Skip to main content
Log in

p-Frames in Separable Banach Spaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let X be a separable Banach space with dual X *. A countable family of elements {g i }⊂X * is a p-frame (1 p ∞) if the norm ‖⋅‖ X is equivalent to the ℓp-norm of the sequence {g i (⋅)}. Without further assumptions, we prove that a p-frame allows every gX * to be represented as an unconditionally convergent series g=∑d i g i for coefficients {d i }∈ℓq, where 1/p+1/q=1. A p-frame {g i } is not necessarily linear independent, so {g i } is some kind of “overcomplete basis” for X *. We prove that a q-Riesz basis for X * is a p-frame for X and that the associated coefficient functionals {f i } constitutes a p-Riesz basis allowing us to expand every fX (respectively gX *) as f=∑g i (f)f i (respectively g=∑g(f i )g i ). In the general case of a p-frame such expansions are only possible under extra assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aldroubi and K.H. Gröchenig, Non-uniform sampling in shift invariant spaces, SIAM Rev. 43(4) (2001) 585–620.

    Google Scholar 

  2. A. Aldroubi, Q. Sun and W. Tang, p-frames and shift invariant subspaces of L p, J. Fourier Anal. Appl. 7(1) (2001) 1–22.

    Google Scholar 

  3. P. Casazza, D. Han and D. Larson, Frames for Banach spaces, Contemp. Math. 247 (1999) 149–182.

    Google Scholar 

  4. O. Christensen, Frames, bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. 38(3) (2001) 273–291.

    Google Scholar 

  5. I. Daubechies, Ten Lectures on Wavelets, SIAM Conference Series in Applied Mathematics (SIAM, Boston, 1992).

    Google Scholar 

  6. N. Dunford and J.T. Schwartz, Linear Operators I (Interscience Publishers, New York, 1957).

    Google Scholar 

  7. H.G. Feichtinger and G. Zimmermann, A Banach space of test functions for Gabor analysis, in: Gabor Analysis and Algorithms, Applied Numerical Harmonic Analysis (Birkhäuser, Boston, 1998) pp. 123–170.

    Google Scholar 

  8. K.H. Gröchenig, Describing functions: frames versus atomic decompositions, Monatshefte für Mathematik 112 (1991) 1–41.

    Google Scholar 

  9. C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989) 628–666.

    Google Scholar 

  10. H. Heuser, Functional Analysis (Wiley, New York, 1982).

    Google Scholar 

  11. H.O. Kim and J.K. Lim, New characterizations of Riesz bases, Appl. Comput. Harmon. Anal. 4 (1997) 222–229.

    Google Scholar 

  12. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1966).

    Google Scholar 

  13. I. Singer, Bases in Banach Spaces I (Springer, New York, 1970).

    Google Scholar 

  14. R.M. Young, An Introduction to Nonharmonic Fourier Series (Academic Press, New York, 1980) (revised 1st ed. 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, O., Stoeva, D.T. p-Frames in Separable Banach Spaces. Advances in Computational Mathematics 18, 117–126 (2003). https://doi.org/10.1023/A:1021364413257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021364413257

Navigation