Skip to main content
Log in

Ab initio Tertiary Structure Prediction of Proteins

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A daunting challenge in the area of computational biology has been to develop a method to theoretically predict the correct three-dimensional structure of a protein given its linear amino acid sequence. The ability to surmount this challenge, which is known as the protein folding problem, has tremendous implications. We introduce a novel ab initio approach for the protein folding problem. The accurate prediction of the three-dimensional structure of a protein relies on both the mathematical model used to mimic the protein system and the technique used to identify the correct structure. The models employed are based solely on first principles, as opposed to the myriad of techniques relying on information from statistical databases. The framework integrates our recently proposed methods for the prediction of secondary structural features including helices and strands, as well as β-sheet and disulfide bridge formation. The final stage of the approach, which culminates in the tertiary structure prediction of a protein, utilizes search techniques grounded on the foundations of deterministic global optimization, powerful methods which can potentially guarantee the correct identification of a protein's structure. The performance of the approach is illustrated with bovine pancreatic trypsin inhibitor protein and the immunoglobulin binding domain of protein G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjiman, C. S. and Floudas, C. A. (1996), Rigorous Convex Underestimators for General Twice–Differentiable Problems. J. Glob. Opt. 9: 23–40.

    Google Scholar 

  • Adjiman, C. S., Androulakis, I. P., Maranas, C. D. and Floudas, C. A. (1996), A global optimization method, αBB, for Process Design. Comput. Chem. Eng. 20: S419–S424.

    Google Scholar 

  • Adjiman, C. S., Androulakis, I. P. and Floudas, C. A. (1997), Global optimization of MINLP problems in process synthesis and design, Comput. Chem. Eng. 21: S445–S450.

    Google Scholar 

  • Adjiman, C. S., Dallwig, S., Floudas, C. A. and Neumaier, A. (1998a), A global optimization method for general twice-differentiable NLPs-I. Theoretical advances, Comput. Chem. Eng. 22: 1137–1158.

    Google Scholar 

  • Adjiman, C. S., Androulakis, I. P. and Floudas, C. A. (1998b), A global optimization method for general twice-differentiable NLPs-II. Implementation and computational results, Comput. Chem. Eng. 22: 1159–1179.

    Google Scholar 

  • Androulakis, I. P., Maranas, C. D. and Floudas, C. A. (1995), αBB: A global optimization method for general constrained nonconvex problems, J. Glob. Opt. 7, 337–363.

    Google Scholar 

  • Androulakis, I. P., Maranas, C. D. and Floudas, C. A. (1997), Global minimum potential energy conformation of oligopeptides, J. Glob. Opt. 11(1): 1–34.

    Google Scholar 

  • Baldwin, R. L. (1995), Alpha helix formation by peptides of defined sequence, Biophys Chem 55: 127–135.

    Google Scholar 

  • Baldwin, R. L. and Rose, G. D. (1999a), Is protein folding hierarchic? I. Local structure and peptide folding, Trends Biochem. Sci. 24: 26–33.

    Google Scholar 

  • Baldwin, R. L. and Rose, G. D. (1999b), Is protein folding hierarchic? II. Folding intermediates and transition states, Trends Biochem. Sci. 24: 77–83.

    Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Haak, J. R. (1984), Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81: 3684–3690.

    Google Scholar 

  • Brünger, A. (1992), X-PLOR, Version 3.1 A system for X-ray Crystallography and NMR. Yale University Press, New Haven, USA.

    Google Scholar 

  • Bryant, Z., Pande, V. S. and Rokhsar, D. S. (2000), Mechanical unfolding of a beta-hairpin using molecular dynamics, Biophys J 78: 584–589.

    Google Scholar 

  • Caves, L. S. D., Evanseck, J. D. and Karplus, M. (1998), Locally accessible conformations of proteins: Multiple molecular dynamics simulations of cramb in, Protein Sci. 7: 649–666.

    Google Scholar 

  • Chan, C.-K., Hu, Y., Takahashi, S., Rousseau, D. L., Eaton,W. A. and Hofrichter, J. (1997), Submillisecond protein folding kinetics studied by ultrarapid mixing, Proc. Nath. Acad. Sci., USA 94: 1779–1784.

    Google Scholar 

  • Daggett, V., Li, A. J. and Fersht, A. R. (1998), Combined molecular dynamics and Phi-value analysis of structure-reactivity relationships in the transition state and unfolding pathway of barnase: Structural basis of Hammond and anti-Hammon d effects, J. Am. Chem. Soc. 120: 12740–12754.

    Google Scholar 

  • Deisenhofer, J. and Steigemann, W. (1975), Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1.5 A resolution, Acta Crystallogr. Sect B 31: 238–250.

    Google Scholar 

  • Dill, K. A. (1999), Polymer principles and protein folding, Prot. Sci. 8: 1166–1180.

    Google Scholar 

  • Dinner, A. R., Lazaridis, T. and Karplus, M. (1999), Understanding beta-hairpin formation, Proc. Nath. Acad. Sci., USA 96: 9068–9073.

    Google Scholar 

  • Duan, Y. and Kollman, P. A. (1998), Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous s olution, Science 282: 740–744.

    Google Scholar 

  • Eyrich, V.A., Standley, D. M., Felts, A. K. and Friesner, R. A. (1999), Protein tertiary structure prediction using a branch and bound algorithm, Proteins 35: 41.

    Google Scholar 

  • Floudas, C. A. (1997), Deterministic global optimization in design, control, and computational chemistry. In: Biegler, L., Coleman, T., Conn, A. and Santosa, F. (eds.), Large Scale Optimization with Applications, Part II: Optimal Design and Control, Vol. 93. pp. 129–184.

  • Floudas, C. A. (1995), Nonlinear and Mixed-Integer Optimization. New York: Oxford University Press.

    Google Scholar 

  • Floudas, C. A. (2000), Deterministic Global Optimization: Theory, Methods and Applications, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Gallagher, T., Alexander, P., Bryan, P. and Gilliland, G. L. (1994), Two crystal structures of the B1 immunoglobulin-binding domain of Streptococcal protein G and comparison with NMR, Biochemistry 33: 4721–4729.

    Google Scholar 

  • Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986) NPSOL 4.0 User's Guide, Systems Optimization Laboratory, Dept. of Operations Research, Stanford University, CA.

    Google Scholar 

  • Gronenborn, A. M., Filpula, D. R., Essig, N. Z., Achari, A., Whitlow, M., Wingfield, P. T. and Clore, G. M. (1991), A novel highly stable fold of the immunoglobulin binding domain of streptococcal protein G Science 253: 657–660.

    Google Scholar 

  • Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997), Torsion angle dynamics for NMR structure calculation with the new program DYANA, J. Mol. Biol. 273: 283–298.

    Google Scholar 

  • Hamada, D., Segawa, S. and Goto, Y. (1996) Non-native alpha helical intermediate in the refolding of beta-lactoglobulin: A predominantly beta sheet protein, Nat Struct Biol 3: 868–873.

    Google Scholar 

  • Hertz, D., Adjiman, C. S. and Floudas, C. A. (1999), Two results on bounding the roots of interval polynomials, Comput. Chem. Eng 23: 1333–1339.

    Google Scholar 

  • Jain, A., Vaidehi, N. and Rodriguez, G. (1993), A fast recursive algorithm for molecular dynamics simulation, J. Comp. Phys. 106: 258–268.

    Google Scholar 

  • Kirkpatrick, S., C. D. G. Jr., and Vecchi, M. P. (1983), Optimization by simulated annealing, Science 220: 671–680.

    Google Scholar 

  • Klepeis, J. L. and Floudas, C. A. (1999), Free energy calculations for peptides via deterministic global optimization, J Chem Phys 110: 7491–7512.

    Google Scholar 

  • Klepeis, J. L. and Floudas, C. A. (2002a), Ab initio prediction of helical segments in polypeptides, J. Comp. Chem. 23: 245–266.

    Google Scholar 

  • Klepeis, J. L. and Floudas, C. A. (2002b), Ab initio prediction of β-sheets and disulfide bridges in polypeptides, Submitted for publication.

  • Klepeis, J. L., Androulakis, I. P. Ierapetritou, M. G. and Floudas, C. A. (1998), Predicting solvated peptide conformations via global minimization of energetic atom–to–atom interactions, Comput. Chem. Eng. 22: 765–788.

    Google Scholar 

  • Klepeis, J. L., Floudas, C. A., Morikis, D. and Lambris, J. D. (1999), Predicting peptide structures using NMR data and deterministic global optimization, J Comp Chem 20: 1354–1370.

    Google Scholar 

  • Klepeis, J. L., Pieja, M. T. and Floudas, C. A. (2002), Algorithmic improvements for protein structure prediction via deterministic global optimization, (in preparation).

  • Lee, J., Scheraga, H. A. and Rackovsky, S. (1997), New optimization method for conformational energy calculations on polypeptides: Conformational space annealing, J Comp Chem 18: 1222–1232.

    Google Scholar 

  • Lim, W. A. and Sauer, R. T. (1991), The role of internal packing interactions in determining the structure and stability of a protein, J Mol Biol 219: 359–376.

    Google Scholar 

  • Maranas, C. D. and Floudas, C. A. (1992), A global optimization approach for Lennard-Jones microclusters, J. Chem. Phys. 97(10): 7667–7677.

    Google Scholar 

  • Maranas, C. D. and Floudas C. A. (1993), Global optimization for molecular conformation problems, Annals of Operations Research 42: 85–117.

    Google Scholar 

  • Maranas, C. D. and Floudas, C. A. (1994a), A deterministic global optimization approach for molecular structure determination, J. Chem. Phys. 100(2): 1247–1261.

    Google Scholar 

  • Maranas, C. D. and Floudas, C. A. (1994b), Global minimum potential energy conformations of small molecules, J. Glob. Opt. 4: 135–170.

    Google Scholar 

  • Maranas, C. D., Androulakis, I. P. and Floudas, C. A., (1996), A deterministic global optimization approach for the protein folding problem, in: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 23. pp. 133–150.

    Google Scholar 

  • Munoz, V. and Serrano, L. (1994), Elucidating the folding problem of helical peptides using empirical parameters, Nat Struct Biol 1: 399–409.

    Google Scholar 

  • Munoz, V., Thompson, P. A., Hofrichter, J. and Eaton, W. A. (1997), Folding dynamics and mechanism of beta-hairpin formation, Nature 390: 196–199.

    Google Scholar 

  • Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S. and Scheraga, H. A. (1992), Energy parameters in polypeptides. 10, J. Phys. Chem. 96: 6472.

    Google Scholar 

  • Pande, V. S. and Rokhsar, D. S. (1999), Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G, Proc. Nath. Acad. Sci., USA 96: 9062–9067.

    Google Scholar 

  • Rice, L. M. and Brünger, A. T. (1994), Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement, Proteins 19: 277–290.

    Google Scholar 

  • Scheraga, H., 1996, PACK: Programs for packing polypeptide chains, online documentation.

  • Srinivasan, R. and Rose, G. D. (1999), A physical basis for protein secondary structure, Proc. Nath. Acad. Sci., USA 96: 14258–14263.

    Google Scholar 

  • Standley, D. M., Eyrich, V. A., Felts, A. K., Friesner, R. A. and McDermott, A. E.: (1999), A branch and bound algorithm for protein structure refinement from sparse NMR data sets, J. Mol. Bio. 285: 1691–1710.

    Google Scholar 

  • Wlodawer, A., Walter, J., Huber, R. and Sjolin L. (1984), Structure of bovine trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II, J. Mol. Biol. 180: 301–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.A. Floudas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klepeis, J.L., Floudas, C. Ab initio Tertiary Structure Prediction of Proteins. Journal of Global Optimization 25, 113–140 (2003). https://doi.org/10.1023/A:1021331514642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021331514642

Navigation