Skip to main content
Log in

Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a method—termed Helmholtz stereopsis—for reconstructing the geometry of objects from a collection of images. Unlike existing methods for surface reconstruction (e.g., stereo vision, structure from motion, photometric stereopsis), Helmholtz stereopsis makes no assumptions about the nature of the bidirectional reflectance distribution functions (BRDFs) of objects. This new method of multinocular stereopsis exploits Helmholtz reciprocity by choosing pairs of light source and camera positions that guarantee that the ratio of the emitted radiance to the incident irradiance is the same for corresponding points in the two images. The method provides direct estimates of both depth and surface normals, and consequently weds the advantages of both conventional stereopsis and photometric stereopsis. Results from our implementation lend empirical support to our technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proceedings of SIGGRAPH, pp. 65–74.

  • Belhumeur, P. 1993. A binocular stereo algorithm for reconstructing sloping, creased, and broken surfaces in the presence of half-occlusion. In Proc. Int. Conf. on Computer Vision, pp. 431–438.

  • Belhumeur, P. 1996. A Bayesian approach to binocular stereopsis. Int. Journal of Computer Vision, 19(3):237–260.

    Google Scholar 

  • Belhumeur, P. and Mumford, D. 1992. A Bayesian treatment of the stereo correspondence problem using half-occluded regions. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 506–512.

  • Clarke, F. and Parry, D. 1985. Helmholtz reciprocity: Its validity and application to reflectometry. Lighting Research and Technology, 17(1):1–11.

    Google Scholar 

  • Cook, R. and Torrance, K. 1981. A reflectance model for computer graphics. In Proceedings of SIGGRAPH, pp. 307–316.

  • Cox, I.J., Hingorani, S., Maggs, B.M., and Rao, S.B. 1992. Stereo without disparity gradient smoothing: A Bayesian sensor fusion solution. In British Machine Vision Conference, D. Hogg and R. Boyle (Eds.). Springer-Verlag: Berlin, pp. 337–346.

    Google Scholar 

  • Deverney, F. and Faugeras, O. 1994. Computing differential properties of 3-D shapes from stereoscopic images without 3-D models. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 208–213.

  • Faugeras, O. and Keriven, R. 1998. Variational principles, surface evolution, PDE's, level set methods, and the stereo problem. IEEE Trans. Image Processing, 7(3):336–344.

    Google Scholar 

  • Frankot, R.T. and Chellappa, R. 1988. A method for enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):439–451.

    Google Scholar 

  • Geiger, D., Ladendorf, B., and Yuille, A. 1992. Occlusions and binocular stereo. In Proc. European Conf. on Computer Vision, pp. 425–433.

  • Hayakawa, K. 1994. Photometric stereo under a light source with arbitrary motion. J. Opt. Soc. Am. A, 11(11):3079–3089.

    Google Scholar 

  • He, X.D., Heynen, P., Phillips, R., Torrance, K., Salesin, D., and Greenberg, D. 1992. A fast and accurate light reflection model. In Proceedings of SIGGRAPH, pp. 253–254.

  • Helmholtz, H.V. 1925. Treatise on Physiological Optics, vol. 1. Dover: New York.

    Google Scholar 

  • Ikeuchi, K. and Horn, B. 1981. Numerical shape from shading and occluding boundaries. Artificial Intelligence, 17:141–184.

    Google Scholar 

  • Koenderink, J. and van Doorn, A. 1996. Bidirectional reflection distribution function expressed in terms of surface scattering modes. In Proc. European Conf. on Computer Vision, pp. II:28–39.

    Google Scholar 

  • Koenderink, J., van Doorn, A., Dana, K., and Nayar, S. 1999. Bidirectional reflection distribution function of thoroughly pitted surfaces. Int. Journal of Computer Vision, 31(2/3):129–144.

    Google Scholar 

  • Langer, M. and Zucker, S.W. 1994. Shape-from-shading on a cloudy day. J. Opt. Soc. Am. A, 11(2):467–478.

    Google Scholar 

  • Lu, J. and Little, J. 1999. Reflectance and shape from images using a collinear light source. Int. Journal of Computer Vision, 32(3):1–28.

    Google Scholar 

  • Magda, S., Zickler, T., Kriegman, D., and Belhumeur, P., 2001. Beyond Lambert: Reconstructing surfaces with arbitrary BRDFs. In Proc. Int. Conf. on Computer Vision, pp. 391–398.

  • Matthies, L. 1992. Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation. Int. Journal of Computer Vision, 8(1):71–91.

    Google Scholar 

  • Minnaert, M. 1941. The reciprocity principle in lunar photometry. Astrophysical Journal, 93:403–410.

    Google Scholar 

  • Nayar, S., Ikeuchi, K., and Kanade, T. 1990. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE J. of Robotics and Automation, 6(4):418–431.

    Google Scholar 

  • Nicodemus, F., Richmond, J., Hsia, J., Ginsberg, I., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 160, National Bureau of Standards (US).

  • Oren, M.and Nayar, S. 1996. Generalization of the Lambertian model and implications for machine vision. Int. Journal of Computer Vision, 14(3):227–251.

    Google Scholar 

  • Phong, B. 1975. Illumination for computer-generated pictures. Comm. of the ACM, 18(6):311–317.

    Google Scholar 

  • Poggio, T., Torre, V., and Koch, C. 1985. Computational vision and regularisation theory. Nature, 317:314–319.

    Google Scholar 

  • Silver, W. 1980. Determining shape and reflectance using multiple images. Master's Thesis, MIT.

  • Snyder, W., Wan, Z., and Li, X. 1998. Thermodynamic constraints on reflectance reciprocity and Kirchoff's law. Applied Optics, 37(16): 3464–3470.

    Google Scholar 

  • Tagare, H. and deFigueiredo, R. 1991. Atheory of photometric stereo for a class of diffuse non-Lambertian surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence, 13(2):133–152.

    Google Scholar 

  • Torrance, K. and Sparrow, E. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am., 57(9):1105–1114.

    Google Scholar 

  • Woodham, R. 1981. Analysing images of curved surfaces. Artificial Intelligence, 17:117–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zickler, T.E., Belhumeur, P.N. & Kriegman, D.J. Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction. International Journal of Computer Vision 49, 215–227 (2002). https://doi.org/10.1023/A:1020149707513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020149707513

Navigation