Skip to main content
Log in

A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We propose a new multiphase level set framework for image segmentation using the Mumford and Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also a generalization of an active contour model without edges based 2-phase segmentation, developed by the authors earlier in T. Chan and L. Vese (1999. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151) and T. Chan and L. Vese (2001. IEEE-IP, 10(2):266–277). The multiphase level set formulation is new and of interest on its own: by construction, it automatically avoids the problems of vacuum and overlap; it needs only log n level set functions for n phases in the piecewise constant case; it can represent boundaries with complex topologies, including triple junctions; in the piecewise smooth case, only two level set functions formally suffice to represent any partition, based on The Four-Color Theorem. Finally, we validate the proposed models by numerical results for signal and image denoising and segmentation, implemented using the Osher and Sethian level set method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amadieu, O., Debreuve, E., Barlaud, M., and Aubert, G. 1999. In-ward and outward curve evolution using level set method. In Proceedings ICIP, Japan, pp. 188–192.

  • Ambrosio, L. 1989. A compactness theorem for a special class of functions of bounded variation. Boll.Un.Mat.It., 3(B):857–881.

    Google Scholar 

  • Ambrosio, L. and Tortorelli, V.M. 1990. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm.Pure Appl.Math., 43:999–1036.

    Google Scholar 

  • Ambrosio, L. and Tortorelli, V.M. 1992. On the approximation of free discontinuity problems. Bolletino U.M.I., 7(6-B):105–123.

    Google Scholar 

  • Aubert, G. and Kornprobst, P. 2001. Mathematical Problems in Image Processing.Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147, Springer: New York.

    Google Scholar 

  • Barles, G. 1994. Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications, vol. 17, Springer-Verlag.

  • Barles, G. and Souganidis, P.E. 1998. A new approach to front propagation problems: theory and applications. Arch.Rational Mech.Analysis, 141(3):237–296.

    Google Scholar 

  • Bourdin, B. 1999. Image segmentation with a finite element method. M2AN Math.Model.Numer.Anal., 33(2):229–244.

    Google Scholar 

  • Bourdin, B. and Chambolle, A. 2000. Implementation of a finite-elements approximation of the Mumford-Shah functional. Numer.Math., 85(4):609–646.

    Google Scholar 

  • Caselles, V., Morel, J.M., and Sbert, C. 1998. An axiomatic approach to image interpolation. IEEE-IP, 7(3):376–386.

    Google Scholar 

  • Chambolle, A. 1992. Un théoréme de-convergence pour la seg-mentation des signaux. C.R.Acad.Sci.Paris, 314(I):191–196.

    Google Scholar 

  • Chambolle, A. 1995. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J.Appl.Math., 55(3):827–863.

    Google Scholar 

  • Chambolle, A. 1999. Finite-differences discretizations of the Mumford-Shah functional. M2AN Math.Model.Numer.Anal., 33(2):261–288.

    Google Scholar 

  • Chambolle, A. and Dal Maso, G. 1999. Discrete approximation of the Mumford-Shah functional in dimension two. M2AN Math.Model.Numer.Anal., 33(4):651–672.

    Google Scholar 

  • Chan, T. and Vese, L. 1999. An active contour model without edges. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151.

  • Chan, T. and Vese, L. 2001. Active contours without edges. IEEE-IP, 10(2):266–277.

    Google Scholar 

  • Chan, T., Sandberg, B.Y., and Vese, L. 2000. Active contours without edges for vector-valued images. JVCIR, 11:130–141.

    Google Scholar 

  • Chen, Y.G., Giga, Y., and Goto, S. 1991. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J.Diff.Geometry, 33:749–786.

    Google Scholar 

  • Chen, S., Merriman, B., Osher, S., and Smereka, P. 1997. A simple level set method for solving Stefan problems. JCP, 135:8–29.

    Google Scholar 

  • Cohen, L.D. 1997. Avoiding local minima for deformable curves in image analysis. In Curves and Surfaces with Applications in CAGD,A. Le Méhauté, C. Rabut, and L.L. Schumaker (Eds.), pp. 77–84.

  • Cohen, L., Bardinet, E., and Ayache, N. 1993. Surface reconstruction using active contour models. In Proceedings SPIE 93 Conference on Geometric Methods in Computer Vision, San Diego, CA, July 1993.

  • Crandall, M.G., Ishii, H., and Lions, P.-L. 1992. User's guide to viscosity solutions of second order partial differential equations. Amer.Math.Soc.Bull., 27:1–67.

    Google Scholar 

  • Dal Maso, G., Morel, J.M., and Solimini, S. 1992. A variational method in image segmentation: existence and approximation results. Acta Matematica, 168:89–151.

    Google Scholar 

  • De Giorgi, E. and Ambrosio, L. 1988. Newfunctionals in the calculus of variations. Atti.Accad.Naz.Lincei Rend.Cl.Sci.Fis.Mat.Natur., 82(2):199–210.

    Google Scholar 

  • De Giorgi, E., Carriero, M., and Leaci, A. 1989. Existence theorem for a minimum problem with free discontinuity set. Arch.Rational Mech.Anal., 108(3):195–218.

    Google Scholar 

  • Ei, S.-I., Ikota, R., and Mimura, M. 1999. Segregating partition problem in competition-diffusion systems. Interfaces and Free Boundaries, 1(1):57–80.

    Google Scholar 

  • Evans, L.C. and Gariepy, R.F. 1992. Measure Theory and Fine Properties of Functions. CRC Press: Boca Raton, FL.

    Google Scholar 

  • Evans, L.C. and Spruck, J. 1991. Motion of level sets by mean curvature. J.Diff.Geometry, 33:635–681.

    Google Scholar 

  • Fedkiw, R.P. 1999. The ghost fluid method for discontinuities and interfaces. In Proceedings of Godunov Methods: Theory and Applications, Oxford, UK, October 1999.

  • Fedkiw, R.P., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). JCP, 152:457–492.

    Google Scholar 

  • Guichard, F. and Morel, J.-M. Image Analysis and P.D.E.'s (to appear).

  • Jensen, R. 1993. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch.Rat.Mech.Anal., 123:51–74.

    Google Scholar 

  • Kanizsa, G. 1997. La grammaire du voir. Essais sur la perception. Diderot Editeur, Arts et Sciences.

  • Koepfler, G., Lopez, C., and Morel, J.M. 1994. A multiscale algorithm for image segmentation by variational method. SIAM J.of Numerical Analysis, 31(1):282–299.

    Google Scholar 

  • Leonardi, G.P. and Tamanini, I. 1998. On minimizing partitions with infinitely many components. Ann.Univ.Ferrara-Sez.VII-Sc.Mat., XLIV:41–57.

    Google Scholar 

  • Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., and Kikinis, R. 1999. Co-dimension 2 geodesic active contours for MRA segmentation. Information Processing in Medical Imaging, Proceedings, LNCS, vol. 1613, pp. 126–139.

  • March, R. 1992. Visual Reconstruction with discontinuities using variational methods. IVC, 10:30–38.

    Google Scholar 

  • Massari, U. and Tamanini, I. 1993. On the finiteness of optimal partitions. Ann.Univ.Ferrara-Sez.VII-Sc.Mat., XXXIX: 167–185.

    Google Scholar 

  • Merriman, B., Bence, J.K., and Osher, S. 1994. Motion of multiple junctions: A level set approach. JCP, 112(2):334–363.

    Google Scholar 

  • Morel, J.M. and Solimini, S. 1988. Segmentation of images by variational methods: A constructive approach. Revista Matematica Universidad Complutense de Madrid, 1:169–182.

    Google Scholar 

  • Morel, J.M. and Solimini, S. 1989. Segmentation d'images par méthode variationnelle: Une preuve constructive d'existence. CRASS Paris Série I, Math., 308:465–470.

    Google Scholar 

  • Morel, J.M. and Solimini, S. 1994. Variational Methods in Image Segmentation. PNLDE, vol. 14, Birkhäuser: Basel.

    Google Scholar 

  • Mumford, D., Nitzberg, M., and Shiota, T. 1993. Filtering, Segmentation and Depth. LNCS, vol. 662, Springer-Verlag: Berlin.

    Google Scholar 

  • Mumford, D. and Shah, J. 1989. Optimal approximation by piecewise smooth functions and associated variational problems. Comm.Pure Appl.Math. 42:577–685.

    Google Scholar 

  • Osher, S. and Fedkiw, R.P. 2001. Level set methods: An overview and some recent results. JCP, 169(2):463–502.

    Google Scholar 

  • Osher, S.J. and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Science, vol. 153, Springer.

  • Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. JCP, 79:12–49.

    Google Scholar 

  • Paragios, N. and Deriche, R. 2000. Coupled Geodesic active regions for image segmentation: A level set approach. In Proceedings ECCV, Dublin, vol. II, pp. 224–240.

    Google Scholar 

  • Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 1999. A level set model for image classification. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, Springer-Verlag: Berlin, pp. 306–317.

    Google Scholar 

  • Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 2000. A level set model for image classification. IJCV, 40(3):187–197.

    Google Scholar 

  • Sapiro, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press: Cambridge, UK.

    Google Scholar 

  • Sethian, J.A. 1999. Fast Marching Methods and Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechan-ics, Computer Vision and Materials Sciences. Cambridge University Press: Cambridge, UK.

    Google Scholar 

  • Shah, J. 1996. A common framework for curve evolution, segmentation and anisotropic diffusion. In Proceedings CVPR, pp. 136–142.

  • Shah, J. 1999. Riemannian Drums, Anisotropic Curve Evolution and Segmentation. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, Springer-Verlag: Berlin, pp. 129–140.

    Google Scholar 

  • Sharon, E., Brandt, A., and Basri, R. 2000. Fast multiscale image segmentation. In Proceedings CVPR, South Carolina, pp. 70–77.

  • Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE-PAMI, 22(8):888–905.

    Google Scholar 

  • Smith, K.A., Solis, F.J., and Chopp, D. 2002. A projection method for motion of triple junctions by level sets. Interfaces and Free Boundaries, 4(3):263–276.

    Google Scholar 

  • Sussman, M., Smereka, P., and Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flows. JCP, 119:146–159.

    Google Scholar 

  • Tamanini, I. 1996. Optimal approximation by piecewise constant functions. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, 25:73–85.

    Google Scholar 

  • Tamanini, I. and Congedo, G. 1996. Optimal segmentation of unbounded functions. Rend.Sem.Mat.Univ.Padova, 95:153–174.

    Google Scholar 

  • Tsai, A., Yezzi, A., and Willsky, A.S. 2001. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE-IP, 10(8): 1169–1186.

    Google Scholar 

  • Yezzi, A., Tsai, A., and Willsky, A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings ICCV, pp. 898–903.

  • Zhao, H.-K., Chan, T., Merriman, B. and Osher, S. 1996. Avariational level set approach to multiphase motion. JCP 127:179–195.

    Google Scholar 

  • Zhu, S.C., Lee, T.S., and Yuille, A.L. 1995. Region competition: Unifying snakes, region growing, Energy/Bayes/MDL for multi-band image segmentation. In Proceedings ICCV, Cambridge, pp. 416–423.

  • Zhu, S.C. and Yuille, A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multi-band image segmen-tation. IEEE-PAMI, 18:884–900.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vese, L.A., Chan, T.F. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50, 271–293 (2002). https://doi.org/10.1023/A:1020874308076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020874308076

Navigation