〉.P is noted a.〈x̃〉P . Abstrac-
tions are used to define parameterized processes, com-
binators, and sorts. Concretions are the parameterized
processes with formal parameters instantiated with ac-
tual ones.

• Additional notation: Local computation of the process
which does not involve the environment is noted τ.P .
Replication (infinite) of a process P is noted !P and
stands for P |P |P
• The operational semantics of the polyadic π-calculus is

given in terms of a labeled transition system. It is very
similar to that of monadic π-calculus. There are three
labels for the transitions: the silent step τ , the input
action x〈ỹ〉 and the output action x〈ỹ〉. The transitions
related to input, output are the same as those of monadic
π-calculus, with single names y replaced by tuples of

142 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

names ỹ. We only mention the transitions for interaction
between processes and for the constants.
Interaction between processes:

P
(νỹ′)x〈ỹ〉−→ P ′ Q

x〈ỹ〉−→ Q′

P |Q τ−→ νỹ′(P ′|Q′)
, ỹ′ ⊆ ỹ−x, ỹ′ ∩ fn(Q) = ∅,

i.e., an output action causes P to become P ′, the cor-
responding input action causes Q to become Q′, then
P and Q in parallel become P ′ and Q′ in parallel, and
emitted bound names become bound names of P ′|Q′.
Constants stand for functions with formal parameters
x̃ and actual parameters ỹ. They are treated with the
transition:

P{ỹ/x̃}
µ−→ P ′

D〈ỹ〉 µ−→ P ′
D

def
= (x̃)P ,

i.e., the function with actual parameters D〈ỹ〉 behaves
like P where the actual parameters have been substituted
to the formal ones.

The monadic π-calculus is obtained from the polyadic
π-calculus by allowing only tuples of length 1. Monadic
π-calculus supports only one sort while polyadic π-calculus
supports several sorts.

3.3. Higher-order π-calculus

The higher-order π-calculus (HOπ) [Sangiorgi 1993]
goes a step further in the use of sorts and types. Monadic
and polyadic π-calculus allows names and tuple of names to
be transmitted respectively, while higher-order π-calculus
allows functions of arbitrary any order to be transmitted.

Sangiorgi identifies a first-order paradigm and a higher-
order paradigm for mobility in process algebra. The no-
tion of mobility in process algebra is realized by sending
messages that change the communication interface between
components of the system. The first-order paradigm allows
ports or names to be transmitted as messages. After the
transmission of a port, the communication can take place
through this port. This is the reference-passing mechanism
we have seen in the π-calculus. The higher-order paradigm
allows processes (parameterized or not) to be passed as
values in a communication. After a process has been trans-
mitted, it can begin its execution. This is a process-passing
mechanism. Sangiorgi proves that the expressiveness of
higher-order and first-order π-calculus are the same.

• A higher-order π-calculus process is given by the fol-
lowing syntax:

P ::=
∑
i∈I

αi.Pi | P1|P2 | νxP |

[x = y]P | D
〈
K̃
〉
| X
〈
K̃
〉
,

α ::= x
(
Ũ
)
| x
〈
K̃
〉
.

Here X is an agent (process) variable, K̃ stands for any
tuple of agent or (channel) name, and Ũ stands for any

tuple of variable or (channel) name. The constants D

are defined as D
def
= (Ũ)P . Constants are to be seen as

functions whose parameters can be processes or other
functions.
The difference between first-order and higher-order
π-calculus resides in the fact that (formal or actual) pa-
rameters can be channels and/or processes in the higher-
order π-calculus, while in first-order π-calculus only
channels can be passed as parameters.
Example: in x〈P 〉.Q|x(X).X , once the interaction be-
tween the two processes has taken place, the resulting
process is Q|P . Indeed, process x(X).X was waiting
for X to be sent along channel x, i.e., it was waiting for
a process X defining its subsequent behavior.
Plain π-calculus is first-order (where only channel
names can be used as parameters). In the second-
order new types arise, namely functions which can have
process types as types for parameters. We increase the
order when we build functions whose parameters are of
previous orders.

• The operational semantics is given in terms of a la-
beled transition system. The transition system is that
of first-order π-calculus extended to enable processes to
be used as parameters. There are three labels for the
transitions: the silent step τ , the input action x〈K̃〉 and
the output action x〈K̃〉. The transitions related to input,
output, interaction between two processes, and constants
are the same than those of polyadic π-calculus with tu-
ples of channels ỹ being replaced by tuples of channels
or processes K̃.

• Equivalences: Bisimulation usually identifies processes
with the same external behavior. Higher-order bisimula-
tion identifies higher-order processes if their interactions
with the environment are the same and if their internal
processes are bisimilar.

The polyadic π-calculus is obtained from HOπ by al-
lowing only tuples of names (no processes in the tuples).

3.4. Application to mobile agents

We will just show how HOπ can be used to model the
mobile agent environments described above.

3.4.1. Obliq
A site becomes a π-calculus process with a dedicated

π-calculus channel. The site waits for cloned objects or
procedures to arrive on this channel. As soon as a cloned
object or a procedure arrives on this channel, the site be-
haves like itself in parallel with the process corresponding
to the cloned object or the procedure. A location becomes a
π-calculus process maintaining a value with two dedicated
π-calculus channels: one for reading the value, and one for
updating the value.

A procedure becomes just a π-calculus process. An ob-
ject becomes a π-calculus process which is made of sev-

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 143

eral π-calculus processes in parallel (one for each method).
A method is one of these sub-processes with a dedicated
channel used by other processes to invoke that method.

The cloning of an object just causes the site to behave
like itself in parallel with the π-calculus process of the
cloned object. If a method m of an object a is aliased to a
method m′ of an object b, then the π-calculus process for
method m changes its behavior in the following manner:
each input action on the channel of method m is imme-
diately followed by an output action towards the channel
for m′.

In the case of distributed lexical scoping a binding be-
comes a π-calculus channel. A cloned object or a proce-
dure is sent together with its binding. When it encounters a
free identifier, it sends an output action through the binding
(a π-calculus channel). The output value is a request for
the cloned object’s value or for the remote procedure to be
executed on the free identifier. A process is waiting on that
channel and actually serves these requests.

3.4.2. Messengers
A messenger channel becomes a π-calculus process with

as many π-calculus channels as the number of messenger
channels. Its behavior consists of waiting for a messenger
(a π-calculus process) to arrive. Once the messenger has
arrived in the channel, it becomes a new process in the
platform.

The dictionary becomes a π-calculus process with as
many dedicated π-calculus channels as data. The dictionary
waits permanently for data on all these π-calculus channels.
A write in the dictionary is an entry in the π-calculus chan-
nel, a read is an exit of the π-calculus channel. Another
possibility is to consider each data as a process with a ded-
icated channel.

A messenger queue becomes a π-calculus process whose
work is to manage processes entering and leaving the queue.
A dedicated π-calculus channel is associated to each queue.
Once a process enters the queue, it enters in the π-calculus
channel and disappears from the set of processes of the
system – once it gets out of the queue, it gets out of the
π-calculus channel and appears in the set of active processes
of the system. Keys that name queues are simple π-calculus
names.

A messenger is a π-calculus process. It interacts with
the dictionary and the queues through dedicated π-calculus
channels. A messenger M1 that sends messenger M2 to
platform P has to send the π-calculus process for M2 along
a π-calculus channel of platform P . The π-calculus process
corresponding to the messenger platform P will actually
create the π-calculus process for M2.

A messenger platform becomes a π-calculus process
whose behavior consists of the parallel execution of the
following processes: π-calculus messenger processes, the
π-calculus process for the dictionary and the π-calculus
processes for messenger queues.

4. Ambient calculus

“An ambient is a bounded place where computation hap-
pens. The interesting property is the existence of a bound-
ary around an ambient. If we want to move computations
easily we must be able to determine what should move; a
boundary determines what is inside and what is outside an
ambient” [Cardelli and Gordon 1998].

An ambient can be seen as a local computation environ-
ment containing all the necessary data, code and processes.
A whole ambient can move together with its whole content
(all the processes inside the ambient). The ambient cal-
culus addresses also the problem of security (crossing of
firewall).

• An ambient calculus process is given by the following
syntax:

P ,Q ::= (νn)P | 0 | P |Q | !P |
M [P] | M.P | (x).P | 〈M〉,

M ::= x | n | in n | out n | open n | ε | M.M ′.

Here n stands for names of ambients, ν is the restric-
tion operator, 0 is the inactive process, | is the parallel
operator, ! is the replication operator, M [P] are ambi-
ents, M.P are processes executing an action regulated
by capability M , (x) is an input action, 〈M〉 is an asyn-
chronous output action.
M is a capability. It is either a variable x, an ambient
name n, in for enabling an ambient to enter another am-
bient, out for enabling an ambient to leave a surround-
ing ambient and to let them become sibling ambients,
or open for opening up an ambient (for dissolving and
revealing the ambient and its content). M can either be
empty or a path of capabilities.
The intuitive meaning of the syntax is the following:
(νn)P creates a unique name n within a scope P . 0 is
the process that does nothing. P |Q stands for the paral-
lel execution of P and Q. !P stands for the unbounded
replication of process P . n[P] denotes an ambient of
name n, and process P is running inside n. P can
be a complex process (maybe the parallel composition
of some other processes). The ambient can move, the
process P remains inside the ambient and continues run-
ning. P stands for all the processes running in the am-
bient n. Ambients can be nested, e.g., n1[n2[P]] means
that process P is running in ambient n2, which in turn is
a sub-ambient of ambient n1. Several copies of an am-
bient (with the same name) can exist at the same time in
a system. Process M.P executes an action regulated by
the capability M and then continues as the process P .
(x) is an input action that causes process (x).P to re-
ceive as input the name or capability x which is in its
surrounding ambient. 〈M〉 is an asynchronous output
action that causes M to be put in the surrounding am-
bient where it can be caught by some process as input.

• The operational semantics is sketched just for the capa-
bilities and the communication primitives.

144 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

Entry capability:

n[inm.P |Q]|m[R]
inm−→ m[n[P |Q]|R]

means that the action in m causes the surrounding am-
bient n to move to a sibling ambient m. As a result the
whole ambient n (with all the processes inside) moves
to ambient m.
Exit capability:

m[n[outm.P |Q]|R]
outm−→ n[P |Q]|m[R]

means that ambient n leaves ambient m (its surrounding
ambient). n and m become sibling ambients.
Open capability:

openn.P |n[Q]
openn−→ P |Q.

Ambient n is removed, and the processes inside are re-
vealed. The process that instructs the ambient to open
is not in the ambient, but at the same level than the
ambient.
Local anonymous communication:

(x).P |〈M〉 → P{x←M}

means that the output action M is released in an ambient
and that it is taken as input (in the same ambient) by
a process. This process behaves after the input like P
where x has been replaced by M . It is also possible to
have communication between ambients (constructed on
top of the communication inside an ambient).
Ambient reduction:

P → Q

n[P]→ n[Q]

reflects the fact that a process executes inside an ambi-
ent. If the process executes in a given manner, then it
will execute in the same manner inside the ambient.

Capabilities instruct ambients: an ambient can move into
a sibling ambient, or get out from a surrounding ambient.
The ambient is instructed to move by one process inside
the ambient. An ambient enters another ambient with all
its processes inside (not only the process that issued the
move). This is the subjective move. The exit capability is
similar: a process inside the ambient instructs the ambient
to exit its surrounding ambient: all the processes remain
inside the exiting ambient, thus all the processes move.

On the contrary, objective move enables a process in-
side an ambient to move from one ambient to another. The
process that performs the objective in move enters a new
ambient, but its surrounding ambient remains at its place.
The process that performs the objective out move exits from
the current ambient, the other processes remain in that am-
bient.

Communication primitives allow messages (names or
capabilities) to be transmitted between two entities of the
same ambients or between entities of two distinct ambients.
Communication happens asynchronously and anonymously.

An ambient can be a mobile process which moves from
one host (ambient) to another. An ambient can be a π-
calculus channels which enables processes to communicate
the names of other π-calculus channels (ambients). An
ambient can be a firewall: a process that wants to cross a
firewall has to know the password k (which is an ambient).
The firewall itself is another ambient w. A pilot process
enters the ambient password k, and with the inw capability
enables the process to enter w provided the password k has
been shown. The process that wants to cross the firewall
enters it without knowing the firewall’s ambient (it just
knows the password). The pilot actually causes the process
to cross the firewall. Locks are ambients with no process
inside. A process that acquires the lock just open the lock:
the lock disappears so no other process can acquire the
lock. The former process releases the lock by creating the
ambient lock again: openn.n[].P |n[].openn.Q.

4.1. Application to mobile agents

We will now show how the ambient calculus could be
used to formalize the Obliq and Messengers environments.

4.1.1. Obliq
A site becomes an ambient, s[l[P]|l′[O]| . . .], with as

many parallel sub-ambients as the number of locations.
Locations become ambients with one process or one sub-
ambient inside. Procedures become processes running in-
side a location ambient: l[P]. Objects become sub-ambients
of a location ambient. The object has as many parallel
processes as the number of methods: l′[O[m1|m2| . . .]].

The migration of a procedure P to site n consists of
moving the location ambient l[P] to n. After the move, the
ambient l[P] runs inside n and in parallel with the other
processes running inside n. The cloning of an object O at
a site n causes l[O] to be added in parallel to all the other
processes running in n. The aliasing of an object O to an
object O′ causes O to use a path of capabilities to actually
perform methods ofO′. Similarly, for the distributed lexical
scoping: if a cloned object O needs an access to a value at
the remote site it has to know the whole path (M.M ′ . . .)
necessary to retrieve the value in its original ambient.

4.1.2. Messengers
The messenger platform becomes an ambient with as

many sub-ambients as necessary for the number of mes-
sengers running inside the platform, the number of data
items in the dictionary, and the number of queues. A mes-
senger becomes an ambient with one process inside. Keys
are ambient names.

Each data of the dictionary is an ambient with one
process inside that is able to receive as input a value (the
value of the data) and is able to output this value if re-
quested. A messenger that wants (1) to create the data,
creates the corresponding ambient, (2) to override the data:
enters the data ambient, takes as input the old value, out-
puts the new value, and leaves the data ambient, (3) to read

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 145

the data: enters the data ambient, takes as input the value
and outputs the same value, and leaves the data ambient.
The process inside the data ambient performs the interac-
tion with the messengers.

Queues are ambients with several sub-ambients (as many
as the number of places in the queue) numbered from 1 to k.
A messenger firstly enters the ambient queue, then it opens
the first sub-ambient if it exists, i.e., there is currently no
other messenger locking that sub-ambient, then it tries to
open the next sub-ambient, and if it succeeds, then it creates
the first sub-ambient, if not it waits. In that manner the
messengers are shifted gradually to the head of the queue.
The messenger at the head of the queue then waits for a
lock on the entire queue. This lock is acquired or released
by messengers controlling the queue.

A messengerM1 that wants to submit a messengerM2 to
a remote platform creates an ambient for M2 with a process
inside whose first action is to move itself to the remote site
ambient.

5. Petri nets

Petri nets are a formalism often used to model concur-
rent and parallel systems. The original place/transition Petri
nets have been extended in different ways in order to cap-
ture high-level abstractions which are difficult or impossi-
ble to express with pure place/transition Petri nets. Early
Petri nets extensions focused on adding “more structure”
on tokens. Other extensions aimed at support for object-
orientation and hierarchical Petri nets, and still more recent
extensions are directed towards formalization of system dy-
namicity and process mobility. We briefly present in this
section a number of Petri nets extensions, namely mobile
Petri nets, dynamic Petri nets, communicative and cooper-
ative Petri nets and CO-OPN/2, which may all be used to
formalize process mobility.

5.1. Mobile and dynamic Petri nets

Mobile Petri nets and dynamic Petri nets are introduced
in [Asperti and Busi 1996]. In mobile Petri nets, process
mobility is expressed using variables and colored tokens in
an otherwise static net. Dynamic Petri nets extend mobile
Petri nets with mechanisms for modifying the structure of
a Petri net, i.e., for creating new Petri nets when transitions
are fired.

5.1.1. Mobile Petri nets
As said above, mobile Petri nets are a variation of

place/transition nets with colored tokens allowing names of
places to appear as tokens. For instance, ready(PRINTER,
TYPE), job(FILE, TYPE) . PRINTER(FILE) is a transition,
whose pre- and post-conditions are the left and right part
of the . symbol, respectively. Capital names are variable
names, they will be instantiated to actual names, only at
the firing of the transition. We have two places involved

in the pre-condition: ready and job, and one place in the
post-condition PRINTER, a variable not known in advance.
This transition means that if the spooler of name PRINTER
and of type TYPE is ready then the job of name FILE and
of type TYPE can be sent to the spooler PRINTER. The file
FILE has moved from the place job to the place PRINTER.
The binding of variables at the firing time will determine
which file will be printed on which printer. The enabling
and firing of transitions depends on a substitution function
for the variables.

Mobile Petri nets handle mobility à la π-calculus, i.e.,
the mobile Petri net expresses the changing configuration
of communication channels between processes. In mobile
Petri nets, names of places are allowed to appear as tokens
inside places. In π-calculus, names of channels are sent
along channels.

5.1.2. Dynamic Petri nets
Dynamic Petri nets are mobile Petri nets extended with

a mechanism for creating new subnets when a transition is
fired. This is achieved by allowing the postcondition of a
transition to be an entire net and not only a set of places
with a post-condition. The enabling and firing of dynamic
Petri nets depends on a substitution function for variables.
The firing of a transition first removes the unified tokens
determined by the substitution function and pre-conditions
of the transition, and then adds new places and new tran-
sitions with pre- and post-conditions given by the subnets
appearing in the post-conditions of the transition.

5.2. Communicative and cooperative nets

Communicative nets and cooperative nets specify a
system as a set of components interacting with each
other [Sibertin-Blanc 1994]. Components are Petri nets –
an interaction layer is provided to let them communicate
or cooperate. Components can be created or destroyed dy-
namically during the evolution of the system. The over-
all structure is object-based in the sense that components
(communicative or cooperative nets) are instances of pre-
defined object-types. In addition, components are able to
interact with each other in a dynamic way, i.e., links be-
tween components can change during the system evolution.
Moreover, the formalism allows to deduce properties of the
whole system from the properties of the components and
the way they are composed. To cope with the problem
of predefined structure imposed by Petri nets and the de-
sired dynamicity, the author provides an algorithm which
produces a synthetic net from the component nets. The
synthetic net is static but has a behavior that is equivalent
to the whole system. Subsequently, we look in an infor-
mal way at some details of both communicative nets and
cooperative nets.

5.2.1. Communicative nets
An object-type defines the type of a component. It de-

fines the data structure and the net structure of the com-

146 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

ponent. The net structure is defined with a communicative
net.

A communicative net is a Petri net where tokens are tu-
ples of data types and/or object-types. Places are of two
kinds: internal places, accessible only by the communica-
tive net itself, or accept-places where the communicative
net deposits the data it intends to send to another com-
municative net. Interaction between two communicative
nets occurs by message passing. Transitions are of three
types: (1) data function call: a “classical” transition con-
suming and producing tokens of tuples of data; (2) mes-
sage sending: a transition of the form v.mes(v1, . . . , vn),
where v is a variable for an object name, mes is an accept-
place, and v1, . . . , vn are the variables corresponding to the
message sent; (3) object creation: a transition of the form
v.create(v1, . . . , vn), where v is a variable for an object
name, and v1, . . . , vn are used for the initial marking of the
net to be created.

Dynamic binding of nets is realized by the use of vari-
ables v in the transitions v.mes(v1, . . . , vn). The commu-
nicative net to which data has to be sent is not known
in advance. For example, a token can be an object-type,
and hence can determine at run-time the name of the com-
municative net to communicate with. Dynamic creation is
obtained with the transition v.create(v1, . . . , vn).

A system of objects is a set of pairs of communicative
nets and initial marking. Given a system of objects, an
equivalent synthetic net consisting of only one object with
only data function call transitions can be produced.

5.2.2. Cooperative nets
Cooperative nets are similar to communicative nets. The

main difference is the way cooperative nets interact. Instead
of using message passing, as is the case with communica-
tive nets, cooperative nets use a client/server protocol. Here
are the differences in the structure of communicative and
cooperative nets: (1) accept-places are split into two places:
an accept-place for receiving parameters of requests and
result-places to store the result of the processing of the re-
quest; (2) transitions are of four types: data function call,
object creation, service request and service retrieve. The
first two types of transitions are similar to those defined in
communicative nets. The service request and service re-
trieve transitions are used respectively to invoke the server
for a service and to provide the client with the result. As
for communicative nets, transitions are enriched with vari-
ables for object names, thus the binding of the interacting
nets is dynamically decided.

As is the case for communicative nets, a system of ob-
jects is a set of cooperative nets with their marking. An
algorithm is provided to build a synthetic net equivalent to
the whole system.

5.3. CO-OPN/2

CO-OPN/2 (Concurrent Object-Oriented Petri Nets)
[Biberstein 1997] is an object-oriented formalism based on

algebraic Petri nets for the specification of concurrent sys-
tems. A CO-OPN/2 system is a collection of independent
but interacting objects (algebraic nets). An object is an
encapsulated algebraic net in which the places compose
the internal state and the transitions model the concurrent
events of the object. A place consists of a multiset of al-
gebraic values. Object identifiers are algebraic values, they
can be stored in the places of algebraic nets. The transi-
tions are divided into two groups: parameterized transitions
(called methods) and internal transitions. The former cor-
respond to the services provided to the outside, while the
latter describe the internal behaviors of an object. Inter-
nal transitions are invisible to the exterior world and may
be considered as spontaneous events. The interaction be-
tween objects (i.e., algebraic Petri nets) is synchronous,
although asynchronous communications may be simulated.
Thus, when an object requires a service, it asks to be syn-
chronized with the method (parameterized transition) of the
object providing the service. Objects can be created dy-
namically. The formal semantics of CO-OPN/2 is given
in terms of concurrent transition systems expressing all the
possible evolutions of objects’ states. State changes are
associated to a multiset of events that are simultaneously
executable. The firing of an object’s method causes (in-
ternal) transitions to be fired (spontaneously). The internal
transitions are fired as long as their pre-condition is ful-
filled. An object’s method can be fired only if no transition
is firable.

5.4. Application to mobile agents

Mobile Petri nets manage mobility in the same way than
π-calculus: it is a mobility by reference passing. For this
reason, we will not explain how to use these Petri nets for
modeling mobility. We will just show the adequacy with
π-calculus. The π-calculus process c(x).x〈y〉.P becomes
the following mobile Petri net: c(x) . x(y). Indeed the
π-calculus process waits on channel c for the reference of
channel x, in order to output y on channel x. The corre-
sponding mobile Petri net has one transition and two places:
c and x. The pre-condition of the transition removes x from
place c and the post-condition inserts y into place x. Mo-
bile Petri nets and π-calculus are equivalent in their way of
specifying mobility, however, they differ in the sense that
Petri nets are well suited for modeling causality relations
between events, while process algebra are well suited for
composing processes.

We will now show how cooperative nets can be applied
to mobile agents.

5.4.1. Obliq
A site becomes a component with an accept-place receiv-

ing object-types for procedures, objects, or values. A tran-
sition removes these object-types from the accept-place
and creates for each of them a corresponding component.
A procedure becomes a component: the Petri net realizes
the procedure. An object is a component: a method has

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 147

a dedicated accept-place (for activating the method) and
a dedicated result-place (for delivering returned values).
A location becomes the component’s identity of the pro-
cedure component of the object component. In order to
move a procedure to a site n or to clone an object, it is
necessary to put in the accept-place of this site the object-
type of the procedure or that of the cloned object. There
it will be created and initialized by a transition in the site
component.

An aliasing of an object a into an object b consists of
forwarding any request received by a to b. A calling object
performs a request to a, a searches in the right place for
its alias, and instead of serving the request, it makes the
request to b, and waits for the result. Once it receives
the result, a puts the result into a result-place where the
calling object can get it. Requests are realized by inserting
some value into an accept-place, and results are obtained
by removing these values from a result-place. Distributed
lexical scoping is realized in a similar way to aliasing.

5.4.2. Messengers
The messenger platform becomes a component with as

many accept-places as messenger channels. Messengers
become components: the behavior defined by the Petri
net is the behavior of the messenger. The dictionary is
a triple (accept-place, result-place, transition) in the mes-
senger platform component. A messenger that inserts a
value into the dictionary inserts a pair 〈name, value〉 into
the accept-place for the dictionary. The dictionary transition
moves the pairs from the accept-place to the result-place.
A messenger that removes a value from the dictionary re-
moves the pair 〈name, value〉 from the result-place. For
updating or consulting the pair 〈name, value〉 the messen-
ger removes the pair from the result-place and inserts the
(updated) pair into the accept-place. A queue is a compo-
nent with an accept-place storing an algebraic value for a
FIFO of component identities. A messenger enters a queue
by inserting its component’s identity into the accept-place
of the queue. It then waits for the queue to let it go out:
the queue informs the messenger by inserting a token into
one of its accept-places. The queue can be stopped or
resumed by interacting with other accept-places dedicated
for that. The submit of messenger M2 by messenger M1

to a platform P is modeled by a transition submit in the
M1 component. This transition removes the identity of M2

from a place of M1 and inserts it into an accept-place of P .
A transition in component P removes this identity and cre-
ates the component M2 which is able to begin its execution
in parallel with the other components.

6. Actors and actors related formalisms

The actor model is an early model for distributed
processes based on an asynchronous message passing. Mes-
sages play a central role in the model. They are events
which trigger actors’ behaviors.

6.1. Actor model

Actors, in the actor model of [Agha 1986], are indepen-
dent concurrent processes which interact asynchronously
with each other by message passing. A system of actors is
a collection of actors executing concurrently and in paral-
lel. Each actor has a mail address (an identity). A message
sent to an actor is stored in its mail queue. The behav-
ior of an actor is dependent of the messages received: in
response to a message, an actor can (1) send messages to
other actors, these messages will be put in the receivers’
mail queues, (2) create dynamically new actors with spec-
ified behaviors, and finally (3) become a new actor which
will process the next message. Mail addresses can be com-
municated in messages leading to dynamic communication
configurations. In the universe of actors everything is an
actor, e.g., a message is an actor.

6.2. Algebra of actors

It should be noted that a formalism for the actor model
based on a call-by-value λ-calculus has been developed
in [Agha et al. 1997]. Subsequently, we present an algebra
of actors which is an application of the actor model to
agents and communication between agents.

6.2.1. Static actor algebra
In [Dalmonte and Gaspari 1995], it is shown how a

speech act based language can be translated into a Static
Actor Algebra including many basic communication and
synchronization primitives. The static actor algebra cap-
tures the following notions of actors: asynchronous mes-
sage passing, agent identity, implicit receive (the semantics
assumes that an agent waits after it made a request). Dy-
namicity is not supported, i.e., there is a fixed set of actors
for which it is not possible to create new actors at run-time.

• We just give a flavor of the syntax. An actor algebra is
a triple (A,K, ρ) where A ⊆ Aactors, A is a set of actor
names; K is a set of behaviors and ρ is a mapping of
actor names into their initial behavior.
Intuitively, the behavior is a function which maps a state
of actor and an incoming message into a program. This
program contains the actions that the actor has to per-
form in response to the incoming message. In the (static)
actor model, an actor waits for a message. Once it has
received a message, it performs some local computation
according to the received message, it then sends some
messages and finally performs a become, i.e., changes
its current behavior to another behavior. The behavior
function explains the result of the become in the actor
model. The syntax is very similar to the syntax of dy-
namic actor algebra given below, except for the dynamic
part.

• Application to speech act performatives.
This formalism addresses more particularly multi-agent
systems composed of several agents communicating

148 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

by means of knowledge-level coordination primitives.
Agents communicate by exchange of messages which
are speech act performatives of three types: assertive
(assertion of a fact to be true), directive (command, re-
quest, suggestion), declarative (information about the
agent’s internal capability). Agents are uniquely identi-
fied (notion of agent identity), they exchange messages
(performatives) in an asynchronous manner, and use
an implicit receive (there are no receive performatives).
The three types of performatives (assertive, directive and
declarative) are expressed using the send and/or become
instructions available in the actor model. A performa-
tive between two agents is translated into the send of a
message whose content corresponds to the performative.

6.2.2. Dynamic actor algebra
The above static algebra of actors is extended to a Dy-

namic Algebra of Actors in [Gaspari 1996]. It captures
the basic interaction mechanisms of the actor model: asyn-
chronous message passing between identified actors, with
an implicit receive, and the creation of actors at run-time.
Actors are able to create dynamically (at run time) new ac-
tors. The basic actions that actors can perform are: send,
become, create for respectively sending a message to an-
other actor, changing its own behavior and creating a new
actor.

• A flavor of the syntax of the algebra is sketched below.
An actor term is a set of actors running in parallel. An
actor term is defined by:

A ::= a(P)Cs | aCs‖[a, v] | A‖A | A[f],

P ::= become(C, e).P | send(e1, e2).P |
create(b,C, e).P |

∑
i=1,...,n

ei : P | √.

An actor term is one of the following: (1) a busy ac-
tor, with P the remaining program to execute, and with
state s, name a and behavior C; (2) an idle actor (ready
and waiting for messages) with state s, name a and be-
havior C (a behavior maps a message and a state into a

program C(x, y)
def
= P) running in parallel with an actor

a waiting for a message v (implicit receive); (3) two
actor terms running in parallel; (4) a renaming over ac-
tor names. A program is a sequence of instructions
become(C, e) for changing the behavior and state of the
actor, send(e1, e2) for sending message e2 to actor e1

and create(b,C, e) for creating an actor with actor name
b, behavior C and initial state e. A program can also
be a choice between guarded programs, the semantics
is such that only one guarded condition ei is true. A
program can also be empty.

• The operational semantics is given in terms of a tran-
sition system. We will only reproduce the transitions
which are interesting from the point of view of creation
and communication among actors.

a(send(e1, e2))Cs .P
send([[e1]],[[e2]])−→ a(P)Cs ‖([[e1]], [[e2]]),

the sending of a message causes the actor term rep-
resenting the message to be created.
a(become(C′, e).P)Cs

become(a)−→ a(P)s‖aC′[[e]], an actor
which changes its behavior causes a new actor with the
same name to be created and the old actor has an empty
behavior, i.e., it will die at the end of its computation.
a(create(b,C′, e).P)Cs

create(d)−→ a(P [d/b])Cs ‖dC′[[e]], a
create causes a new idle actor to be created with the
specified behavior and initial state.
aCs‖[a, v]

receive(a,v)−→ a(P [v/x, s/y])Cs , an idle actor
waiting for a message becomes a busy actor with behav-

ior C(x, y)
def
= P given by the message and the current

state.

• Equivalences: Intuitively, the order in which messages
are sent to actors is not relevant. For this reason, the
author considers a semantics based on weak bisimula-
tion, allowing to consider equivalent two actors which
send the same set of messages in a different order.

6.3. Application to mobile agents

The dynamic actor algebra distinguishes between a pro-
gram (idle actor) and its execution (busy actor). We use
multiple actor spaces (several spaces with actors running
inside) in order to model multiple Obliq sites or messenger
platforms.

6.3.1. Obliq
A site becomes an actor which waits for locations. A lo-

cation becomes an actor name. A procedure becomes an
actor. An object becomes an actor made of several actors in
parallel (as many as the number of methods). A procedure
is moved to a site in the following way: its location name
is sent to the site actor, which creates the corresponding
actor.

A cloned object is sent to a site actor. The site actor
creates the actor corresponding to the cloned object with
create(b,C, e), where b is the identity of the object (its lo-
cation), C is its code, and e its initial state. The aliasing
of object a to object b causes a to become a new actor
a′ whose behavior consists of waiting for messages [a′, v]
and to send (forward) these messages to b with send(b, v).
The distributed lexical scoping is similar, but in the reverse
order. It is b that forwards messages for free identifiers to
the original object a.

6.3.2. Messengers
A messenger platform becomes an actor whose behavior

is to wait for an actor name and a behavior. As soon as
such a pair is received, it creates the actor and becomes
itself again. Thus, a messenger is modeled by an actor.
A messenger M1 that sends a messenger M2 to a platform
sends the actor name and the behavior of M2 to the actor
platform. Each data item in the dictionary becomes an
actor too. A messenger that wants to change some data

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 149

into the dictionary sends a message 〈update, value〉 to the
data actor. This actor modifies the data and becomes itself.
A messenger actor that wants to read a value has to firstly
send a request to the data actor and then waits for that actor
to send the value.

Messenger queues are actors that wait for queuing re-
quests. A messenger actor that enters a queue sends a mes-
sage to the queue actor and then becomes an actor that
waits for a message from the queue (it is blocked until the
queue actor sends it a message).

7. Coordination languages and generative
communication

Coordination languages, also called generative commu-
nication languages, focus on the problem of coordination
in a multi-process system. We present in this section two
such languages: Linda and PoliS. They allow concurrent
processes to coordinate their execution by using anonymous
and asynchronous communication through shared memory.

7.1. The Linda paradigm

Linda [Ciancarini 1994] is a coordination language that
may be used to parallelize sequential programming lan-
guages. Sequential processes cooperate through concurrent
access to a shared multiset of tuples. A tuple is a finite
sequence of fields with a value and a type. The tuple space
is a multiset because it can contain several copies of the
same tuple.

Processes access the shared multiset of tuples using the
Linda operators: out(t), for inserting a new tuple t in
the tuple space; in(t), for extracting tuple t from the tu-
ple space; read(t), for reading the value of a tuple; and
eval(t), for inserting a tuple in the tuple space whose
fields can be function evaluations. The in and read are
blocking operators. Fields of a tuple can be variables. Tu-
ples are accessed by pattern matching. After it has been in-
serted in a tuple space, a tuple is available for all processes.
The order of insertion is completely independent from the
order of reading or extraction.

Adding Linda operators to a sequential program enables
the resulting sequential processes to work in parallel and
to coordinate their work through the tuple space. Combin-
ing Linda with a sequential programming language means
extending the programming language with the above men-
tioned operators. The programming languages C, Scheme,
Modula-2 and Eiffel have been extended with Linda.

7.2. The PoliS paradigm

PoliS (for polispace) [Ciancarini 1994] is a programming
model which extends Linda with multiple tuple spaces. The
distributed system is a collection of tuple spaces. Tuple
spaces are also called places and each place has a name.
Tuples are of two different kinds: program-tuple and “nor-
mal” tuples. Program-tuples are also called agents and are

threads of execution, while normal tuples are data (a finite
number of fields with value and type). A program-tuple
is made of two parts: (1) the heading, which is a normal
tuple, and (2) a sequence of tuple operations. The four tu-
ple operations are Test, Consume, Loc Eval, or Out; they
are described below. A tuple can be sent or retrieved from
another place by mentioning the name of the place. Com-
munication among places and support for new places is
provided by the meta tuple space. The meta tuple space is
responsible for routing the messages to the right place and
for storing messages sent to a place which is not created yet.
These messages will be delivered once the place is created.
Places and tuples can be dynamically created by agents.

Agents are completely independent from each other. An
agent performs actions on the tuples of any place by ex-
ecuting the sequence of tuple operations specified in the
second part of the program-tuple. An agent performs four
activities (operations) in the following order: (1) Test, i.e.,
the agent tests the values of some tuples, this implies read-
ing tuples and thus waiting for them if they are not in
the mentioned place; (2) Consume, i.e., the agent deletes
some tuples; (3) Loc Eval, i.e., the agent starts some in-
ternal computation (local evaluation) that has no effect on
the places; (4) Out, i.e., the agent inserts new tuples in the
places and/or creates new places. Once it has finished its
activities the agent dies. An agent is activated in a place if
the place contains both a program-tuple and a normal tuple
matching the heading of the program-tuple.

ESP [Ciancarini 1994], for Extended Shared Prolog,
is a logic programming language based on multiple tuple
spaces. Tuples are Prolog terms. Roughly, we can say that
the local evaluation part of the activities of an agent is a
sequential Prolog program.

7.3. Algebra for generative communication

A process algebra similar to CCS that is adapted to
generative communication is proposed in [Ciancarini et al.
1996]. Generative communication is an asynchronous in-
terprocess communication based on a shared data structure.
Communication is realized by inserting, reading or extract-
ing elements into/from the shared data structure. Linda is
the most representative language for generative communi-
cation.

The proposed algebra supports a single tuple space. Tu-
ples in the tuple space are called messages, and each mes-
sage is considered as an autonomous agent which removes,
reads or inserts itself from/into the tuple space. Processes
are called agents. Agents interact with the tuple space using
the three operations (already seen in Linda) in,out, or
read for respectively extracting a tuple, inserting a tuple
or reading a tuple without consuming it.

• We informally present here the syntax of this algebra.
Agents are given by:

E ::= 0 | 〈a〉 | p.E | E|E | E +E |
E\L | E[f] | x | recx.E.

150 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

Here Messages are denoted by a, b, . . . , and their cor-
responding agent 〈a〉, 〈b〉. They belong to the set
Messages.
Prefixes are {a, a, â | a ∈ Messages} ∪ {τ}. They are
noted p, q,
a is a request for extracting the message a from the tuple
space.
a is a request for reading the message a without con-
suming it.
â is for inserting message a in the tuple space.
τ represents an internal computation which does not in-
teract with extraction or reading of a message.
Example: â.τ.b is a process that (1) inserts message a
into the tuple space, (2) realizes some internal computa-
tion represented by τ , and (3) extracts message b from
the tuple space. The process ends after the extraction of
message b.
Operators on agents are: . for prefix operator; + for
choice operator; | for parallel operator; \ for restriction
operator with L ⊆Messages; [·] for relabeling operator
with f a relabeling function; rec for recursion operator.
x stands for an agent variable.

• The operational semantics, given by the means of a
transition system, has the following characteristics: the
states are the agents and the labels of the transitions are
taken in the set Labels = {a, a, a, a ∈ Messages}∪ {τ}.
a is for the request to extract a from the tuple space,
a is the request for reading a without extraction, a for
actually extracting a from the tuple space, and a for
actually reading a without consuming it. τ is both for
internal computation and for the adjunction of a message
to the tuple space.
In order to illustrate how the tuple space is accessed by
the agents, we give here the transitions related to the in,
out and read operations: a.P

a−→ P is the request to
extract a; a.P

a−→ P is the request to read a (without
consuming it); â.P

τ−→ 〈a〉|P puts message a in the
tuple space, i.e., adds agent 〈a〉 to the set of agents;

〈a〉 a−→ 0 means that message a is removed, i.e., agent

〈a〉 disappears; 〈a〉 a−→ 〈a〉 means that message a is just
read without being removed, i.e., agent 〈a〉 remains.

• An observational semantics is introduced to define a
weaker equivalence than that resulting from the oper-
ational semantics. The motivation behind the observa-
tional semantics lies in the fact that the order of insertion
of messages in the tuple space is not very meaning-
ful. Under weak bisimulation, processes like â.b̂.P and
b̂.â.P are equivalent because inserting first a and then b
or vice-versa is equivalent. Under failure semantics an
equivalence even weaker than weak bisimulation is de-
fined. The motivation is that “the choice between out
operations does not depend on the environment”. The
following agents: â.(b̂.P + ĉ.P) and â.b̂.P + â.ĉ.P are
equivalent under failure semantics but not under weak
bisimulation.

7.4. Application to mobile agents

We use multiple tuple spaces in order to model the mul-
tiple Obliq sites or the multiple messenger platforms.

7.4.1. Obliq
A site becomes a tuple space with as many tuples as the

number of locations. A location becomes a tuple in a site.
A procedure becomes an agent (program-tuple). An object
becomes an agent made of several agents in parallel (as
many as the number of methods). A procedure that arrives
at a site is inserted as an agent tuple in the tuple space.
The cloning of an object causes to input the object as a
message in the local tuple space and to become an agent.
The aliasing of object a to object b causes a to change its
behavior and to forward messages to b by inserting these
messages in the tuple space where b is. The distributed
lexical scoping works similarly but in the opposite way.

7.4.2. Messengers
A messenger platform becomes a tuple space. The dic-

tionary and the queues become normal tuples in the mes-
senger platform tuple space. The executing messengers
present in the platform become a set of program-tuples.

A messenger M1 that sends messenger M2 to a platform
creates and inserts a new program-tuple into the desired tu-
ple space. A messenger that wants to enter a queue extracts
the queue from the shared memory, modifies it by inserting
a program-tuple at the end of the queue (the program-tuple
representing the messenger code) and then puts the modi-
fied queue in the shared space. After that the program-tuple
dies. A messenger resuming a queue becomes a program-
tuple which extracts the queue from the shared memory,
modifies it in order to extract the first program-tuple present
in the queue, puts in the shared memory both the modified
queue and the program-tuple.

8. Discussion

The formalisms we have presented in this paper have
distinguished flavors and offer different views of the mobile
agent paradigm. This section compares the investigated
formalisms from the point of view of mobility and cites
related work.

8.1. Mobility and formalisms

According to the degree of expressiveness of mobility we
can classify the formalisms as follows:

• Mobility à la π-calculus: It is a mobility by reference
passing. Processes do not move but the communication
configuration changes. This way of managing mobility
is that of π-calculus and of mobile Petri nets.

• Mobility à la HOπ: It is a “true” mobility where
processes can really be sent through channels. Processes
can move and change their configuration.

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 151

• Mobility à la ambient calculus: It is a more general
kind of mobility as it allows mobility of processes, of
channel names, and of a whole environment (a process
with its surrounding context).

• No explicit mobility support: Mobility is introduced
by using the dynamicity of the formalism. A process
“moves” by creating a copy of itself at the new location
and by ending its execution in the current location. This
way of managing mobility is that of the presented exten-
sions of Petri nets, dynamic algebra of actors, and gen-
erative communication between multiple tuple spaces.

8.2. Communication and paradigms

Among the various paradigms we described in this pa-
per, there seems to be no agreement on the “right” commu-
nication model to base concurrent systems on. Some use
synchronous communication while others use asynchronous
communication primitives. Similarly, a number of models
use anonymous and indirect communication instead of “per-
sonalized” and direct communication.

In the Actor model we find autonomous agents which
communicate asynchronously by message passing. Mes-
sages are sent directly to an actor’s mail address – actors
receive messages in a personal mail queue. Thus, coordi-
nation and communication is realized through an asynchro-
nous and personal message passing. In the PoliS, Linda
approaches we have autonomous agents which communi-
cate asynchronously through a shared memory. Messages
are available for all the agents. They can be modified, re-
moved or inserted at any time and by any agent. The major
difference between the actor model and the PoliS paradigm
is that the communication medium is personal (queue) in
the actor model, while it is commonly shared in the Po-
liS paradigm. In the Obliq environment we have objects
communicating by synchronous method calls. Using mo-
bile Obliq procedures and object aliasing, it is possible to
redirect communication patterns – which are always direct
(object references) – across sites. Messengers communicate
asynchronously and anonymously through a shared dictio-
nary.

While at the level of the formalism, the choice between
synchronous and asynchronous primitives can be consid-
ered a matter of convenience, it makes a difference at
the implementation level. Communication between remote
locations is naturally buffered, therefore an asynchronous
model seems adequate. Inside a location, however, syn-
chronous communication is easier to implement because
the runtime system has not to maintain buffers.

The messenger approach sidesteps somehow these clas-
sifications. First, there is no data exchange other than the
local one because it is the purpose of mobility to replace
inter-location communication. Second, local communica-
tion is indirect, and in this respect similar to Linda and
PoliS, even though it has different communication primi-
tives. Unlike the tuple space approach there are no blocking
policies built into the primitives for accessing the shared

memory: messengers have to implement their own syn-
chronization and data management scheme using the thread
queues. It is this property that often makes the mapping of
messenger concepts into the formalisms a little bit clumsy.

8.3. Levels of abstractions

Most formalisms we discuss provide an equivalence rela-
tion between processes by the means of bisimulation. How-
ever, in practice, it is still difficult to use them to reason
about complex systems, to prove and deduce system prop-
erties, or to use them for validation or verification. For
instance, it is difficult to give formal answers to questions
like: “given a system of several agents, how can we be
sure that the joint work of these agents produces the desired
computation?” This is a great concern for all researchers
working on “multi-agent” systems. Some multi-agent archi-
tectures have exhibited “emergent stable behavior”. How-
ever, there do not exist formalisms which could catch such
a “state”. This also parallels our lack of knowledge about
whether and how such stable behavior can be engineered.

We also point to another area where we would like to
see some progress: it would be quite useful to have a new
level of abstraction, that is, in-between single mobile agents
and the system as a whole. By this we mean specifications
that focus on families of processes. Thus, related questions
would be: How can we specify a collection (family) of mo-
bile agents working towards some common goal? How is
the family’s changing set of agents represented? How can
the growth or decrease in size of a family be described?
How can we specify the family’s distribution over several
platforms? What are properties that can be attributed to a
mobile agent family? Based on such a “collection abstrac-
tion”, new and useful properties could be studied that are
currently difficult to formalize. For example, we could rea-
son about the optimal usage of the computing resources of
an agent family, the adaptiveness of the family to changing
border conditions, or the survivability of the family from a
security point of view.

8.4. Still other formalisms

The formalisms described in this paper represent a quite
limited selection among many other altogether useful ap-
proaches to formally describe concurrent and mobile sys-
tems. Mobility is now a major focus and new formalisms
stressing the notions of locality, failure and security con-
tinue to be proposed.

Plain CHOCS [Thomsen 1993] is an intermediary cal-
culus between π-calculus and HOπ in the sense that it
enables processes to communicate through fixed chan-
nels. Processes are allowed to send other processes, but
not names, through the channels. The configuration of
processes is static (names are not allowed to be passed
in the channels), but processes can change their behav-
ior dynamically. The calculus of [Amadio 1997] is based
on an asynchronous π-calculus and introduces the notions

152 G. Di Marzo Serugendo et al. / A survey of theories for mobile agents

of explicit distribution of processes to locations, failure of
locations, detection of failure locations, and mobility of
processes. The join-calculus [Fournet and Gonthier 1996]
and the distributed join-calculus [Fournet et al. 1996] are
extensions of the π-calculus which introduce the notion of
named location and distributed failure. Locations form a
tree of embedded locations, and locations can move from
one location to another.

Regarding the problem of coordination among mobile
agents we mention LLinda [De Nicola et al. 1997a,b]
which is a process calculi for multiple tuple spaces that also
addresses security aspects. Security is also at the center of
the spi-calculus [Abadi and Gordon 1997]: this π-calculus
extension was designed for the description and analysis of
cryptographic protocols.

An important aspect of all these formalisms is whether
they can serve as a base for tools and for verification of
properties. In [Montanari and Pistore 1997] the π-calculus
is modeled in terms of history-dependent automata (with
local names in the transitions) that may lead to simpler and
automatic validation procedures. Mobile UNITY [Roman
et al. 1997] is an extension of UNITY [Chandy and Misra
1988] that augments the program state with a location at-
tribute. Recently, this formalization of physical mobility
has been used for expressing various forms of code mo-
bility [Picco et al. 1997a]; program properties have been
expressed and formally verified [Picco et al. 1997b] using
the UNITY proof logic.

9. Conclusions

In this paper we investigated formalisms for concur-
rent systems which we applied to the two mobile code
environments Obliq and Messengers. Some of these for-
malisms stick well to the mobile agent paradigm, while
others needed a little bit more of a roundabout way. Process
algebra are more useful for highlighting the parallelism and
choice aspect of processes. High-level Petri-nets (especially
with object-oriented features) are more useful for specifying
systems just before they are implemented. A central ele-
ment for mobile agents are the communication primitives:
a mismatch in communication styles between the formal-
ism and the mobile code environment inevitably leads to
more complicated descriptions.

For the following years we expect that new variants
of these formalisms will be developed that capture mobile
agent systems in a more natural way. The increased interest
in coordination (that goes beyond simple data communica-
tion) is clearly a promising research area whose results can
be extended to groups of mobile agents instead of a single
agent. Resource control and security for mobile code are
the two other nascent research fields that are critical for the
success of mobile code systems. Formalisms document the
progress in these fields and will continue to help clarifying
the underlying issues.

References

Abadi, M. and A.D. Gordon (1997), “A Calculus for Cryptographic Pro-
tocols: The Spi Calculus,” In Fourth ACM Conference on Computer
and Communications Security, ACM Press, New York, NY, pp. 36–47.

Agha, G.A. (1986), Actors: A Model of Concurrent Computation in Dis-
tributed Systems, MIT Press, Cambridge, MA.

Agha, G.A., I.A. Mason, S.F. Smith and C.L. Talcott (1997), “A Founda-
tion for Actor Computation,” Journal of Functional Programming 7,
1, 1–72.

Amadio, R.M. (1997), “An Asynchronous Model of Locality, Failure, and
Process Mobility,” In Proceedings of the 2nd International Conference
on Coordination Languages and Models (COORDINATION’97), Lec-
ture Notes in Computer Science, Vol. 1282, Springer-Verlag, Berlin,
Germany, pp. 374–391. Full version as Rapport Interne, LIM Mar-
seille, and Rapport de Recherche RR-3109, INRIA Sophia-Antipolis,
1997.

Asperti, A. and N. Busi (1996), “Mobile Petri Nets,” Technical Re-
port UBLCS-96-10, Laboratory for Computer Science, University of
Bologna, Italy.

Biberstein, O. (1997), “CO-OPN/2 An Object-Oriented Formalism for
Concurrent Processes,” PhD Dissertation, University of Geneva,
Geneva, Switzerland.

Cardelli, L. (1995), “A Language with Distributed Scope,” Computing
Systems 8, 1, 27–59.

Cardelli, L. and A.D. Gordon (1998), “Mobile Ambients,” In Proceed-
ings of Foundations of Software Science and Computation Structures
(FoSSaCS), European Joint Conferences on Theory and Practice of
Software (ETAPS), Springer-Verlag, Berlin, Germany, to appear.

Chandy, K. and J. Misra (1988), Parallel Program Design, Addison-
Wesley, Reading, MA.

Ciancarini, P. (1994), “Distributed Programming with Logic Tuple
Spaces,” New Generation Computing 12, 3, 251–284.

Ciancarini, P., R. Gorrieri and G. Zavattaro (1996), “Towards a Calculus
for Generative Communication,” In Proceedings of 1st IFIP Confer-
ence on Formal Methods for Open Object-Based Distributed Systems
(FMOODS), Chapman, Paris, France, pp. 289–306.

Dalmonte, A. and M. Gaspari (1995), “Modelling Interaction in Agent
System,” Technical Report UBLCS-95-7, Laboratory for Computer
Science, University of Bologna, Italy.

De Nicola, R., G. Ferrari and R. Pugliese (1997a), “Coordinating Mobile
Agents via Blackboards and Access Rights,” In Proceedings of the
2nd International Conference on Coordination Languages and Mod-
els (COORDINATION’97), Lecture Notes in Computer Science, Vol.
1282, Springer-Verlag, Berlin, Germany, pp. 220–237.

De Nicola, R., G. Ferrari and R. Pugliese (1997b), “Locality Based Linda:
Programming with Explicit Localities,” In Proceedings of Theory and
Practice of Software Development (TAPSOFT’97), Lecture Notes in
Computer Science, Vol. 1214, Springer-Verlag, Berlin, Germany, pp.
712–726.

Di Marzo, G., M. Muhugusa and C.F. Tschudin (1996), “Agent Mobil-
ity,” In Bots and Other Internet Beasties, J. Williams, Ed., Sams.net,
Indianapolis, IN, pp. 375–406.

Fournet, C. and G. Gonthier (1996), “The Reflexive CHAM and the
Join-Calculus,” In Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ACM Press, New York, NY, pp. 372–385.

Fournet, C., G. Gonthier, J. Levy, L. Maranget and D. Remy (1996), “A
Calculus of Mobile Agents,” In Proceedings of 7th International Con-
ference on Concurrency Theory (CONCUR’96), Lecture Notes in Com-
puter Science, Vol. 1119, Springer-Verlag, Berlin, Germany, pp. 406–
421.

Gaspari, M. (1996), “Towards an Algebra of Actors,” Technical Re-
port UBLCS-96-9, Laboratory for Computer Science, University of
Bologna, Italy.

Lange, D.B., M. Oshima, G. Karjoth and K. Kosaka (1997), “Aglets: Pro-
gramming Mobile Agents in Java,” In 1st International Conference on
Worldwide Computing and Its Applications (WWCA’97), Lecture Notes

G. Di Marzo Serugendo et al. / A survey of theories for mobile agents 153

in Computer Science, Vol. 1274, Springer-Verlag, Berlin, Germany,
pp. 253–266.

Lea, D. (1997), Concurrent Programming in Java, The Java Series,
Addison-Wesley, Reading, MA.

Milner, R. (1993), “The Polyadic π-calculus: A Tutorial,” In Logic and
Algebra of Specification, Hamer, Brauer and Schwichtenberg, Eds.,
Springer-Verlag, Berlin, Germany, pp. 1–49.

Montanari, U. and M. Pistore (1997), “History-Dependent Automata,”
Technical Report, Dipartimento di Informatica, Universita di Pisa,
Italy.
ftp://ftp.di.unipi.it/pub/Papers/pistore/
HDautomata.ps.gz.

Picco, G.P., G.-C. Roman and P.J. McCann (1997a), “Expressing Code
Mobility in Mobile UNITY,” In Proceedings of the 6th European
Software Engineering Conference held jointly with the 5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’97), Lecture Notes in Computer Science, Vol. 1301,
Springer-Verlag, Berlin, Germany, pp. 500–518.

Picco, G.P., G.-C. Roman and P.J. McCann (1997b), “Reasoning About
Code Mobility in Mobile UNITY,” Technical Report WUCS-97-43,
Washington University in St. Louis, Saint Louis, MO.

Roman, G.-C., P.J. McCann and J. Plunn (1997), “Mobile UNITY: Rea-
soning and Specification in Mobile Computing,” ACM Transactions
on Software Engineering and Methodology 6, 3, 250–282.

Sangiorgi, D. (1993), “Expressing Mobility in Process Algebra,” PhD
Dissertation, University of Edinburgh, Edinburgh, UK.

Sibertin-Blanc, C. (1994), “Cooperative Nets,” In Proceedings of Appli-
cation and Theory of Petri Nets, Lecture Notes in Computer Science,
Vol. 815, Springer-Verlag, Berlin, Germany, pp. 471–490.

Thomsen, B. (1993), “Plain CHOCS. A Second Generation Calculus for
Higher Order Processes,” Acta Informatica 30, 1, 1–59.

Tschudin, C.F. (1993), “On the Structuring of Computer Communica-
tions,” PhD Dissertation, Thèse No 2632, University of Geneva,
Geneva, Switzerland.

Tschudin, C.F. (1997), “The Messenger Environment M0 – A Condensed
Description,” In Mobile Object Systems: Towards the Programmable
Internet (MOS’96), Lecture Notes in Computer Science, Vol. 1222,
Springer-Verlag, Berlin, Germany, pp. 149–156.

Waldo, J., G. Wyant, A. Wollrath and S. Kendall (1994), “A Note on Dis-
tributed Computing,” Technical Report SML 94-29, Sun Microsystems
Laboratories, Palo Atto, CA. Reprinted in Lecture Notes in Computer
Science, Vol. 1222, Springer-Verlag, Berlin, Germany, pp. 49–64.

