Skip to main content
Log in

Investigation of the metal binding site in methionine aminopeptidase by density functional theory

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ions or Zn2+ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions. This was the case for both of the systems studied; one based on the X-ray structure of the human methionine aminopeptidase type 2 (hMetAP-2) and the other based on the X-ray structure of the E. colimethionine aminopeptidase type 1 (eMetAP-1). Another important structural issue is the identity of the bridging oxygen, which is part of either a water molecule or a hydroxide ion. Within the site of hMetAP-2 the results strongly indicate that a hydroxide ion bridges the metal ions. By contrast, the nature of the oxygen bridging the metal ions within the metal binding site of eMetAP-1 cannot be determined based on the results here, due to the similar structural results obtained with a bridging water molecule and a bridging hydroxide ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman, J., Nat. Med., 1 (1995) 27.

    Google Scholar 

  2. Folkman, J., N. Eng. J. Med., 333 (1995) 1757.

    Google Scholar 

  3. Griffith, E.C., Su, Z., Turk, B.E., Chen, S., Chang, Y.-H., Wu, Z., Biemann, K. and Liu, J.O., Chem. Biol., 4 (1997) 461.

    Google Scholar 

  4. Lowther, W.T., McMillen, D.A., Orville, A.M. and Matthews, B.W., Proc. Natl. Acad. Sci. USA, 95 (1998) 12153.

    Google Scholar 

  5. Griffith, E.C., Su, Z., Niwayama, S., Ramsay, C.A., Chang, Y.-H. and Liu, J.O., Proc. Natl. Acad. Sci. USA, 95 (1998) 15183.

    Google Scholar 

  6. Bradshaw, R.A., Brickey, W.W. and Walker, K.W., Trends Biochem. Sci., 23 (1998) 263.

    Google Scholar 

  7. Lowther, W.T., Orville, A.M., Madden, D.T., Lim, S., Rich, D.H. and Matthews, B.W., Biochemistry, 38 (1999) 7678.

    Google Scholar 

  8. Liu, S., Widom, J., Kemp, C.W., Crews, C.M. and Clardy, J., Science, 282 (1998) 1324.

    Google Scholar 

  9. Tahirov, T.H., Oki, H., Tsukihara, T., Ogasahara, K., Yutani, K., Ogata, K., Izu, Y., Tsunasawa, S. and Kato, I., J. Mol. Biol., 284 (1998) 101.

    Google Scholar 

  10. Lowther, W.T., Zhang, Y., Sampson, P.B., Honek, J.F. and Matthews, B.W., Biochemistry Usa, 38 (1999) 14810.

    Google Scholar 

  11. Walker, K.W. and Bradshaw, R.A., Protein Sci., 7 (1998) 2684.

    Google Scholar 

  12. D'souza, V.M., Bennett, B., Copik, A.J. and Holz, R.C., Biochemistry, 39 (2000) 3817.

    Google Scholar 

  13. Zhan, C.-G., de Souza, O.N., Rittenhouse, R. and Ornstein, R.L., J. Am. Chem. Soc., 121 (1999) 7279.

    Google Scholar 

  14. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucl. Acids. Res., 28 (2000) 235.

    Google Scholar 

  15. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T. and Still, W.C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  16. Maestro, Schrödinger, Inc., Portland, OR, 1999-2000.

  17. Spartan 5.1.1, Wavefunction, Inc., Irvine, CA, 1991-1998.

  18. Jaguar 4.0, Schrödinger, Inc., Portland, OR, 1991-2000.

  19. Becke, A.D., J. Chem. Phys., 98 (1993) 5648.

    Google Scholar 

  20. Lee, C., Yang, W. and Parr, R.G., Phys. Rev. B, 37 (1988) 785.

    Google Scholar 

  21. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 82 (1985) 299.

    Google Scholar 

  22. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 82 (1985) 270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy Liljefors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, A.T., Norrby, PO. & Liljefors, T. Investigation of the metal binding site in methionine aminopeptidase by density functional theory. J Comput Aided Mol Des 16, 167–179 (2002). https://doi.org/10.1023/A:1020119527789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020119527789

Navigation