Skip to main content
Log in

Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study the numerical approximation of distributed nonlinear optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. Our main result are error estimates for optimal controls in the maximum norm. Characterization results are stated for optimal and discretized optimal control. Moreover, the uniform convergence of discretized controls to optimal controls is proven under natural assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Alt and U. Mackenroth, “Convergence of finite element approximations to state constrained convex parabolic boundary control problems,” SIAM J. Control and Optim., vol. 27, pp. 718–736, 1989.

    Google Scholar 

  2. N. Arada and J.-P. Raymond, “Approximation of Young measures for state-constrained optimal control problems,” Numer. Funct. Anal. and Optimiz., vol. 21, 2000.

  3. V. Arnautu and P. Neittaanmäki, “Discretization estimates for an elliptic control problem,” Numer. Funct. Anal. and Optimiz., vol. 19, pp. 431–464, 1998.

    Google Scholar 

  4. J.F. Bonnans and E. Casas, “An extension of Pontryagin's principle for state constrained optimal control of semilinear elliptic equation and variational inequalities,” SIAM J. Control and Optim., vol. 33, pp. 274–298, 1995.

    Google Scholar 

  5. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 1991.

  6. E. Casas, “Optimal control in coefficients of elliptic equations with state constraints,” Appl. Math. Optim., vol. 26, pp. 21–37, 1992.

    Google Scholar 

  7. E. Casas, “Finite element approximations for some optimal control problems with state constraints,” Pn IMACS 91, 13th World Congress on Computation and Applied Math., R. Vichnevetski and J. Miller (Eds.), Dublin, 3, pp. 1165–1166, 1991.

  8. E. Casas and M. Mateos, “Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints,” SIAM J. Control and Optim., vol. 40, pp. 1431–1454, 2002.

    Google Scholar 

  9. E. Casas and M. Mateos, “Uniform convergence of the FEM. Applications to state constrained control problems,” Comp. Appl. Math., to appear.

  10. E. Casas and F. Tröltzsch, “Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory,” SIAM J. Optim., to appear.

  11. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1978.

  12. A.L. Dontchev and W.W. Hager, “The Euler approximation in state constrained optimal control,” Math. of Computation, vol. 70, pp. 173–203, 2000.

    Google Scholar 

  13. A.L. Dontchev and W.W. Hager, “Second-order Runge-Kutta approximations in control constrained optimal control,” SIAM J. Numer. Anal., vol. 38, pp. 202–226, 2000.

    Google Scholar 

  14. R. Falk, “Approximation of a class of optimal control problems with order of convergence estimates,” J. Math. Anal. Appl., vol. 44, pp. 28–47, 1973.

    Google Scholar 

  15. T. Geveci, “On the approximation of the solution of an optimal control problem problem governed by an elliptic equation,” R.A.I.R.O. Analyse numérique/Numerical Analysis., vol. 13, pp. 313–328, 1979.

    Google Scholar 

  16. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.

  17. W.W. Hager, “Multiplier methods for nonlinear optimal control,” SIAM J. Numer. Anal., vol. 27, pp. 1061–1080, 1990.

    Google Scholar 

  18. W.W. Hager, “Numerical analysis in optimal control,” in: Optimal Control of Complex Structures. International Series of Numerical Mathematics, Birkhäuser, Basel, vol. 139, pp. 83–93, 2001.

    Google Scholar 

  19. G. Knowles, “Finite element approximation of parabolic time optimal control problems,” SIAM J. Control and Optim., vol. 20, pp. 414–427, 1982.

    Google Scholar 

  20. I. Lasiecka, “Boundary control of parabolic systems: Finite-element approximations,” Appl. Math. Optim., vol. 6 pp. 287–333, 1980.

    Google Scholar 

  21. I. Lasiecka, “Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions,” SIAM J. Control and Optim., vol. 97, pp. 477–500, 1984.

    Google Scholar 

  22. U. Mackenroth, “Some remarks on the numerical solution of bang-bang-type optimal control problems,” Numer. Funct. Anal. and Optimiz., vol. 5, pp. 457–484, 1982-83.

    Google Scholar 

  23. U. Mackenroth, “Numerical solutions of some parabolic boundary control problems by finite elements,” in Control Problems for Systems Described by Partial Differential Equations and Applications. Lect. Notes Contr. Inf. Sci., vol. 97, pp. 325–335, 1987.

    Google Scholar 

  24. K. Malanowski, C. Büskens, and H. Maurer, “Convergence of approximations to nonlinear control problems,” in Mathematical Programming with Data Perturbation, A.V. Fiacco (Ed.), Marcel Dekker, Inc.: New York, pp. 253–284, 1997.

    Google Scholar 

  25. M. Mateos, Problemas de control óptimo gobernados por ecuaciones semilineales con restricciones de tipo integral sobre el gradiente del estado, Thesis, University of Cantabria, Santander, June 2000.

    Google Scholar 

  26. R.S. McKnight and W.E. Bosarge, “The Ritz-Galerkin procedure for parabolic control problems,” Siam J. Control, vol. 11, pp. 510–524, 1973.

    Google Scholar 

  27. P.A. Raviart and J.M. Thomas, “Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles, Masson, 1992.

  28. D. Tiba and F. Tröltzsch, “Error estimates for the discretization of state constrained convex control problems,” Numer. Funct. Anal. and Optimiz., vol. 17, pp. 1005–1028, 1996.

    Google Scholar 

  29. F. Tröltzsch, “Semidiscrete finite element approximation of parabolic boundary control problems-convergence of switching points,” in: Optimal Control of Partial Differential Equations II. International Series of Numerical Mathematics, Birkhäuser, Basel, vol. 78, pp. 219–232, 1987.

    Google Scholar 

  30. F. Tröltzsch, “Approximation of nonlinear parabolic boundary problems by the Fourier method-Convergence of optimal controls,” Optimization, vol. 22, pp. 83–98, 1991.

    Google Scholar 

  31. F. Tröltzsch, “On a convergence of semidiscrete Ritz-Galerkin schemes applied to the boundary control of parabolic equations with non-linear boundary condition,” Z. Angew. Math. Mech, vol. 72, pp. 291–301, 1992.

    Google Scholar 

  32. F. Tröltzsch, “Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems-Strong convergence of optimal controls,” Appl. Math. Optim., vol. 29, pp. 309–329, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arada, N., Casas, E. & Tröltzsch, F. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem. Computational Optimization and Applications 23, 201–229 (2002). https://doi.org/10.1023/A:1020576801966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020576801966

Navigation