Skip to main content
Log in

A Limited-Memory Multipoint Symmetric Secant Method for Bound Constrained Optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A new algorithm for solving smooth large-scale minimization problems with bound constraints is introduced. The way of dealing with active constraints is similar to the one used in some recently introduced quadratic solvers. A limited-memory multipoint symmetric secant method for approximating the Hessian is presented. Positive-definiteness of the Hessian approximation is not enforced. A combination of trust-region and conjugate-gradient approaches is used to explore useful information. Global convergence is proved for a general model algorithm. Results of numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Andreani, A. Friedlander and J.M. Martínez, On the solution of finite-dimensional variational inequalities using smooth optimization with simple bounds, Journal on Optimization Theory and Applications 94 (1997) 635–657.

    Google Scholar 

  2. R. Andreani and J.M. Martínez, On the solution of the extended linear complementarity problem, Linear gebra and its Applications 281 (1998) 247–257.

    Google Scholar 

  3. R. Andreani and J.M. Martínez, On the reformulation of nonlinear complementarity problems using the Fischer-Burmeister function, Applied Mathematics Letters 12 (1999) 7–12.

    Google Scholar 

  4. R. Andreani and J.M. Martínez, Reformulation of variational inequalities on a simplex and the compactification of complementarity problems, SIAM Journal on Optimization 10 (2000) 878–895.

    Google Scholar 

  5. R. Bielschowsky, A. Friedlander, F.A.M. Gomes, J.M. Martínez and M. Raydan, An adaptive algorithm for bound constrained quadratic minimization, Investigación Operativa 7 (1998) 67–102.

    Google Scholar 

  6. A.G. Biryukov, On the difference-approximation approach to the solution of systems of nonlinear equations, Soviet Mathematics. Doklady 17 (1983) 660–664.

    Google Scholar 

  7. A. Bjorck, Numerical Methods for Least-Squares Problems (SIAM, Philadelphia, 1996).

    Google Scholar 

  8. I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, CUTE: constrained and unconstrained testing environment, ACM Transactions on Mathematical Software 21 (1995) 123–160.

    Google Scholar 

  9. O.P. Burdakov, Methods of secant type for systems of equations with symmetric Jacobian matrix, Numerical Functional Analysis and Optimization 6 (1983) 183–195.

    Google Scholar 

  10. O.P. Burdakov, Stable versions of the secant method for solving systems of equations, USSR Computational Mathematics and Mathematical Physics 23 (1983) 1–10.

    Google Scholar 

  11. O.P. Burdakov, On superlinear convergence of some stable variants of the secant method, ZAMM 66 (1986) 615–622.

    Google Scholar 

  12. O.P. Burdakov, Stable symmetric secant methods with restarts, Cybernetics 27 (1991) 390–396.

    Google Scholar 

  13. R.H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained minimization, SIAM Journal on Scientific Computing 16 (1995) 1190–1208.

    Google Scholar 

  14. R.H. Byrd, J. Nocedal and R.B. Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Mathematical Programming 63 (1994) 129–156.

    Google Scholar 

  15. P.H. Calamai and J.J. Moré, Projected gradient methods for linearly constrained problems, Mathematical Programming 39 (1987) 93–116.

    Google Scholar 

  16. A.R. Conn, N.I.M. Gould and Ph.L. Toint, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM Journal on Numerical Analysis 25 (1988) 433–460.

    Google Scholar 

  17. A.R. Conn, N.I.M. Gould and Ph.L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM Journal on Numerical Analysis 28 (1991) 545–572.

    Google Scholar 

  18. A.R. Conn, N.I.M. Gould and Ph.L. Toint, LANCELOT: a Fortran Package for Large-Scale Nonlinear Optimization (Release A) (Springer, Berlin, 1992).

    Google Scholar 

  19. A.R. Conn, N.I.M. Gould and Ph.L. Toint, Trust-Region Methods (SIAM-MPS, 2000).

  20. A. Dax, A modified Gram-Schmidt algorithm with iterative orthogonalization and column pivoting, Linear Algebra and its Applications 310 (2000) 25–42.

    Google Scholar 

  21. R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM Journal on Numerical Analysis 19 (1982) 400–408.

    Google Scholar 

  22. J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, New York, 1983).

    Google Scholar 

  23. Z. Dostál, Box constrained quadratic programming with proportioning and projections, SIAMJournal on Optimization 7 (1997) 871–887.

    Google Scholar 

  24. Z. Dostál, A. Friedlander and S.A. Santos, Solution of contact problems using subroutine BOXQUACAN, Investigación Operativa 7 (1997) 13–22.

    Google Scholar 

  25. Z. Dostál, A. Friedlander and S.A. Santos, Analysis of block structures by augmented Lagrangians with adaptive precision control, in: Proceedings of GEOMECHANICS '96, ed. Z. Rakowski (A.A. Balkema, Rotterdam, 1997) pp. 175–180.

    Google Scholar 

  26. Z. Dostál, A. Friedlander and S.A. Santos, Solution of coercive and semicoercive contact problems by FETI domain decomposition, in: The Tenth International Conference on Domain Decomposition Methods, Boulder, CO, Contemporary Mathematics, Vol. 218, eds. J. Mandel, C. Farhat and X. Cai (1998) pp. 82–93.

  27. Z. Dostál, A. Friedlander and S.A. Santos, Augmented Lagrangians with adaptive precision control for quadratic programming with equality constraints, Computational Optimization and Applications 14 (1999) 1–17.

    Google Scholar 

  28. Z. Dostál, A. Friedlander, S.A. Santos and J. Malík, Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians, Engineering Analysis with Boundary Elements 18 (1997) 195–201.

    Google Scholar 

  29. Z. Dostál, F.A.M. Gomes and S.A. Santos, Duality-based domain decomposition with natural coarsespace for variational inequalities, Journal of Computational and Applied Mathematics 126 (2000) 397–415.

    Google Scholar 

  30. J. Facchinei, J. Júdice and J. Soares, An active set Newton algorithm for large scale nonlinear programs with box constraints, SIAM Journal on Optimization 8 (1998) 158–186.

    Google Scholar 

  31. A. Friedlander and J.M. Martínez, On the numerical solution of bound constrained optimization problems, RAIRO Operations Research 23 (1989) 319–341.

    Google Scholar 

  32. A. Friedlander and J.M. Martínez, New algorithms for maximization of concave functions with box constraints, RAIRO Operations Research 26 (1992) 209–236.

    Google Scholar 

  33. A. Friedlander and J.M. Martínez, On the maximization of a concave quadratic function with box constraints, SIAM Journal on Optimization 4 (1994) 177–192.

    Google Scholar 

  34. A. Friedlander, J.M. Martínez and S.A. Santos, A new trust region algorithm for bound constrained minimization, Applied Mathematics and Optimization 30 (1994) 235–266.

    Google Scholar 

  35. P.E. Gill and M.W. Leonard, Reduced-Hessian quasi-Newton methods for unconstrained optimization, SIAM Journal on Optimization 12 (2001) 209–237.

    Google Scholar 

  36. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1989).

  37. N. Krejić, J.M. Martínez, M.P. Mello and E.A. Pilotta, Validation of an augmented Lagrangian algorithm with a Gauss-Newton Hessian approximation using a set of hard-spheres problems, Computational Optimization and Applications 16 (2000) 247–263.

    Google Scholar 

  38. C.J. Lin and J.J. Moré, Newton's method for large bound-constrained optimization problems, SIAM Journal on Optimization 9 (1999) 1100–1127.

    Google Scholar 

  39. J.M. Martínez, Three new algorithms based on the sequential secant method, BIT 19 (1979) 236–243.

    Google Scholar 

  40. J.M. Martínez, E.A. Pilotta and M. Raydan, Spectral gradient method for linearly constrained optimization, Technical Report 22/99, IMECC, University of Campinas (UNICAMP), Campinas, Brazil (1999).

    Google Scholar 

  41. J.J. Moré and D.J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Transactions on Mathematical Software 20 (1994) 286–307.

    Google Scholar 

  42. J.M. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    Google Scholar 

  43. M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, SIAM Journal on Optimization 7 (1993) 26–33.

    Google Scholar 

  44. R.B. Schnabel, Quasi-Newton methods using multiple secant equations, Technical Report CU-CS-247–83, Department of Computer Science, University of Colorado, Boulder, CO (1983).

    Google Scholar 

  45. T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM Journal on Numerical Analysis 20 (1983) 626–637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdakov, O.P., Martínez, J.M. & Pilotta, E.A. A Limited-Memory Multipoint Symmetric Secant Method for Bound Constrained Optimization. Annals of Operations Research 117, 51–70 (2002). https://doi.org/10.1023/A:1021561204463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021561204463

Navigation