Skip to main content
Log in

Azumaya Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We define the notions of Azumaya category and Brauer group in category theory enriched over some very general base category V. We prove the equivalence of various definitions, in particular in terms of separable categories or progenerating bimodules. When V is the category of modules over a commutative ring R with unit, we recapture the classical notions of Azumaya algebra and Brauer group and provide an alternative, purely categorical treatment of those theories. But our theory applies as well to the cases of topological, metric or Banach modules, to the sheaves of such structures or graded such structures, and many other examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso Alvarez, J. N., Fernandez Vilaboa, J.M., Lopez Lopez, M. P., Villanueva Novoa, E. and Gonzalez Rodriguez, R.: A Picard-Brauer five term exact sequence for braided categories, in Rings, Hopf Algebras and Brauer Groups, Lecture Notes in Pure and Appl. Math. 197, Marcel Dekker, 1998.

  2. Auslander, M. and Goldman, O.: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.

    Google Scholar 

  3. Bass, H.: Algebraic K-Theory, Benjamin, 1968.

  4. Bénabou, J.: Introduction to Bicategories, Lecture Notes in Math. 47, Springer, 1967, pp. 1-77.

  5. Borceux, F.: Handbook of Categorical Algebra I: Basic Category Theory, Cambridge Univ. Press, Cambridge, 1994.

    Google Scholar 

  6. Borceux, F.: Handbook of Categorical Algebra II: Categories and Structures, Cambridge Univ. Press, Cambridge, 1994.

    Google Scholar 

  7. Day, B.: Note on compact closed categories, J. Austral. Math. Soc. 24-A (1977), 309-311.

    Google Scholar 

  8. Day, B. and Street, R.: Monoidal bicategories and Hopf algebroids, Advances in Mathematics 129 (1997), 99-157.

    Google Scholar 

  9. Borceux, F. and Dejean, D.: Cauchy completion in category theory, Cahiers de Topologie et Géométrie Differéntielle Catégorique XXVII(2) (1986), 133-145.

    Google Scholar 

  10. DeMeyer, F. and Ingraham, E.: Separable Algebras over Commutative Rings, Lecture Notes in Mathematics 181, Springer, 1971.

  11. Gordon, R., Power, J. and Street, R.: Coherence for Tricategories, Memoirs of the American Mathematical Society 558, 1995.

  12. Johnson, S. R.: Small Cauchy completions, Journal of Pure and Applied Algebra 62 (1989), 35-45.

    Google Scholar 

  13. Joyal, A. and Tierney, M.: An Extension of the Galois Theory of Grothendieck, Memoirs of the American Mathematical Society 309, 1984.

  14. Kelly, G. M.: Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge Univ. Press, Cambridge, 1982.

    Google Scholar 

  15. Kelly, G. M. and Laplaza, M. L.: Coherence for compact closed categories, Journal of Pure and Applied Algebra 19 (1980), 193-213.

    Google Scholar 

  16. Knus, D. and Ojanguren, M.: Théorie de la descente et algèbres d'Azumaya, Lecture Notes in Mathematics 389, Springer, 1974.

  17. Lawvere, F. W.: Metric spaces, generalized logic and closed categories, Rendiconti del Seminario Matematico e Fisico di Milano 43 (1973), 135-166.

    Google Scholar 

  18. Mitchell, B.: Separable Algebroids, Memoirs of the American Mathematical Society 57 (333), 1985.

  19. Orzech, M. and Small, C.: The Brauer Group of Commutative Rings, Marcel Dekker, 1975.

  20. Pareigis, B.: Non additive ring and module theory IV: The Brauer group of a symmetric monoidal category, Springer Lecture Notes in Mathematics 549 (1976), 112-133.

    Google Scholar 

  21. Street, R.: Absolute colimits in enriched categories, Cahiers de Topologie et Géométrie Différentielle Catégorique XXIV(4) (1983), 377-379.

    Google Scholar 

  22. Van Oystaeyen, F. and Zhang, Y.: The Brauer group of a braided monoidal category, Journal of Algebra 238 (1998), 96-128.

    Google Scholar 

  23. Vitale, E.: The Brauer and Brauer-Taylor groups of a symmetric monoidal category, Cahiers de Topologie et Géométrie Différentielle Catégorique XXXVII(2) (1996), 91-122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borceux, F., Vitale, E. Azumaya Categories. Applied Categorical Structures 10, 449–467 (2002). https://doi.org/10.1023/A:1020570213428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020570213428

Navigation