Skip to main content
Log in

A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity

  • Published:
Reliable Computing

Abstract

The main subject of this work is mathematical and computational aspects of modeling of static systems under interval uncertainty and/or ambiguity. A cornerstone of the new approach we are advancing in the present paper is, first, the rigorous and consistent use of the logical quantifiers to characterize and distinguish different kinds of interval uncertainty that occur in the course of modeling, and, second, the systematic use of Kaucher complete interval arithmetic for the solution of problems that are minimax by their nature. As a formalization of the mathematical problem statement, concepts of generalized solution sets and AE-solution sets to an interval system of equations, inequalities, etc., are introduced. The major practical result of our paper is the development of a number of techniques for inner and outer estimation of the so-called AE-solution sets to interval systems of equations. We work out, among others, formal approach, generalized interval Gauss-Seidel iteration, generalized preconditioning and PPS-methods. Along with the general nonlinear case, the linear systems are treated more thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackoff, R. L. and Sasieni, M. W.: Fundamentals of Operations Research, John Wiley, New York, 1968.

    Google Scholar 

  2. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  3. Apostolatos, N. and Kulisch, U.: Grundzüge einer Intervallrechnung für Matrizen und einige Anwendungen, Electron. Rechenanl. 10 (1968), pp. 73-83.

    Google Scholar 

  4. Ashchepkov, L. T.: To the Problem of Increasing the Viability of Controlled Systems, in: Bel'tyukov, B. A. and Bulatov, V. P. (eds), Models and Methods of Operations Research, Nauka, Novosibirsk, 1988, pp. 69-85 (in Russian).

    Google Scholar 

  5. Babichev, A. B., Kadyrova, O. B., Kashevarova, T. P., Leshchenko, A. S., and Semenov, A. L.: UniCalc, a Novel Approach to Solving Systems of Algebraic Equations, Interval Computations 2 (1993), pp. 29-47.

    Google Scholar 

  6. Barth, W. and Nuding, W.: Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974), pp. 117-125.

    Google Scholar 

  7. Bauer, F. L. and Goos, G.: Informatics, Springer, Berlin-Heidelberg, 1990.

    Google Scholar 

  8. Benhamou, F. and Goualard, F.: Universally Quantified Interval Constraints, in: Dechter, R. (ed.), Principles and Practice of Constraint Programming-CP 2000, the 6th International Conference, Singapore, September 2000, Lecture Notes in Computer Science 1894, Springer, Berlin-Heidelberg, 2000, pp. 67-82.

    Google Scholar 

  9. Berman, A. and Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

    Google Scholar 

  10. Berti, S.: The Solution of an Interval Equation, Mathematica 11 (1969), pp. 189-194.

    Google Scholar 

  11. Birkhoff, G.: Lattice Theory, American Mathematical Society, Providence, 1967.

    Google Scholar 

  12. Birkhoff, G. and Bartee, T. C.: Modern Applied Algebra, McGrow-Hill, New York, 1970.

    Google Scholar 

  13. Borel, É.: Probabilité et Certitude, Presses Universitaires de France, Paris, 1956.

    Google Scholar 

  14. Burgeimer, P.: Controllability and Interval Mathematics, in: Andreev, A. S., Dimov, I. T., Markov, S. M., and Ullrich, Ch. (eds), Mathematical Modelling and Scientific Computations, Bulgarian Academy of Sciences, Sofia, 1991, pp. 1-13.

    Google Scholar 

  15. Chernous'ko, F. L.: Phase State Estimation of Dynamical Systems, Nauka, Moscow, 1988 (in Russian).

    Google Scholar 

  16. Collatz, L.: Funktionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin-Höttingen-Heidelberg, 1964.

    Google Scholar 

  17. Cope, J. and Rust, B.: Bounds on Solutions of Linear Systems with Inaccurate Data, SIAM J. Numer. Anal. 16 (1979), pp. 950-963.

    Google Scholar 

  18. Deif, A. S.: Sensitivity Analysis in Linear Systems, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  19. Dobronets, B. S.: On Some Two-Sided Methods for Solving Systems of Ordinary Differential Equations, Interval Computations 1 (3) (1992), pp. 6-21.

    Google Scholar 

  20. Ebbinghaus, H.-D., Flum, J., and Thomas,W.: Mathematical Logic, Springer, New York, 1996.

    Google Scholar 

  21. Eremin, I. I.: Inconsistent Models of Optimal Planning, Nauka, Moscow, 1988 (in Russian).

    Google Scholar 

  22. Filippov, A. F.: Ellipsoidal Estimates for a Solution of a System of Differential Equations, Interval Computations 2 (4) (1992), pp. 6-17.

    Google Scholar 

  23. Fortran 95 Interval Arithmetic Programming Reference. Forte Developer 6, Sun Microsystems Inc., Palo Alto, CA, 2001, PDF file can be accessed at http://www.sun.com/forte/fortran/interval

  24. Gardeñes, E., Sainz, M. Á., Jorba, L., Calm, R., Estela, R., Mielgo, H., and Trepat, A.: Modal Intervals, Reliable Computing 7 (2) (2001), pp. 77-111.

    Google Scholar 

  25. Gardeñes, E. and Trepat, A.: Fundamentals of SIGLA, an Interval Computing System over the Completed Set of Intervals, Computing 24 (1980), pp. 161-179.

    Google Scholar 

  26. Gardeñes, E., Trepat, A., and Janer, J. M.: Approaches to Simulation and to the Linear Problem in the SIGLA System, Freiburger Intervall-Berichte 81 (8) (1981), pp. 1-28.

    Google Scholar 

  27. Gardeñes, E., Trepat, A., and Janer, J. M.: SIGLA-PL/1 Development and Applications, in: Nickel, K.L. E. (ed.), Interval Mathematics 1980, Academic Press, 1980, pp. 301-315.

  28. Gardeñes, E., Trepat, A., and Mielgo, H.: Present Perspective of the SIGLA Interval System, Freiburger Intervall-Berichte 82 (9) (1982), pp. 1-65.

    Google Scholar 

  29. Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman and Co., San Francisco, 1979.

    Google Scholar 

  30. Hadjihassan, S., Walter, E., and Pronzato, L.: Quality Improvement via Optimization of Tolerance Intervals During theDesign Stage, in: Kearfott, R. B. and Kreinovich, V. (eds), Applications of Interval Computations, Kluwer Academic Publishers, Dordrecht, 1996, pp. 91-131.

    Google Scholar 

  31. Hansen, E.: Bounding the Solution of Interval Linear Equations, SIAM Journal on Numerical Analysis 29 (5) (1992), pp. 1493-1503.

    Google Scholar 

  32. Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.

    Google Scholar 

  33. Hansen, E. and Smith, R.: Interval Arithmetic in Matrix Computations. Part II, SIAM Journal on Numerical Analysis 4 (1967), pp. 1-9.

    Google Scholar 

  34. Heindl, G.: A Method for Verified Computing of Inner and Outer Approximations of Interval Hull of a Tolerance Polyhedron, in: Alefeld, G., Frommer, A., and Lang, B. (eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 207-213.

    Google Scholar 

  35. Horst, R. and Tuy, H.: Global Optimization. Deterministic Approaches, Springer, Berlin, 1995.

    Google Scholar 

  36. Householder, A. S.: The Theory of Matrices in Numerical Analysis, Dover Publications, New York, 1975.

    Google Scholar 

  37. Isaacs, R.: Differential Games, John Wiley and Sons, New York, 1965.

    Google Scholar 

  38. Jansson, C.: Calculation of Exact Bounds for the Solution Sets of Linear Interval Systems, Linear Algebra and Its Applications 251 (1997), pp. 321-340.

    Google Scholar 

  39. Jirstrand, M.: Nonlinear Control System Design by Quantifier Elimination, Journal of Symbolic Computation 24 (2) (1997), pp. 137-152.

    Google Scholar 

  40. Kalman, R. E., Falb, P. L., and Arbib, M. A.: Topics in Mathematical System Theory, McGrow-Hill, New York, 1969.

    Google Scholar 

  41. Karlyuk, A. Yu.: A Numerical Method for Finding Algebraic Solution to Interval Linear Algebraic Systems based on Triangular Splitting, Computational Technologies 4 (4) (1999), pp. 14-23 (in Russian).

    Google Scholar 

  42. Kaucher, E.: Algebraische Erweiterungen der Intervallrechnung unter Erhaltung Ordnungs-und Verbandsstrukturen, Computing Supplement 1 (1977), pp. 65-79.

    Google Scholar 

  43. Kaucher, E.: Interval Analysis in the Extended Interval Space IR, Computing Supplement 2 (1980), pp. 33-49.

    Google Scholar 

  44. Kaucher, E.: Ñbermetrische und algebraische Eigenschaften einiger beimnumerischen Rechnen auftretender Räume, Ph.D. dissertation, Universität Karlsruhe, Karlsruhe, 1973.

    Google Scholar 

  45. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  46. Keeny, R. L. and Raifa, H.: Decision with Multiple Objectives: Preferences and Value Tradeoff, John Wiley, New York, 1976.

    Google Scholar 

  47. Kelling, B.: Geometrische Untersuchungen zur eigenschränkten Lösungsmenge Intervallgleichungssysteme, ZAMM 74 (12) (1994), pp. 625-628.

    Google Scholar 

  48. Kelling, B. and Oelschlägel, D.: Zur Lösung von linearen Toleranzproblemen, Wiss. Zeitschrift TH Leuna-Merseburg 33 (1) (1991), pp. 121-131.

    Google Scholar 

  49. Klatte, P. and Ullrich, Ch.: Complex Sector Arithmetic, Computing 24 (1980), pp. 139-148.

    Google Scholar 

  50. Kleene, S. C.: Mathematical Logic, John Wiley, New York, 1967.

    Google Scholar 

  51. Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  52. Kupriyanova, L.: Finding Inner Estimates of the Solution Sets to Equations with Interval Coefficients, Ph.D. dissertation, Saratov State University, Saratov, 2000 (in Russian).

    Google Scholar 

  53. Kupriyanova, L.: Inner Estimation of the United Solution Set of Interval Linear Algebraic System, Reliable Computing 1 (1) (1995), pp. 15-31.

    Google Scholar 

  54. Kuratowski, K. and Mostowski, A.: Set Theory, North-Holland, 1967.

  55. Lakeyev, A. V.: An Estimate of the Spectral Radius of Nonexpanding Matrices, Computational Technologies 3 (92) (1998), pp. 21-30 (in Russian).

    Google Scholar 

  56. Lakeyev A. V.: Computational Complexity of Estimation of the Generalized Solution Sets to Interval Linear Systems, in: Proceedings of XI International Conference “Optimization Methods and Their Applications” (Section 4), Irkutsk, 1998, pp. 115-118.

  57. Lakeyev, A. V.: Linear Algebraic Equations in Kaucher Arithmetic, in: Reliable Computing, 1995, Supplement, Extended Abstracts of APIC'95: International Workshop on Applications of Interval Computations, El Paso, Febr. 23-25, 1995, pp. 130-133.

  58. Lakeyev, A. V.: On the Computational Complexity of the Solution of Linear Systems with Moduli, Reliable Computing 2 (2) (1996), pp. 125-131.

    Google Scholar 

  59. Lakeyev, A. V. and Noskov, S. I.: On the Solution Set of a Linear Equation with Intervally Defined Operator and Right-Hand Side, Siberian Math. Journal 35 (1994), pp. 1074-1084 (in Russian).

    Google Scholar 

  60. Laveuve, S. E.: Definition einer Kahan-Arithmetic und ihre Implementierung, in: Nickel, K. (ed.), Interval Mathematics, Lecture Notes in Computer Science 29, Springer Verlag, New York, 1975, pp. 236-245.

    Google Scholar 

  61. Lee, E. B. and Markus, L.: Foundations of Optimal Control Theory, John Wiley, New York, 1970.

    Google Scholar 

  62. Lhomme, O.: Consistency Techniques for Numeric CSPs, in: IJCAI'93, Chambery, France, 1993, pp. 232-238.

  63. Li, M. and Vitanyi, P.: An Introduction toKolmogorovComplexity and Its Applications, Springer, New York, 1993.

    Google Scholar 

  64. Mackworth, A. K.: Consistency inNetwork of Relations, Artificial Intelligence 8 (1977), pp. 99-119

    Google Scholar 

  65. Markov, S. M., Popova, E., and Ullrich, Ch.: On the Solution of Linear Algebraic Equations Involving Interval Coefficients, in: Margenov, S. and Vassilevski, P. (eds), Iterative Methods in Linear Algebra II, IMACS Series in Computational and Applied Mathematics 3 (1996), pp. 216-225.

  66. Mesarovic, M. D. and Takahara, Ya.: General Systems Theory: Mathematical Foundations, Academic Press, New York, 1975.

    Google Scholar 

  67. Moder, J. J. and Elmaghraby, S. E. (eds): Handbook on Operations Research, Van Nostrand, New York, 1978.

    Google Scholar 

  68. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    Google Scholar 

  69. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  70. Neumaier, A.: New Techniques for the Analysis of Linear Interval Equations, Linear Algebra and Its Applications 58 (1984), pp. 273-325.

    Google Scholar 

  71. Neumaier, A.: Tolerance Analysis with Interval Arithmetic, Freiburger Intervall-Berichte 86 (9) (1986), pp. 5-19.

    Google Scholar 

  72. Nickel, K.: Die Auflösbarkeit linearer Kreissheiben-und Intervall-Gleichungssysteme, Linear Algebra and Its Applications 44 (1982), pp. 19-40.

    Google Scholar 

  73. Nickel, K.: Die Ñberschatzungdes Wertebereiches einer Funktion in der Intervallrechnung mit Anwendungen auf Lineare Gleichungssysteme, Computing 18 (1977), pp. 15-36.

    Google Scholar 

  74. Nuding, E. and Wilhelm, W.: Ñber Gleichungen und über Lösungen, ZAMM 52 (1972), pp. T188-T190.

    Google Scholar 

  75. Oettli, W.: On the Solution Set of a Linear System with Inaccurate Coefficients, SIAM Journal on Numerical Analysis 2 (1965), pp. 115-118.

    Google Scholar 

  76. Oettli, W. and Prager, W.: Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-Hand Sides, Numerische Mathematik 6 (1964), pp. 405-409.

    Google Scholar 

  77. Ortega, J. M. and Rheinboldt, W. C.: Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

    Google Scholar 

  78. Owen, G.: Game Theory, Academic Press, San Diego, 1995.

    Google Scholar 

  79. Petkovic, M. S., Mitrovic, Z. M., and Petkovic, L. B.: Arithmetic of Circular Rings, in: Nickel, K. (ed.), Interval Mathematics 1985, Lecture Notes in Computer Science 212, Springer Verlag, New York, 1986, pp. 133-142.

    Google Scholar 

  80. Petunin, D. and Semenov, A.: The Use of Multi-Intervals in the UniCalc Solver, in: Alefeld, G., Frommer, A., and Lang, B. (eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 91-97.

    Google Scholar 

  81. Popova, E. D.: Algebraic Solutions to a Class of Interval Equations, Journal of Universal Computer Science 4 (1) (1998), pp. 48-67, electronic version can be downloaded fromhttp://www.jucs.org/jucs_4_1.

    Google Scholar 

  82. Ratschan, S.: Approximate Quantified Constraint Solving by Cylindrical Box Decomposition, Reliable Computing 8 (1) (2002), pp. 21-42.

    Google Scholar 

  83. Ratschan, S.: Uncertainty Propagation in Heterogenous Algebras for Approximate Quantified Constraint Solving, Journal of Universal Computer Science 6 (9) (2000), pp. 861-880, electronic version can be downloaded from http://www.jucs.org/jucs_6_9.

    Google Scholar 

  84. Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization, Ellis Horwood-Halsted Press, Chichester-New York, 1988.

    Google Scholar 

  85. Ratschek, H. and Sauer, W.: Linear Interval Equations, Computing 28 (1982), pp. 105-115.

    Google Scholar 

  86. Ris, F. N.: Interval Analysis and Applications to Linear Algebra, Ph.D. dissertation, Oxford University, Oxford, 1972.

    Google Scholar 

  87. Rohn J.: Cheap and Tight Bounds: The Recent Result by E. Hansen Can Be Made More Efficient, Interval Computations 4 (1993), pp. 13-21.

    Google Scholar 

  88. Rohn, J.: Inner Solutions of Linear Interval Systems, in: Nickel, K. (ed.), Interval Mathematics 1985, Lecture Notes on Computer Science 212, Springer Verlag, New York, 1986, pp. 157-158.

    Google Scholar 

  89. Rohn, J.: Personal communication, Würzburg, 1996.

  90. Rohn, J. and Kreslová, J.: Linear Interval Inequalities, Linear and Multilinear Algebra 38 (1994), pp. 41-43.

    Google Scholar 

  91. Ross, K. A. and Right, C. R. B.: Discrete Mathematics, Prentice Hall, Englewood Cliffs, 1992.

    Google Scholar 

  92. Rump, S. M.: The Distance between Regularity and Strong Regularity, in: Alefeld, G., Frommer, A., and Lang, B. (eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 105-117.

    Google Scholar 

  93. Rump, S. M.: Verification Methods for Dense and Sparse Systems of Equations, in: Herzberger, J. (ed.), Topics in Validated Numerics, Elsevier, Amsterdam, 1994, pp. 63-135.

    Google Scholar 

  94. Saaty, T. L.: Analytic Hierarchy Process, McGrow Hill, New York, 1980.

    Google Scholar 

  95. Sainz, M. Á. and Gardeñes, E.: Interval Estimation of Solution Sets to Real-Valued Systems of Linear or Nonlinear Equations, Reliable Computing 8 (4) (2002), pp. 283-305.

    Google Scholar 

  96. Sainz, M. Á., Gardeñes, E., and Jorba, L.: Formal Solution to Systems of Interval Linear and Nonlinear Equations, Reliable Computing 8 (3) (2002), pp. 189-211.

    Google Scholar 

  97. Sharaya, I. A.: On Maximal Inner Estimation of Solution Sets to Interval Linear Equations, Computational Technologies 3 (2) (1998), pp. 55-66 (in Russian).

    Google Scholar 

  98. Sharaya, I. A.: On Maximal Inner Estimation of the Solution Sets of Linear Systems with Interval Parameters, Reliable Computing 7 (5) (2001), pp. 409-424.

    Google Scholar 

  99. Shary, S. P.:A New Approach to the Analysis of Static Systems under Interval Data Uncertainty, Computational Technologies 2 (1) (1997), pp. 84-102 (in Russian).

    Google Scholar 

  100. Shary, S. P.: A New Approach to the Analysis of Static Systems under Interval Uncertainty, in: Alefeld, G., Frommer, A., and Lang, B. (eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 118-132.

    Google Scholar 

  101. Shary, S. P.: A New Class of Algorithms for Optimal Solution of Interval Linear Systems, Interval Computations 2 (4) (1992), pp. 18-29.

    Google Scholar 

  102. Shary, S. P.: A New Class of Methods for Optimal Enclosing of Solution Sets to Interval Linear Systems, submitted to SIAM Journal on Matrix Analysis and Applications.

  103. Shary, S. P.: Algebraic Approach in the “Outer Problem” for Interval Linear Equations, Reliable Computing 3 (2) (1997), pp. 103-135.

    Google Scholar 

  104. Shary, S. P.: Algebraic Approach to the Analysis of Linear Static Systems under Interval Uncertainty, Izvestiya Akademii Nauk. Control Theory and Systems 3 (1997), pp. 51-61 (in Russian).

    Google Scholar 

  105. Shary, S. P.: Algebraic Approach to the Analysis of Linear Static Systems with Interval Uncertainty, Russian Journal on Numerical Analysis and Mathematical Modeling 11 (3) (1996), pp. 259-274.

  106. Shary, S. P.: Algebraic Approach to the Interval Linear Static Identification, Tolerance and Control Problems, or One More Application of Kaucher Arithmetic, Reliable Computing 2 (1) (1996), pp. 3-33.

    Google Scholar 

  107. Shary, S. P.: Algebraic Solutions to Interval Linear Equations and Their Applications, in: Alefeld, G. and Herzberger, J. (eds), Numerical Methods and Error Bounds, Akademie Verlag, Berlin, 1996, pp. 224-233.

    Google Scholar 

  108. Shary, S. P.: Controllable Solution Sets to Interval Static Systems, Applied Mathematics and Computation 86 (1997), pp. 185-196.

    Google Scholar 

  109. Shary, S. P.: Interval Algebraic Problems and Their Numerical Solution, D.Sc. dissertation, Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, 2000 (in Russian).

    Google Scholar 

  110. Shary, S. P.: Interval Gauss-Seidel Method for Generalized Solution Sets to Interval Linear Systems, in: Vehí, J. and Sainz, M. Á. (eds), Applications of Interval Analysis to Systems and Control. Proceedings of MISC'99-Workshop on Applications of Interval Analysis to Systems and Control, Universitat de Girona, Girona, 1999, pp. 67-81.

    Google Scholar 

  111. Shary, S. P.: Linear Static Systems under Interval Uncertainty: Algorithms to Solve Control and Stabilization Problems, in: Reliable Computing, 1995, Supplement, Extended Abstracts of APIC'95: International Workshop on Applications of Interval Computations, El Paso, Febr. 23-25, 1995, pp. 181-184.

  112. Shary, S. P.: Linear Static Systems under Interval Uncertainty: Efficient Algorithms to Solve Control and Stabilization Problems, in: Shokin, Yu. I. (ed.), Computational Technologies 13, Novosibirsk, 1995, pp. 64-80 (in Russian).

  113. Shary, S. P.: Numerical Computation of Algebraic Solution to Interval Linear Systems, in: Discrete Mathematics, Krasnoyarsk State Technical University, Krasnoyarsk, 1996, pp. 129-145 (in Russian).

    Google Scholar 

  114. Shary, S. P.: On Controlled Solution Set of Interval Algebraic Systems, Interval Computations 4 (6) (1992), pp. 66-75.

    Google Scholar 

  115. Shary, S. P.: On Optimal Solution of Interval Linear Equations, SIAM Journal on Numerical Analysis 32 (1995), pp. 610-630.

    Google Scholar 

  116. Shary, S. P.: Outer Estimation of Generalized Solution Sets to Interval Linear Systems, in: SCAN-98, IMACS/GAMM International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Budapest, September 22-25, 1998, Volume of Extended Abstracts, Kluwer Academic Publishers, Dordrecht, 1999, pp 159-160.

    Google Scholar 

  117. Shary, S. P.: Outer Estimation of Generalized Solution Sets to Interval Linear Systems, Reliable Computing 5 (3) (1999), pp. 323-336.

    Google Scholar 

  118. Shary, S. P.: Outer Estimation of Generalized Solution Sets to Interval Linear Systems, in: Csendes, T. (ed.), Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999, pp. 323-335.

    Google Scholar 

  119. Shary, S. P.: Solving the Linear Interval Tolerance Problem, Mathematics and Computers in Simulation 39 (1995), pp. 53-85.

    Google Scholar 

  120. Shary, S. P.: Solving the Tolerance Problem for Interval Linear Systems, Interval Computations 2 (1994), pp. 6-26.

    Google Scholar 

  121. Shokin, Yu. I.:On Interval Problems, Interval Algorithms and Their Computational Complexity, in: Alefeld, G., Frommer, A., and Lang, B. (eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 314-328.

    Google Scholar 

  122. SIGLA/X group: Modal Intervals (Basic Tutorial), in: Vehí, J. and Sainz, M. Á. (eds), Applications of Interval Analysis to Systems and Control. Proceedings of MISC'99-Workshop on Applications of Interval Analysis to Systems and Control, Universitat de Girona, Girona, 1999, pp. 157-227.

    Google Scholar 

  123. Suppes, P.: Axiomatic Set Theory, Dover, New York, 1972.

    Google Scholar 

  124. Vatolin, A. A.: On Linear Programming Problems with Interval Coefficients, J. Comp. Mathem. and Math. Phys. 24 (1984), pp. 1629-1637 (in Russian).

    Google Scholar 

  125. Verbitskii, V. I., Gorban', A. N., Utyubaev, G. Sh., and Shokin, Yu. I.: The Moore Effect in Interval Spaces, Soviet Math. Dokl. 39 (1989), pp. 8-11.

    Google Scholar 

  126. Voshchinin, A. P. and Sotirov, G. R.: Optimization under Uncertainty, MEI-Tekhnika, Moscow, Sofia, 1989 (in Russian).

    Google Scholar 

  127. Walter, E. and Pronzato, L.: Identification of Parametric Models from Experimental Data, Springer, Berlin-Heidelberg, 1997.

    Google Scholar 

  128. Yakovlev, A. G.: Classification Approach to Programming of Localizational (Interval) Computations, Interval Computations 1 (3) (1992), pp. 61-84.

    Google Scholar 

  129. Yakovlev, A. G.: Computer Arithmetic of Multiintervals, in: Problems of Cybernetics, Scientific Council on the Complex Problem “Cybernetics” of the Academy of Sciences of the USSR, 125 (1986), pp. 66-81 (in Russian).

    Google Scholar 

  130. Zorkaltsev, V. I.: Methods of Forecasting and Analysis of Functioning Efficiency of Fuel Supply Systems, Nauka, Moscow, 1988 (in Russian).

    Google Scholar 

  131. Zyuzin, V. S.: On a Technique for Finding Interval Two-Sided Approximations of the Solution to a System of Linear Interval Equations, in: Differential Equations and Function Theory, Saratov State University, Saratov, 1987, pp. 28-32 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shary, S.P. A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity. Reliable Computing 8, 321–418 (2002). https://doi.org/10.1023/A:1020505620702

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020505620702

Keywords

Navigation