Skip to main content
Log in

On-Demand Multicast Routing Protocol in Multihop Wireless Mobile Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

An ad hoc network is a dynamically reconfigurable wireless network with no fixed infrastructure or central administration. Each host is mobile and must act as a router. Routing and multicasting protocols in ad hoc networks are faced with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. This paper presents the On-Demand Multicast Routing Protocol (ODMRP) for wireless mobile ad hoc networks. ODMRP is a mesh-based, rather than a conventional tree-based, multicast scheme and uses a forwarding group concept; only a subset of nodes forwards the multicast packets via scoped flooding. It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP performance with other multicast protocols proposed for ad hoc networks via extensive and detailed simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Agrawal, D.K. Anvekar and B. Narendran, Optimal prioritization of handovers in mobile cellular networks, in: Proceedings of IEEE PIMRC'94, The Hague, Netherlands (September 1994) pp. 1393–1398.

  2. S.H. Bae, S.-J. Lee and M. Gerla, Unicast performance analysis of the ODMRP in a mobile ad hoc network testbed, in: Proceedings of IEEE ICCCN 2000, Las Vegas, NV (October 2000) pp. 148–153.

  3. R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin and H.Y. Song, PARSEC: A parallel simulation environment for complex systems, IEEE Computer 31(10) (October 1998) 77–85.

    Google Scholar 

  4. T. Ballardie, P. Francis and J. Crowcroft, Core Based Trees (CBT) –An architecture for scalable inter-domain multicast routing, in: Proceedings of ACM SIGCOMM'93, San Francisco, CA (October 1993) pp. 85–95.

  5. V. Bharghavan, A. Demers, S. Shenker and L. Zhang, MACAW: A media access protocol for wireless LANs, in: Proceedings of ACM SIGCOMM' 94, London, UK (September 1994) pp. 212–225.

  6. E. Bommaiah, M. Liu, A. McAuley and R. Talpade, AMRoute: Ad hoc Multicast Routing protocol, Internet Draft, Work in progress, drafttalpade-manet-amroute-00.txt (August 1998).

  7. C.-C. Chiang, M. Gerla and L. Zhang, Forwarding Group Multicast Protocol (FGMP) for multihop, mobile wireless networks, Cluster Computing 1(2) (1998) 187–196.

    Google Scholar 

  8. M.S. Corson and S.G. Batsell, A Reservation-Based Multicast (RBM) routing protocol for mobile networks: Initial route construction phase, Wireless Networks 1(4) (December 1995) 427–450.

    Google Scholar 

  9. M.S. Corson and A. Ephremides, A distributed routing algorithm for mobile wireless Networks, Wireless Networks 1(1) (February 1995) 61–81.

    Google Scholar 

  10. M.S. Corson and J. Macker, Mobile ad hoc networking (MANET): Routing protocol performance issues and evaluation considerations, RFC 2501, Internet Engineering Task Force (January 1999).

  11. S.E. Deering and D.R. Cheriton, Multicast routing in datagram internetworks and extended LANs, Transactions on Computer Systems 8(2) (May 1990) 85–110.

    Google Scholar 

  12. S. Deering, D.L. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu and L. Wei, The PIM architecture for wide-area multicast routing, IEEE/ACM Transactions on Networking 4(2) (April 1996) 153–162.

    Google Scholar 

  13. C. Diot, W. Dabbous and J. Crowcroft, Multipoint communication: A survey of protocols, functions and mechanisms, IEEE Journal on Selected Areas in Communications 15(3) (April 1997) 277–290.

    Google Scholar 

  14. J.J. Garcia-Luna-Aceves and E.L. Madruga, The core-assisted mesh protocol, IEEE Journal on Selected Areas in Communications 17(8) (August 1999) 1380–1394.

    Google Scholar 

  15. J.J. Garcia-Luna-Aceves and M. Spohn, Source-tree routing in wireless networks, in: Proceedings of IEEE ICNP'99, Toronto, Canada (November 1999) pp. 273–282.

  16. J.J. Garcia-Luna-Aceves and M. Spohn, Scalable link-state Internet routing, in: Proceedings of IEEE ICNP'98, Austin, TX (October 1998) pp. 52–61.

  17. M. Gerla, C.-C. Chiang and L. Zhang, Tree multicast strategies in mobile, multihop wireless networks, Mobile Networks and Applications 4(3) (October 1999) 193–207.

    Google Scholar 

  18. IEEE Computer Society LAN MAN Standards Committee, Wireless LANMedium Access Protocol (MAC) and Physical Layer (PHY) specification, IEEE Standard 802.11-1997, The Institute of Electrical and Electronics Engineers, New York (1997).

    Google Scholar 

  19. Internet Engineering Task Force (IETF), Mobile Ad Hoc Networks (MANET) working group charter, http://www.ietf.org /html.charters/manet-charter.html

  20. L. Ji and M.S. Corson, A lightweight adaptive multicast algorithm, in: Proceedings of IEEE GLOBECOM'98, Sydney, Australia (November 1998) pp. 1036–1042.

  21. J. Jubin and J.D. Tornow, The DARPA packet radio network protocols, Proceedings of the IEEE 75(1) (January 1987) 21–32.

    Google Scholar 

  22. E.D. Kaplan (Ed.), Understanding the GPS: Principles and Applications (Artech House, Boston, MA, 1996).

    Google Scholar 

  23. L. Kleinrock and J. Silvester, Optimum transmission radii for packet radio networks or why six is a magic number, in: Proceedings of National Telecommunications Conference, Birmingham, AL (December 1978) pp. 4.3.2–4.3.5.

  24. L. Kleinrock and F.A. Tobagi, Packet switching in radio channels: Part I – carrier sense multiple-access modes and their throughput-delay characteristics, IEEE Transactions on Communications COM-23(12) (December 1975) 1400–1416.

    Google Scholar 

  25. S.-J. Lee, M. Gerla and C.-C. Chiang, On-demand multicast routing protocol, in: Proceedings of IEEE WCNC'99, New Orleans, LA (September 1999) pp. 1298–1302.

  26. S.-J. Lee, W. Su and M. Gerla, Exploiting the unicast functionality of the on-demand multicast routing protocol, in: Proceedings of IEEE WCNC 2000, Chicago, IL (September 2000).

  27. S.-J. Lee, W. Su and M. Gerla, Ad hoc wireless multicast with mobility prediction, in: Proceedings of IEEE ICCCN'99, Boston, MA (October 1999) pp. 4–9.

  28. S.-J. Lee, W. Su and M. Gerla, On-Demand Multicast Routing Protocol (ODMRP) for ad hoc networks, Internet Draft, Work in progress draft-ietf-manet-odmrp-02.txt (January 2000).

  29. D.A. Maltz, J. Broch, J. Jetcheva and D.B. Johnson, The effects of on-demand behavior in routing protocols for multihop wireless ad hoc networks, IEEE Journal on Selected Areas in Communications 17(8) (August 1999) 1439–1453.

    Google Scholar 

  30. D.L. Mills, Internet time synchronization: The network time protocol, IEEE Transactions on Communications 39(10) (October 1991) 1482–1493.

    Google Scholar 

  31. J. Moy, Multicast routing extensions for OSPF, Communications of the ACM 37(8) (August 1994) 61–66, 114.

    Google Scholar 

  32. S. Murthy and J.J. Garcia-Luna-Aceves, An efficient routing protocol for wireless networks, Mobile Networks and Applications 1(2) (October 1996) 183–197.

    Google Scholar 

  33. B. Narendran, P. Agrawal and D.K. Anvekar, Minimizing cellular handover failures without channel utilization loss, in: Proceedings of IEEE GLOBECOM'94, San Francisco, CA (December 1994) pp. 1679–1685.

  34. T. Ozaki, J.B. Kim and T. Suda, Bandwidth-efficient multicast routing protocol for ad-hoc networks, in: Proceedings of IEEE ICCCN'99, Boston, MA (October 1999) pp. 10–17.

  35. R. Prakash, Unidirectional links prove costly in wireless ad-hoc networks, in: Proceedings of ACM DIAL M'99 Workshop, Seattle, WA (August 1999) pp. 15–22.

  36. T.S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, Upper Saddle River, NJ, 1995).

    Google Scholar 

  37. T.S. Rappaport, S.Y. Seidel and K. Takamizawa, Statistical channel impulse response models for factory and open plan building radio communication system design, IEEE Transactions on Communications COM-39(5) (May 1991) 794–807.

    Google Scholar 

  38. E.M. Royer and C.E. Perkins, Multicast operation of the ad-hoc on-demand distance vector routing protocol, in: Proceedings of ACM/IEEE MOBICOM'99, Seattle, WA (August 1999) pp. 207–218.

  39. P. Sinha, R. Sivakumar and V. Bharghavan, MCEDAR: Multicast core-extraction distributed ad hoc routing, in: Proceedings of IEEE WCNC'99, New Orleans, LA (September 1999) pp. 1313–1317.

  40. C.-K. Toh, Associativity-based routing for ad-hoc mobile networks, Wireless Personal Communications Journal 4(2) (March 1997) 103–139.

    Google Scholar 

  41. UCLA Parallel Computing Laboratory and Wireless Adaptive Mobility Laboratory, GloMoSim: A scalable simulation environment for wireless and wired network systems, http://pcl.cs.ucla.edu /projects/domains/glomosim.html

  42. C.W. Wu, Y.C. Tay and C.-K. Toh, Ad hoc Multicast Routing protocol utilizing Increasing id-numberS (AMRIS) functional specification, Internet Draft, Work in progress, draft-ietf-manet-amrisspec-00.txt (November 1998).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Su, W. & Gerla, M. On-Demand Multicast Routing Protocol in Multihop Wireless Mobile Networks. Mobile Networks and Applications 7, 441–453 (2002). https://doi.org/10.1023/A:1020756600187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020756600187

Navigation