Skip to main content
Log in

Quasi-Biorthogonal Frame Multiresolution Analyses and Wavelets

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We introduce the concepts of quasi-biorthogonal frame multiresolution analyses and quasi-biorthogonal frame wavelets which are natural generalizations of biorthogonal multiresolution analyses and biorthogonal wavelets, respectively. Necessary and sufficient conditions for quasi-biorthogonal frame multiresolution analyses to admit quasi-biorthogonal wavelet frames are given, and a non-trivial example of quasi-biorthogonal frame multiresolution analyses admitting quasi-biorthogonal frame wavelets is constructed. Finally, we characterize the pair of quasi-biorthogonal frame wavelets that is associated with quasi-biorthogonal frame multiresolution analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.Aldroubi, Oblique projections in atomic spaces, Proc. Amer.Math. Soc. 124(7) (1996) 2051–2060.

    Google Scholar 

  2. A. Aldroubi, P. Abry and M. Unser, Construction of biorthogonal wavelets starting from any two multiresolutions, IEEE Trans. Signal Process. 46(4) (1998) 1130–1133.

    Google Scholar 

  3. P. Auscher, Solution to two problems on wavelets, J. Geom. Anal. 5 (1995) 181–237.

    Google Scholar 

  4. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998) 398–427.

    Google Scholar 

  5. J. Benedetto and O.M. Treiber, Wavelet frames: multiresolution analysis and extension principle, in: Wavelet Transforms and Time-Frequency Signal Analysis, ed. L. Debnath (Birkhaüser, Boston, 2000) chapter 1.

    Google Scholar 

  6. M. Bownik, The structure of shift-invariant subspaces of L 2 (n), J. Funct. Anal. 177 (2000) 282–309.

    Google Scholar 

  7. P.G. Casazza, O. Christensen and N. Kalton, Frames of translates, Collect. Math. 52 (2001) 35–54.

    Google Scholar 

  8. A. Cohen, I. Daubechies and J.C. Feauveau, Biorthogonal basis of compactly supported wavelets, Commun. Pure Appl. Math. 45 (1992) 485–560.

    Google Scholar 

  9. O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997) 33–47.

    Google Scholar 

  10. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  11. C. de Boor, R. DeVore and A. Ron, Approximation from shift-invariant subspaces of L 2 (d), Trans. Amer. Math. Soc. 341(2) (1994) 787–806.

    Google Scholar 

  12. C. de Boor, R. DeVore and A. Ron, The structure of finitely generated shift-invariant spaces in L 2 (d ), J. Funct. Anal. 119 (1994) 37–78.

    Google Scholar 

  13. C. Di-Rong, On the splitting trick and wavelet frame packets, SIAM J. Math. Anal. 31(4) (2000) 726–739.

    Google Scholar 

  14. G. Gripenberg, A necessary and sufficient condition for the existence of a father wavelet, StudiaMath. 114(3) (1995) 207–226.

    Google Scholar 

  15. B. Han, Some applications of projection operators in wavelets, Acta Math. Sinica (N.S.) 11(1) (1995) 105–112.

    Google Scholar 

  16. E. Hernández and G. Weiss, A First Course on Wavelets (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  17. R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math. 103 (1998) 258–288.

    Google Scholar 

  18. H.O. Kim and J.K. Lim, Frame multiresolution analysis, Commun. Korean Math. Soc. 15(2) (2000) 285–308.

    Google Scholar 

  19. H.O. Kim and J.K. Lim, On frame wavelets associated with frame multi-resolution analysis, Appl. Comput. Harmon. Anal. 10 (2001) 61–70.

    Google Scholar 

  20. H.O. Kim, R.Y. Kim and J.K. Lim, Characterizations of biorthogonal wavelets which are associated with biorthogonal multiresolution analyses, Appl. Comput. Harmon. Anal. 11 (2001) 263–272.

    Google Scholar 

  21. S. Li, On general frame decompositions. Numer. Funct. Anal. Optim. 16(9/10) (1995) 1181–1191.

    Google Scholar 

  22. S. Mallat, Multiresolution approximations and wavelet orthonormal basis of L 2 (), Trans. Amer. Math. Soc. 315 (1989) 69–87.

    Google Scholar 

  23. A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of L 2 (d ), Canad. J.Math. 47(5) (1995) 1051–1094.

    Google Scholar 

  24. M. Unser and A. Aldroubi, A general sampling theory for nonideal acquisition devices, IEEE Trans. Signal Process. 42(11) (1994) 2915–2925.

    Google Scholar 

  25. X. Wang, The study of wavelets from the properties of their Fourier transforms, Ph.D. thesis, Washington University in St. Louis (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.O., Kim, R.Y. & Lim, J.K. Quasi-Biorthogonal Frame Multiresolution Analyses and Wavelets. Advances in Computational Mathematics 18, 269–296 (2003). https://doi.org/10.1023/A:1021371227388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021371227388

Navigation