Skip to main content
Log in

A Computational Biology Database Digest: Data, Data Analysis, and Data Management

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [26]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration of Molecular Biology data from different sources. This paper is primarily intended for an audience of computer scientists with a limited background in Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. 3D Hit Homepage: http://3dhit.bioinfo.pl/.

  2. S. Abiteboul, P. Buneman, and D. Suciu, Data on theWeb: From Relations to Semistructured Data and XML, Morgan Kaufmann Publishers: San Francisco, 2000.

    Google Scholar 

  3. ACEDB Documentation Library, http://genome.cornell.edu/acedocs/.

  4. S. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, pp. 403–410, 1990.

    Google Scholar 

  5. ASN.1 Standard. Web Site. http://asn1.elibel.tm.fr.

  6. T.L. Bailey and C. Elkan, “Fitting a mixture model by expectation maximization to discover motifs in biopolymers,” in Proceedings of the 2nd International Conference on Intelligent Systems in Molecular Biology (ISMB'94), 1994, pp. 28–36.

  7. T.L. Bailey and M. Gribskov, “Combining evidence using P-values: Application to sequence homology searches,” Bioinformatics, vol. 14, pp. 48–54, 1998.

    Google Scholar 

  8. A. Bairoch and R. Apweiler, “The SWISS-PROT database and its supplement TrEMBL in 2000,” Nucleic Acids Research, vol. 28, no. 1, pp. 45–48, 2000.

    Google Scholar 

  9. P. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens, “Tambis--Transparent access to multiple bioinformatics information sources,” in Proceedings of the 6th International Conference on Intelligent Systems in Molecular Biology (ISMB'98), 1998, pp. 25–34.

  10. P. Baker, C. Goble, S. Bechhofer, N. Paton, R. Stevens, and A. Brass, “An ontology for bioinformatics application,” Bioinformatics, vol. 15, no. 6, pp. 510–520, 1999.

    Google Scholar 

  11. W. Baker, A. van den Broek, E. Camon, P. Hingamp, P. Sterk, G. Stoesser, and M.A. Tuli, “The EMBL nucleotide sequence database,” Nucleic Acids Research, vol. 28, no. 1, pp. 19–23, 2000.

    Google Scholar 

  12. F. Bancilhon, C. Delobel, and P. Kanellakis, Building an Object-Oriented Database System: The Story of O2,” Morgan Kaufmann: San Francisco, 1992.

    Google Scholar 

  13. W.C. Barker, J.S. Garavelli, Z. Hou, H. Huang, R.S. Ledley, P.B. McGarvey, H.-W. Mewes, B.C. Orcutt, F. Pfeiffer, A. Tsugita, C.R. Vinayaka, C. Xiao, L.-S.L. Yeh, and C. Wu, “Protein information resource: A community resource for expert annotation of protein data,” Nucleic Acids Research, vol. 29, pp. 29–32, 2001.

    Google Scholar 

  14. D. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, and D.L. Wheeler, “GenBank,” Nucleic Acids Research, vol. 28, no. 1, pp. 15–18. 2000.

    Google Scholar 

  15. B. Boss, H. Wium Lee, C. Lilley, and I. Jacobs, “Cascading style sheets, level 2,” W3C Recommendation, 1998. http://www.w3.org/TR/REC-CSS2/.

  16. S.H. Bryant, J.-F. Gibrat, and T. Madej, “Threading a database of protein cores,” Proteins, vol. 23, pp. 356–369, 1995.

    Google Scholar 

  17. P. Buneman, “Semistructured data,” in Tutorial Proceedings of the 16th ACM Symposium on Principles of Database Systems, 1997.

  18. C. Burge and S. Karlin, “Prediction of complete gene structures in human genomic DNA,” Journal of Molecular Biology, vol. 268, pp. 78–94, 1997.

    Google Scholar 

  19. CBS Prediction Server: http://www.cbs.dtu.dk/services/.

  20. D. Chamberlain, J. Clark, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu, “XQuery 1.0: An XML query language,” W3C Working Draft, 2001, http://www.w3.org/TR/xquery/.

  21. I.-M. Chen and V. Markowitz, “An overview of the object protocol model (OPM) and the OPM data management tools,” Information Systems, vol. 20, no. 5, pp. 393–418, 1995.

    Google Scholar 

  22. Chime Homepage: http://www.mdlchime.com/chime/.

  23. J. Clark and S. DeRose, “XML path language (XPath) Version 1.0,” W3C Recommendation, 1999, http://www.w3.org/TR/xpath.

  24. P. Clote and R. Backofen, Computational Molecular Biology, an Introduction, John Wiley and Sons, Ltd.: Chichester, 2000.

    Google Scholar 

  25. ClustArray Homepage: http://www.cbs.dtu.dk/services/DNAarray/.

  26. M. Clutter, “Hearing on computational biology,” Statement before the Subcommittee on Science, Technology and Space Committee on Commerce, Science, and Transportation, U.S. Senate, 1996. http://www.nsf.gov/od/lpa/congress/cluttes2.htm.

  27. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

    Google Scholar 

  28. J.A. Cuff and G.J. Barton, “Evaluation and improvement of multiple sequence methods for protein secondary structure prediction,” PROTEINS: Structure, Function and Genetics, vol. 34, pp. 508–519, 1999.

    Google Scholar 

  29. S.B. Davidson, C. Overton, V. Tannen, and L. Wong, “Biokleisli: A digital library for biomedical researchers,” International Journal on Digital Libraries, vol. 1, no. 1, pp. 36–53, 1997.

    Google Scholar 

  30. F. Davis, B. Kahle, H. Morris, J. Salem, T. Shen, R. Wang, J. Sui, and M. Grinbaum, “WAIS interface protocol prototype functional specification (Version 1.5),” Thinking Machine Corporation, April' 90, 1990.

  31. A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg, “Alignment of whole genomes,” Nucleic Acids Research, vol. 27, no. 11, pp. 2369–2376, 1999.

    Google Scholar 

  32. U. Dengler, A.S. Siddiqui, and G.J. Barton, “Protein structural domains: Analysis of the 3Dee domains database,” Proteins, vol. 42, pp. 332–344, 2001.

    Google Scholar 

  33. C. Discala, X. Benigni, E. Barillot, and G. Vaysseix, “DBcat: A catalog of 500 biological databases,” Nucleic Acids Research, vol. 28, no. 1, pp. 8–9, 2000.

    Google Scholar 

  34. D.R. Dolk, “Model management and structured modeling: The role of an information resource dictionary system,” Communications of the ACM, vol. 31, no. 6, pp. 704–718, 1988.

    Google Scholar 

  35. R. Durbin and J. Thierry-Mieg, “The ACEDB genome database,” in Computational Methods in Genome Research, S. Suhai (Ed.), Plenum Press: New York, 1994.

    Google Scholar 

  36. S.R. Eddy, “Profile hidden Markov models,” Bioinformatics, vol. 14, pp. 755–763, 1998.

    Google Scholar 

  37. Entrez Online Dokumentation: http://www.ncbi.nlm.nih.gov/Database/index.html.

  38. T. Etzold, A. Ulyanow, and P. Argos, “SRS: Information retrieval system for molecular biology data banks,” Methods in Enzymology, vol. 266, pp. 114–128, 1996.

    Google Scholar 

  39. D.V. Faulkner and J. Jurka, “Multiple aligned sequence editor (MASE),” Trends in Biochemical Sciences, vol. 13, no. 8, pp. 321–322, 1988.

    Google Scholar 

  40. J. Felsenstein, “PHYLIP--Phylogeny inference package (Version 3.2),” Cladistics, vol. 5, pp. 164–166, 1989.

    Google Scholar 

  41. W. Fujibuchi, S. Goto, H. Migimatsu, I. Uchiyama, A. Ogiwara, Y. Akiyama, and M. Kanehisa, “DBGET/LinkDB: An integrated database retrieval system,” in Pacific Symposium on Biocomputing (PSB'97), 1997, pp. 683–694.

  42. M. Gardiner-Garden and M. Frommer, “CpG islands in vertebrate genomes,” Journal of Molecular Biology, vol. 196, pp. 261–282, 1987.

    Google Scholar 

  43. M.S. Gelfand, A.A. Mironov, and P.A. Pevzner, “Gene recognition via spliced sequence alignment,” in Proceedings of the National Academy of Science USA (PNAS), vol. 93, 1996, pp. 9061–9066.

    Google Scholar 

  44. GenBank Growth: http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.

  45. D. George, H.-W. Mewes, and H. Kihara, “A standardized format for sequence data exchange,” Protein Sequence Data Analysis, vol. 1, pp. 27–39, 1987.

    Google Scholar 

  46. D.R. Gilbert, D.R. Westhead, N. Nagano, and J.M. Thornton, “Motif-based searching in TOPS protein topology databases,” Bioinformatics, vol. 5, no. 4, pp. 317–326, 1999.

    Google Scholar 

  47. N. Guex and M.C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling,” Electrophoresis, vol. 18, pp. 2714–2723, 1997.

    Google Scholar 

  48. A. Gupta, H.V. Jagadish, and I.S. Mumick, “Data integration using self-maintainable views,” in Proceedings of the International Conference on Extending Database Technology (EDBT), LNCS, vol. 1057, Springer Verlag, 1996, pp. 140–144.

    Google Scholar 

  49. D. Gusfield, “Efficient methods for multiple sequence alignment with guaranteed error bounds,” Bulletin of Mathematical Biology, vol. 55, no. 141, p. 154, 1993.

    Google Scholar 

  50. M. Hammer and D. McLeod, “Database description with SDM: A semantic database model,” ACM Transactions on Database Systems, vol. 6, no. 3, 1981.

  51. HIV-MAP Homepage: http://hiv-web.lanl.gov/content/hiv-db/MAP/hivmap.html.

  52. K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch, “The PROSITE database, its status in 1999,” Nucleic Acids Research, vol. 27, no. 1, pp. 215–219, 1999.

    Google Scholar 

  53. L. Holm and C. Sander, “Protein structure comparison by alignment of distance matrices,” Journal of Molecular Biology, vol. 233, pp. 123–138, 1993.

    Google Scholar 

  54. A.K. Jain and R.C. Dubes, Algorithms for clustering data, Prentice-Hall, 1988.

  55. Jalview Homepage: http://circinus.ebi.ac.uk:6543/jalview/help.html.

  56. F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, and T.J. Gibson, “Multiple sequence alignment with clustal X,” Trends in Biochemical Sciences, vol. 23, pp. 403–405, 1998.

    Google Scholar 

  57. T.K. Jenssen, A. Laegreid, J. Komorowski, and E. Hovig, “A literature network of human genes for high-throughput analysis of gene expression,” Nature Genetics, vol. 28, no. 1, pp. 21–28, 2001.

    Google Scholar 

  58. D.T. Jones, “GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences,” Journal of Molecular Biology, vol. 287, pp. 797–815, 1999.

    Google Scholar 

  59. D.T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” Journal of Molecular Biology, vol. 292, pp. 195–202, 1999.

    Google Scholar 

  60. D.T. Jones, W.R. Taylor, and J.R. Thornton, “A model recognition approach to the prediction of all-helical membran protein structure and topology,” Biochemestry, vol. 33, pp. 3038–3049, 1994.

    Google Scholar 

  61. P. Karp, “A strategy for database interoperation,” Journal of Computational Biology, vol. 2, no. 4, pp. 573–586, 1995.

    Google Scholar 

  62. D.G. Kneller, F.E. Cohen, and R. Langridge, “Improvements in protein secondary structure prediction by an enhanced neural network,” Journal of Molecular Biology, vol. 214, pp. 171–182, 1990.

    Google Scholar 

  63. T. Kohonen, Self-Organization and Associative Memory, Springer Verlag: Berlin, 1984.

    Google Scholar 

  64. R. Koradi, M. Billeter, and K. Wüthrich, “MOLMOL: A program for display and analysis of macromolecular structures,” Journal of Molecular Graphics and Modelling, vol. 14, pp. 51–55, 1996.

    Google Scholar 

  65. A. Krogh, B. Larsson, G. von Heijne, and E.L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001.

    Google Scholar 

  66. J. Kyte and R.F. Doolittle, “A simple method for displaying the hydropathic character of a protein,” Journal of Molecular Biology, vol. 157, no. 1, pp. 105–132, 1982.

    Google Scholar 

  67. L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian, “SchemaSQL: A language for interoperability in relational multidatabase systems,” in Proceedings of the 22nd International Conference on Very Large Databases (VLDB'96), 1996, pp. 239–250.

  68. H. Lehväslaiho, M. Ashburner, and T. Etzold, “Unified access to mutation databases,” Trends in Genetics, vol. 14, no. 5, pp. 205–206, 1998.

    Google Scholar 

  69. S. Letovsky, R.W. Cottingham, C.J. Porter, and P.W.D. Li, “GDB: The human genome database,” Nucleic Acids Research, vol. 26, no. 1, pp. 94–99, 1998.

    Google Scholar 

  70. O. Lund, K. Frimand, J. Gorodkin, H. Bohr, J. Bohr, J. Hansen, and S. Brunak, “Protein distance constraints predicted by neural networks and probability density functions,” Protein Engineering, vol. 10, no. 11, pp. 1241–1248, 1997.

    Google Scholar 

  71. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in 5th Berkeley Symposium on Mathematics, Statistics, and Probabilistics, vol. 1, pp. 281–297, 1967.

    Google Scholar 

  72. V. Markowitz, I.-M. Chen, A. Kosky, and E. Szeto, “Facilities for exploring molecular biology databases on the web: A comparative study,” in Pacific Symposium on Biocomputing (PSB'97), 1997, pp. 256–267.

  73. M.A. Marti-Renom, A. Stuart, A. Fiser, R. Sánchez, F. Melo, and A. Sali, “Comparative protein structure modeling of genes and genomes,” Annual Review Biophysics and Biomolecular Structures, vol. 29, pp. 291–325, 2000.

    Google Scholar 

  74. D.C. McArthur, “An extensible XML schema definition for automated exchange of protein data: PROXIML (PROtein eXtensIble Markup Language),” http://www.cse.ucsc.edu/ douglas/proximl/.

  75. R. McEntire, P. Karp, N. Abernethy, D. Benton, G. Helt, M. DeJongh, R. Kent, A. Kosky, S. Lewis, D. Hodnett, E. Neumann, F. Olken, D. Pathak, P. Tarczy-Hornoch, L. Toldo, and T. Topaloglou, “An evaluation of ontology exchange languages for bioinformatics,” in Proceedings of the 8th International Conference on Intelligent Systems in Molecular Biology (ISMB'00), 2000, pp. 239–250.

  76. C. Medigue, A. Viari, A. Henaut, and A. Danchin, “Colibri: A functional database for the Escherichia coli genome,” Microbiology and Molecular Biology Reviews, vol. 57, no. 3, pp. 623–654, 1992.

    Google Scholar 

  77. H.-W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps, K. Lemcke, G. Mannhaupt, F. Pfeiffer, C. Schüller, S. Stocker, and B. Weil, “MIPS: A database for genomes and protein sequences,” Nucleic Acids Research, vol. 28, no. 1, pp. 37–40, 2000.

    Google Scholar 

  78. MolScript Homepage: http://www.avatar.se/molscript/.

  79. Motif Homepage: http://motif.genome.ad.jp/.

  80. S.B. Needleman and C.D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, pp. 443–453, 1970.

    Google Scholar 

  81. Patscan Homepage: http://www-unix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html.

  82. W. Pearson and D. Lipman, “Improved tools for biological sequence comparison,” in Proceedings of the National Academy of Science USA (PNAS), vol. 85, pp. 2444–2448, 1988.

    Google Scholar 

  83. M.C. Peitsch, “ProMod and swiss-model: Internet-based tools for automated comparative protein modelling,” Biochemical Society Transactions, vol. 24, pp. 274–279, 1996.

    Google Scholar 

  84. G. Perrière, P. Bessières, and B. Labedan, “EMGLib: The enhanced microbial genomes library (Update 2000),” Nucleic Acids Research, vol. 28, no. 1, pp. 68–71, 2000.

    Google Scholar 

  85. Predator Homepage: http://www.embl-heidelberg.de/argos/predator/predator info.html.

  86. D.S. Prestridge, “SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elments,” CABIOS, vol. 7, pp. 203–206, 1991.

    Google Scholar 

  87. ProFit Homepage: http://www.bioinf.org.uk/software/.

  88. M. Prokop, J. Damborsky, and J. Koca, “TRITON: In Silico construction of protein mutants and prediction of their activities,” Bioinformatics, vol. 16, pp. 845–846, 2000.

    Google Scholar 

  89. Promotor Scan Homepage: http://bimas.dcrt.nih.gov/molbio/proscan/index.html.

  90. Protein Structure Prediction Center: http://predictioncenter.llnl.gov/.

  91. PubMed Database: http://www.ncbi.nlm.nih.gov/PubMed/.

  92. Readseq Homepage: http://www.nih.go.jp/%7Ejun/cgi-bin/readseq.pl.

  93. F. Rechenmann, “Knowledge bases and computational biology,” in Towards Very Large Knowledge Bases, N. Mars (Ed.), IOS Press, 1995, pp. 1–12.

  94. I.T. Rombel, K.F. Sykes, S. Rayner, and S.A. Johnston, “ORF-FINDER: A vector for high-throughput gene identification,” Gene, vol. 282, nos. 1/2, pp. 33–41, 2002.

    Google Scholar 

  95. B. Rost, “Review: Protein secondary structure prediction continues to rise,” Journal of Structural Biology, vol. 134, nos. 2/3, pp. 204–218, 2001.

    Google Scholar 

  96. B. Rost and C. Sander, “Prediction of protein secondary structure at better than 70% accuracy,” Journal of Molecular Biology, vol. 232, pp. 584–599, 1993.

    Google Scholar 

  97. RPFOLD Homepage: http://www.imtech.res.in/raghava/rpfold/.

  98. K.-U. Sattler, S. Conrad, and G. Saake, “Adding conflict resolution features to a query language for database federations,” Australian Journal of Information Systems, vol. 8, no. 1, pp. 116–125, 2000.

    Google Scholar 

  99. R. Sayle and E.J. Milner-White, “RasMol: Biomolecular graphics for all,” Trends in Biochemical Sciences, vol. 20, no. 9, p. 374, 1995.

    Google Scholar 

  100. S. Schwartz, Z. Zhang, K.A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs, R. Hardison, and W. Miller, “PipMaker: A web server for aligning two genomic DNA sequences,” Genome Research, vol. 10, no. 4, pp. 577–586, 2000.

    Google Scholar 

  101. SFgate Homepage:http://ls6-www.informatik.uni-dortmund.de/ir/projects/SFgate/#intro.

  102. A.P. Sheth and J.A. Larson, “Federated database systems for managing distributed, heterogeneous, and automated databases,” ACM Computing Surveys, vol. 22, no. 3, pp. 183–196, 1990.

    Google Scholar 

  103. J. Shi, T.L. Blundell, and K. Mizuguchi, “FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties,” Journal of Molecular Biology, vol. 310, pp. 243–257, 2001.

    Google Scholar 

  104. A.S. Siddiqui, U. Dengler, and G.J. Barton, “3Dee:Adatabase of protein structural domains,” Bioinformatics, vol. 17, pp. 200–201, 2001.

    Google Scholar 

  105. T.F. Smith and M.S. Waterman, “Identification of common molecular subsequences,” Journal of Molecular Biology, vol. 147, pp. 195–197, 1981.

    Google Scholar 

  106. R.F. Smith, B.A. Wiese, M.K. Wojzynski, D.B. Davison, and K.C. Worley, “BCM search launcher--an integrated interface to molecular biology data base search and analysis services available on the world wide web,” Genome Research, vol. 6, no. 5, pp. 454–462, 1996.

    Google Scholar 

  107. S. Spaccapietra, C. Parent, and Y. Dupont, “Model independent assertions for integration of heterogeneous schemas,” VLDB Journal, vol. 1, no. 1, pp. 81–126, 1992.

    Google Scholar 

  108. SRS User Guide, 2000, /srs6/doc/srsuser.pdf.

  109. S.A. Sullivan, L. Aravind, I. Makalowska, A.D. Baxevanis, and D. Landsman, “The histone database: A comprehensiveWWWresource for histones and histone fold-containing proteins,” Nucleic Acids Research, vol. 28, no. 1, pp. 320–322, 2000.

    Google Scholar 

  110. R.M. Sweet and D. Eisenberg, “Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure,” Journal of Molecular Biology, vol. 171, no. 4, pp. 479–488, 1983.

    Google Scholar 

  111. Y. Tateno, S. Miyazaki, M. Ota, H. Sugawara, and T. Gojobori, “DNA data bank of Japan (DDBJ) in collaboration with mass sequencing teams,” Nucleic Acids Research, vol. 28, no. 1, pp. 24–26, 2000.

    Google Scholar 

  112. J.D. Thompson, D.G. Higgins, and T.J. Gibson, “CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, pp. 4673–4680, 1994.

    Google Scholar 

  113. S. Tsur, “Data mining in the bioinformatics domain,” in Proceedings of the 26th Conference on Very Large Databases (VLDB'00), 2000.

  114. J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, and S.J. Wodak, “Representing and analysing molecular and cellular function in the computer,” Biological Chemistry, vol. 381, pp. 921–935, 2000.

    Google Scholar 

  115. J. Vilo, A. Brazma, I. Jonassen, A. Robinson, and E. Ukkonen, “Mining for putative regulatory elements in the yeast genome using gene expression data,” in Proceedings of the 8th International Conference on Intelligent Systems in Molecular Biology (ISMB'00), 2000, pp. 384–394.

  116. G. von Heijne, “Membrane protein structure prediction: Hydrophobicity analysis and the 'Positive Inside' rule,” Journal of Molecular Biology, vol. 225, pp. 487–494, 1992.

    Google Scholar 

  117. A.C. Wallace, R.A. Laskowski, and J.M. Thornton, “LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions,” Protein Engineering, vol. 8, pp. 127–134, 1995.

    Google Scholar 

  118. Y. Wang, L.Y. Geer, C. Chappey, J.A. Kans, and S.H. Bryant, “Cn3D: Sequence and structure views for entrez,” Trends in Biochemical Sciences, vol. 25, no. 6, pp. 300–302, 2000.

    Google Scholar 

  119. Wise2 Homepage: http://www.sanger.ac.uk/Software/Wise2/.

  120. XEMBL Project: http://www.ebi.ac.uk/xembl/.

  121. G. Xie, R. DeMarco, R. Blevins, and Y. Wang, “Storing biological sequence databases in relational form,” Bioinformatics, vol. 16, no. 2, pp. 288–289, 2000.

    Google Scholar 

  122. Y. Xu, R.J. Mural, and E.C. Uberbacher, “Inferring gene structures in genomic sequences using pattern recognition and expressed sequence tags,” in Proceedings of the 5th International Conference on Intelligent Systems in Molecular Biology (ISMB' 97), 1997, pp. 344–353.

  123. R. Zimmer and T. Lengauer, “Protein structure prediction,” in Bioinformatics--From Genomes to Drugs, T. Lengauer (Ed.), Vol. 1: Basic Technologies, Wiley-VCH., 2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bry, F., Kröger, P. A Computational Biology Database Digest: Data, Data Analysis, and Data Management. Distributed and Parallel Databases 13, 7–42 (2003). https://doi.org/10.1023/A:1021540705916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021540705916

Navigation