Skip to main content
Log in

Shifted Chebyshev Collocation Domain Truncation for Solving Problems on an Infinite Interval

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A shifted Chebyshev collocation method is proposed for solving problems on an infinite interval with domain truncation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References-

  1. Boyd, J. P. (1982). The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comput. Phys. 45, 43-79.

    Google Scholar 

  2. Boyd, J. P. (1987). Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70, 63-88.

    Google Scholar 

  3. Boyd, J. P. (1987). Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69, 112-142.

    Google Scholar 

  4. Boyd, J. P. (1988). Chebyshev domain truncation is inferior to Fourier domain truncation for solving problems on an infinite interval. J. Sci. Comput. 3, 109-120.

    Google Scholar 

  5. Boyd, J. P. (1992). The artan/tan and Kepler–Burgers mapping for periodica solutions with a schock, font, or internal boundary layer. J. Comput. Phys. 98, 181-193.

    Google Scholar 

  6. Boyd, J. P. (1999). Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, New York.

    Google Scholar 

  7. Bayliss, A., Class, A., and Matkowsky, B. J. (1995). Adaptive approximation of solutions to problems with multiple layers by Chebyshev pseudo-spectral methods. J. Comput. Phys. 116, 160-172.

    Google Scholar 

  8. Bayliss, A., Gottlieb, D., and Matkowsky, B. J. (1989). An adaptive pseudo-spectral method for reaction diffusion problems. J. Comput. Phys. 81, 421-443.

    Google Scholar 

  9. Bayliss, A., Garbey, M., and Matkowsky, B. J. (1995). Adaptive pseudo-spectral domain decomposition and the approximation of multiple layers. J. Comput. Phys. 119, 132-141.

    Google Scholar 

  10. Bayliss, A., and Matkowsky, B. J. (1987). Fronts, relaxation oscillations and period doubling in solid fuel combustion. J. Comput. Phys. 71, 147-168.

    Google Scholar 

  11. Bayliss, A., and Turkel, E. (1992). Mappings and accuracy for Chebyshev pseudo-spectral approximations. J. Comput. Phys. 101, 349-359.

    Google Scholar 

  12. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin.

    Google Scholar 

  13. Chan, T. F., and Kerkhoven, T. (1985). Fourier methods with extended stability intervals for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 22, 441-454.

    Google Scholar 

  14. Djidjeli, K., Price, W. G., Temarel, P., and Twizell, E. H. (1998). A linearized implicit pseudo-spectral method for certain non-linear water wave equations. Commun. Numer. Meth. Engng. 14, 977-993.

    Google Scholar 

  15. Fornberg, B., and Whitham, G. B. (1978). A numerical and theoretical study of certain nonlinear phenomena. Phil. Trans. Roy. Soc. 289, 373-404.

    Google Scholar 

  16. Gottlieb, D., Hussaini, M. Y., and Orszag, S. A. (1984). Theory and application of spectral methods. In Hussaini, M. Y., Voigt, R. G., and Gottlieb, D. (eds.), Spectral Methods for Partial Differential Equations, SIAM, Philadephia, pp. 1-54.

    Google Scholar 

  17. Gottlieb, D., and Orszag, S. (1977). Numerical Analysis of Spectral Methods: Theory and Applications, SIAM-CBMS, Philadelphia.

    Google Scholar 

  18. Ma, HP. (1988). A three-level Fourier pseudospectral scheme for Burgers' equation. Chinese J. Numer. Math. Appl. 10, 11-18.

    Google Scholar 

  19. Ma, HP. (1997). Coupled Chebyshev-Legendre spectral methods and their applications. In Cheng, CJ. (ed.), Modern Mathematics and Mechanics (MMM-VII), Shanghai University Press, Shanghai, pp. 103-110

    Google Scholar 

  20. Ma, HP., and Guo, BY. (1986). The Fourier pseudospectral method with a restrain operator for the Korteweg–de Vries equation. J. Comput. Phys. 65, 120-137

    Google Scholar 

  21. Ma, HP., and Sun, WW. (2001). A Legendre Petrov–Galerkin and Chebyshev collocation method for third-order differential equations. SIAM J. Numer. Anal. 38, 1425-1438

    Google Scholar 

  22. Maday, Y., and Quarteroni, A. (1988). Error analysis for spectral approximation of the Korteweg–de Vries equation. M2AN. 22, 499-529

    Google Scholar 

  23. Oliveira, F. (1973). Generalized Trigonometric Approximation–A Outline, Centro de Calculo Cientifico, Oeiras

    Google Scholar 

  24. Pasciak, J. E. (1982). Spectral methods for a nonlinear initial value problem involving pseudo differential operators. SIAM J. Numer. Anal. 19, 142-154

    Google Scholar 

  25. Pavoni, D. (1988). Single and multidomain Chebyshev collocation methods for the Korteweg–de Vries equation. Calcolo. 25, 311-346

    Google Scholar 

  26. Shen, J. (1996). Effcient Chebyshev–Legendre Galerkin methods for elliptic problems. Proceedings of ICOSAHOM'95, Houston J. Math., pp. 233-239-

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Ma, H. Shifted Chebyshev Collocation Domain Truncation for Solving Problems on an Infinite Interval. Journal of Scientific Computing 18, 191–213 (2003). https://doi.org/10.1023/A:1021146530553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021146530553

Navigation