Skip to main content
Log in

Many Familiar Categories can be Interpreted as Categories of Generalized Metric Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The simple concepts of (general) distance function and homometry (a map that preserves distances up to a calibration) are introduced, and it is shown how some natural distance functions on various mathematical objects lead to concrete embeddings of the following categories into the resulting category DIST°: quasi-pseudo-metric, topological, and (quasi-)uniform spaces with various kinds of maps; groups and lattice-ordered abelian groups; rings and modules, particularly fields; sets with reflexive relations and relation-preserving maps (particularly directed loop-less graphs and quasi-ordered sets); measured spaces with Radon-continuous maps; Boolean, Brouwerian, and orthomodular lattices; categories with combined objects, for example topological groups, ordered topological spaces, ordered fields, Banach spaces with linear contractions or linear continuous maps and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., and Strecker, G. E.: Abstract and Concrete Categories, Wiley Interscience, New York, 1990.

    Google Scholar 

  2. Caragiu, M.: Reprezentări de grupuri prin automorfisme de spatii metrice generalizate, Stud. Cerc. Mat. 44(4) (1992), 285-288.

    Google Scholar 

  3. Erné, M.: Categories of distance spaces, abstract, Short Conference on Uniform Mathematics, Bern, Switzerland, 1991.

    Google Scholar 

  4. Erné, M. and Kopperman, R.: Natural continuity space structures on dual Heyting algebras, Fundamenta Mathematicae 136 (1990), 157-177.

    Google Scholar 

  5. Erné, M. and Heitzig, J.: A common description of the most familiar topological categories by means of distance spaces, Preprint.

  6. Flachsmeyer, J.: Einige topologische Fragen in der Theorie der Booleschen Algebren, Archiv der Mathematik 16 (1965), 25-33.

    Google Scholar 

  7. Flagg, R. C.: Quantales and continuity spaces, Algebra Universalis 37 (1997), 257-276.

    Google Scholar 

  8. Fletcher, P. and Lindgren, W. F.: Quasi-uniform Spaces, Marcel Dekker, New York-Basel, 1982.

    Google Scholar 

  9. Gevers, M. and Reinhold, J.: What is the implication of quantum intuitionism?, Preprint no. 288, Institut für Mathematik der Universität Hannover, 8 pages, 1998.

  10. Goodearl, K. R.: Partially Ordered Abelian Groups witl Interpolation, American Mathematical Society, Providence, Rhode Island, 1986.

    Google Scholar 

  11. Hardegree, G. M.: Quasi-implication algebras, Part I: Elementary theory, Algebra Universalis 12 (1981), 30-47.

    Google Scholar 

  12. Hardegree, G. M.: Material conditionals in orthomodular lattices, Notre Dame Journal of Formal Logic 22 (1981), 163-182.

    Google Scholar 

  13. Heitzig, J.: Halbgeordnete Monoide und Distanzfunktionen [Partially ordered monoids and distance functions], diploma thesis, Universität Hannover, 1998.

  14. Heitzig, J.: Conditional sentences, possible worlds, and distance functions, Preprint.

  15. Heitzig, J.: Adjunctions between the category of distance sets and some variety, abstract, 58th Workshop on General Algebra, Vienna, 1999.

  16. Heitzig, J.: Distance sets, spaces, and mappings between them, Ph.D. thesis, Universität Hannover, 2002.

  17. Herman, L., Marsden, E., and Piziak, R.: Implication connectives in orthomodular lattices, Notre Dame Journal of Formal Logic XVI (1975), 305-328.

    Google Scholar 

  18. Holland, W. Ch.: Intrinsic metrics for lattice ordered groups, in W. B. Powell and C. Tsinakis (eds.), Ordered Algebraic Structures, Marcel Dekker, New York-Basel, 1985.

    Google Scholar 

  19. Kalmbach, G.: Orthomodular Lattices, Academic Press, London, 1983.

    Google Scholar 

  20. Kelley, J. L.: General Topology, Van Nostrand, New York, 1955.

    Google Scholar 

  21. Kopperman, R.: All topologies come from generalized metrics, American Mathematical Monthly 95(2) (1988), 89-97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heitzig, J. Many Familiar Categories can be Interpreted as Categories of Generalized Metric Spaces. Applied Categorical Structures 10, 505–520 (2002). https://doi.org/10.1023/A:1020526912025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020526912025

Navigation