Skip to main content
Log in

Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Computer vision often involves estimating models from visual input. Sometimes it is possible to fit several different models or hypotheses to a set of data, and a decision must be made as to which is most appropriate. This paper explores ways of automating the model selection process with specific emphasis on the least squares problem of fitting manifolds (in particular algebraic varieties e.g. lines, algebraic curves, planes etc.) to data points, illustrated with respect to epipolar geometry. The approach is Bayesian and the contribution three fold, first a new Bayesian description of the problem is laid out that supersedes the author's previous maximum likelihood formulations, this formulation will reveal some hidden elements of the problem. Second an algorithm, ‘MAPSAC’, is provided to obtain the robust MAP estimate of an arbitrary manifold. Third, a Bayesian model selection paradigm is proposed, the Bayesian formulation of the manifoldfitting problem uncovers an elegant solution to this problem, for which a new method ‘GRIC’ for approximating the posterior probability of each putative model is derived. This approximations bears some similarity to the penalized likelihoods used by AIC, BIC and MDL however it is far more accurate in situations involving large numbers of latent variables whose number increases with the data. This will be empirically and theoretically demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. on Automatic Control, AC-19(6):716–723.

    Google Scholar 

  • Akaike, H. 1985. Prediction and entropy. In A Celebration of Statistics. The ISI Centenary Volume, A.C. Atkinson and S.E. Feinberg (Eds.). Springer: New York, pp. 1–24.

    Google Scholar 

  • Arnborg, S. and Sjödin, G. 2000. Bayes rules in finite models. In European Conference on Artifical Intelligence, pp. 571–575. Also available at ftp://ftp.nada.kth.se/pub/documents/ Theory/Stefan-Arnborg/ fobcl.pdf.

  • Beardsley, P., Torr, P.H.S., and Zisserman, A. 1996. 3D model acquisition from extended image sequences. In Proc. 4th European Conference on Computer Vision, Cambridge,B. Buxton and Cipolla R. (Eds.). LNCS 1065, Springer-Verlag: Berlin, pp. 683–695.

    Google Scholar 

  • Belhumeur, P.N. and Mumford, D. 1992. A Bayesian treatment of the stereo correspondence problem using half-occluded regions. In IEEE Comp. Soc. Conf. on Comp. Vision and Pattern Recognition, pp. 506–512.

  • Bernardo, J.M. and Smith, A.F.M. 1994. Bayesian Theory. Wiley: Chichester.

    Google Scholar 

  • Besag, J. 1974. Spatial interaction and statistical analysis of lattice systems. J. Roy. Stat. Soc. Lond. B., 36:192–225.

    Google Scholar 

  • Bishop, C.M. 1995. Neural Networks for Pattern Recognition. Clarendon Press: Oxford.

    Google Scholar 

  • Blake, A. and Zisserman, A. 1987. Visual Reconstruction. MIT Press: Cambridge, USA.

    Google Scholar 

  • Bozdogan, H. 1987. Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3):345–370.

    Google Scholar 

  • Chickering, D. and Heckerman, D. 1996. Efficient approximation for the marginal likelihood of bayesian networks with hidden variables. Microsoft, Technical Report msr-tr-96-08.

  • Cox, R.T. 1946. Probability, frequency, and reasonable expectation. Am. Jour. Phys., 14:1–13.

    Google Scholar 

  • Cox, R.T. 1961. The Algebra of Probable Inference. John Hopkins Univ. Press: Baltimore.

    Google Scholar 

  • Csurka, G., Zeller, C., Zhang, Z., and Faugeras, O. 1996. Characterizing the uncertainty of the fundamental matrix. CVIU, 68(1):18–36.

    Google Scholar 

  • Dawid, A.P. 1992. Prequential analysis, stochastic complexity and bayesian inference. In Bayesian Statistics 4, pp. 109–125.

  • Efron, B. and Tibshirani, R.J. 1993. An Introduction to the Bootstrap. Chapman and Hall: London, UK.

    Google Scholar 

  • Faugeras, O.D. 1992. What can be seen in three dimensions with an uncalibrated stereo rig? In Proc. 2nd European Conference on Computer Vision, Santa Margherita Ligure, G. Sandini (Ed.). LNCS 588, Springer-Verlag, pp. 563–578.

  • Faugeras, O.D. 1993. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press: Cambridge, MA.

    Google Scholar 

  • Faugeras, O. and Papadopoulo, T. 1993. A theory of the motion fields of curves. Int. J. Computer Vision, 10(2):125–156.

    Google Scholar 

  • Fischler, M.A. and Bolles, R.C. 1981. Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach., 24:381–395.

    Google Scholar 

  • Fitzgibbon, A. 1997. Stable segmentation of 2D curves. Ph.D. Thesis, Edinburgh. Available at http://www.robots.ox.ac.uk/awf/.

  • Gauss, C.F. 1821. Theoria combinations observationum erroribus minimis obnoxiae. Werke4, Section35, Gõttingen.

  • Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. 1995. Bayesian Data Analysis. Chapman &; Hall: New York.

    Google Scholar 

  • Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6):721–741.

    Google Scholar 

  • Golub, G.H. and van Loan, C.F. 1989. Matrix Computations. Johns Hopkins.

  • Grenander, U., Chow, Y., and Keenan, D.M. 1991. HANDS. A Pattern Theoretical Study of Biological Shapes. Springer-Verlag: New York.

    Google Scholar 

  • Gull, S.F. 1989. Bayesian data analysis: Straight line fitting. In Maximum Entropy and Bayesian Methods. Kluwer: Dordrecht.

    Google Scholar 

  • Harris, C. 1990. Structure from motion under orthographic projection. In Proc. 1st European Conf. Computer Vision, O. Faugeras, (Eds.). Springer-Verlag: Berlin, pp. 118–123.

    Google Scholar 

  • Hartley, R. and Zisserman, A. 2000. Multiple View Geometry in Computer Vision. Cambridge University Press.

  • Hartley, R.I. 1992. Estimation of relative camera positions for uncalibrated cameras. In Proc. 2nd European Conference on Computer Vision, Santa Margherita Ligure, G. Sandini (Eds.). LNCS 588, Springer-Verlag: Berlin, pp. 579–587.

    Google Scholar 

  • Hartley, R.I. and Sturm, P. 1994. Triangulation. In DARPA Image Understanding Workshop, Monterey, CA, pp. 957–966.

  • Hjorth, U. 1989. On model selection in the computer age. J. Statist. Planng. Inf., 23:101–115.

    Google Scholar 

  • Irani, M., Anandan, P., and Weinshall, D. 1998. From reference frames to reference planes: Multiview parallax geometry and its applications. In Proc. 5th European Conference on Computer Vision, Freiburg, H. Burkhardt and B. Neumann (Eds.). LNCS 1406, Springer-Verlag: Berlin, pp. 829–846.

    Google Scholar 

  • Isard, M.A. and Blake, A. 1996. Visual tracking by stochastic propagation of conditional density. In Proc. 4th European Conf. Computer Vision, Cambridge, England, pp. 343–356.

  • Jaynes, E.T. 1991. Straight line fitting—A bayesian solution. Available at http://bayes.wustl.edu/etj/node2.html.

  • Jaynes, E.T. 1999. Probability Theory as Extended Logic. Not yet published, a postscript version of this excellent book is available at http://bayes.wustl.edu/etj/node2.html.

  • Jeffreys, H. 1932. An alternative to the rejection of observations. Proc. Roy. Soc. London A, 137:78–87.

    Google Scholar 

  • Jeffreys, H. 1939. Theory of Probability. Clarendon Press: Oxford.

    Google Scholar 

  • Kanatani, K. 1987. What is the geometric AIC? Reply to my reviewers. unpublished report.

  • Kanatani, K. 1992. Geometric Computation for Machine Vision. Oxford University Press: Oxford.

    Google Scholar 

  • Kanatani, K. 1994. Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Analysis and Machine Intelligence, 16(3):320–326.

    Google Scholar 

  • Kanatani, K. 1996. Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Science: Amsterdam.

    Google Scholar 

  • Kass, R.E. and Raftery, A.E. 1995. Bayes factors. Journal of the American Statistical Association, 90:733–795.

    Google Scholar 

  • Kendall, M.G. and Moran, P.A.P. 1963. Geometric Probability. Hafner: New York.

    Google Scholar 

  • Kendall, M.G. and Stuart, A. 1983. The Advanced Theory of Statistics. Charles Griffin and Company: London.

    Google Scholar 

  • Leontaritis, I.J. and Billings, S.A. 1987. Model selection and validation methods for non-linear systems. Int. J. Control, 45(1):311–341.

    Google Scholar 

  • Li, M. and Vitányi, P. 1997. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag: Berlin.

    Google Scholar 

  • Lindley, D.V. 1980. Approximate Bayesian methods. In Bayesian Statistics, J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (Eds.). Valencia University Press: Valencia, pp. 223–237.

    Google Scholar 

  • MacKay, D.J.C. 1992. Bayesian Interpolation. Neural Computation, 4:415–447.

    Google Scholar 

  • Mallows, C.L. 1973. Some comments on c p . Technometric, 15:661–675.

    Google Scholar 

  • Maybank, S.J. and Sturm, P.F. 1999. MDL, collineations and the fundamental matrix. In BMVC, pp. 53–62.

  • McLachlan, G.I. and Basford, K. 1988. Mixture Models: Inference and Applications to Clustering. Marcel Dekker: New York.

    Google Scholar 

  • Miller, A.J. 1984. Selection of subsets of regression variables (with discussion). Journal of the Royal Statistical Society (Series A), 147:389–425.

    Google Scholar 

  • Miller, A.J. 1990. Subset Selection in Regression. Chapman and Hall: London.

    Google Scholar 

  • Mundy, J.L. and Zisserman, A. 1992. Geometric Invariance in Computer Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philos. Mag. Ser., 6(2):559.

    Google Scholar 

  • Pollefreys, M., Verbiest, F., and Van Gool, L. 2002. Surviving dominant planes in uncalibrated structure and motion recovery, vol. 1.

  • Riggs, D., Guarnieri, J., and Addelman, S. 1978. Fitting straight lines when both variables are subject to errors. Life Sciences, 22:1305–1360.

    Google Scholar 

  • Ripley, B.D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge, UK.

    Google Scholar 

  • Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14:465–471.

    Google Scholar 

  • Russell, B. 1961. History of Western Philosophy. Routledge.

  • Santalo, L. 1976. Integral Geometry and Probability. Addison-Wesley: Reading, MA.

    Google Scholar 

  • Schwarz, G. 1978. Estimating dimension of a model. Ann. Stat., 6:461–464.

    Google Scholar 

  • Shapiro, L.S. 1993. Affine analysis of image sequences. Ph.D. Thesis, Oxford University.

  • Stewart, C.V. 1997. Bias in robust estimation caused by discontinuities and multiple structures. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(8):818–833.

    Google Scholar 

  • Stone, M. 1977. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. Roy. Statist. Soc. B, 39:44–47.

    Google Scholar 

  • Szeliski, R. 1990. Bayesian modelling of uncertainty in low-level vision. Int. J. Computer Vision, 5(3):271–301.

    Google Scholar 

  • Torr, P.H.S. 1995. Outlier detection and motion segmentation. Ph.D. Thesis, Department of Engineering Science, University of Oxford.

  • Torr, P.H.S. 1998a. Geometric motion segmentation and model selection. In Philosopical Transactions of the Royal Society A, J. Lasenby, A. Zisserman, R. Cipolla, and H. Longuet-Higgins (Eds.). Roy Soc,: London, pp. 1321–1340.

    Google Scholar 

  • Torr, P.H.S. 1998b. Selecting model selection paradigms. In D. Fosyth and R. Cipolla (Eds.). Workshop on Shape, Contour and Grouping, pp. 69–113, 1998.

  • Torr, P.H.S. 2000. In Data Segmentation and Model Selection for Computer Vision. Model selection for structure and motion recovery from multiple images. Springer-Verlag: Berlin, pp. 143–182.

    Google Scholar 

  • Torr, P.H.S., Beardsley, P.A., and Murray, D.W. 1994. Robust vision. In Proc. 5th British Machine Vision Conference, York, J. Illingworth (Ed.). BMVA Press, pp. 145–155.

  • Torr, P.H.S., Fitzgibbon, A., and Zisserman, A. 1998a. Maintaining multiple motion model hypotheses through many views to recover matching and structure. In ICCV6, U Desai (Eds.). Narosa Publishing House, pp. 485–492.

  • Torr, P.H.S., Fitzgibbon, A., and Zisserman, A. 1999. The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. IJCV, 32(1):27–45. Marr Prize Paper ICCV 1999.

    Google Scholar 

  • Torr, P.H.S. and Murray, D.W. 1997. The development and com-parison of robust methods for estimating the fundamental matrix. Int. Journal of Computer Vision, 24(3):271–300.

    Google Scholar 

  • Torr, P.H.S. and Zisserman, A. 1997. Robust parameterization and computation of the trifocal tensor. Image and Vision Computing, 15:591–607.

    Google Scholar 

  • Torr, P.H.S. and Zisserman, A. 1998a. Concerning Bayesian motion segmentation, model averaging, matching and the trifocal tensor. In ECCV98, Vol. 1, H. Burkharddt and B. Neumann (Eds.). Springer: Berlin, pp. 511–528.

    Google Scholar 

  • Torr, P.H.S. and Zisserman, A. 1998b. Robust computation and parametrization of multiple view relations. In ICCV6, U Desai (Ed.). Narosa Publishing House, pp. 727–732.

  • Torr, P.H.S. and Zisserman, A. 2000. MLESAC: A new robust estimator with application to estimating image geometry. CVIU, 78(1):138–156.

    Google Scholar 

  • Torr, P.H.S., Zisserman, A., and Maybank, S. 1998b. Robust de-tection of degenerate configurations for the fundamental matrix. CVIU, 71(3):312–333.

    Google Scholar 

  • Triggs, B. 1998. The geometry and matching of curves in multiple views. In ECCV98, vol. 1, H. Burkharddt and B. Neumann (Eds.). Springer: Berlin, pp. 89–105.

    Google Scholar 

  • Triggs, W. 1995. The geometry of projective reconstruction I: Matching constraints and the joint image. In Proc. 5th Int'l Conf. on Computer Vision, Boston, pp. 338–343.

  • Vapnik, V. 1995. The Nature of Statistical Learning Theory. Springer: New York.

    Google Scholar 

  • Wallace, C.S. and Boulton, D.M. 1968. An information measure for classification. Computer Journal, 11(2):195–209.

    Google Scholar 

  • Weiss, Y. 1997. Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In CVPR. IEEE, pp. 520–526.

  • Weisstein, E. 2002. Maths encyclopedia. http://mathworld. wol-fram. com/.

  • Werman, M. and Keren, D. 2001. A Bayesian method for fitting parametric and nonparametric model to noisy data. IEEE PAMI, 23(5):528–534.

    Google Scholar 

  • Wild, G.A.F. and Seber, C.J. 1989. Non-Linear Regression. Wiley: New York.

    Google Scholar 

  • Zellner, A. 1971. An Introduction to Bayesian Inference in Economics. Wiley: New York.

    Google Scholar 

  • Zellner, A. 1978. Jeffreys-Bayes posterior odds ratio and the akaike information criterion for discriminating between models. Economics Letters, 1:337–442.

    Google Scholar 

  • Zhang, Z. 1997a. Determining the epipolar geometry and its uncertainty: A review. IJCV, 27(2):161–195.

    Google Scholar 

  • Zhang, Z. 1997b. Parameter estimation techniques: A tutorial with application to conic fitting. IVC, 15(1):59–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torr, P. Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting. International Journal of Computer Vision 50, 35–61 (2002). https://doi.org/10.1023/A:1020224303087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020224303087

Navigation