;:‘ Machine Learning, 50, 321-354, 2003
' (© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Complete Mining of Frequent Patterns
from Graphs: Mining Graph Data

AKIHIRO INOKUCHI*
TAKASHI WASHIO washio@sanken.osaka-u.ac.jp
HIROSHI MOTODA motoda@sanken.osaka-u.ac.jp

Institute for Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan

Editors: Ryszard S. Michalski and Pavel Brazdil

Abstract. Basket Analysis, which is a standard method for data mining, derives frequent itemsets from database.
However, its mining ability is limited to transaction data consisting of items. In reality, there are many applications
where data are described in a more structural way, e.g. chemical compounds and Web browsing history. There
are a few approaches that can discover characteristic patterns from graph-structured data in the field of machine
learning. However, almost all of them are not suitable for such applications that require a complete search for all
frequent subgraph patterns in the data. In this paper, we propose a novel principle and its algorithm that derive
the characteristic patterns which frequently appear in graph-structured data. Our algorithm can derive all frequent
induced subgraphs from both directed and undirected graph structured data having loops (including self-loops)
with labeled or unlabeled nodes and links. Its performance is evaluated through the applications to Web browsing
pattern analysis and chemical carcinogenesis analysis.

Keywords: data mining, graph data, Apriori algorithm, adjacency matrix, Web browsing analysis, chemical
carcinogenesis analysis

1. Introduction

Data mining aims to discover interesting and/or useful patterns that are hidden in a given
data set and to use them as explicit knowledge. This approach heavily relies on computa-
tional power. Generally speaking, knowledge that can explain many cases is considered to
be useful, and frequency and confidence of the discovered patterns are used very often as
measures of goodness of knowledge. Along this line, Basket Analysis using Apriori algo-
rithm (Agrawal & Srikant, 1994) that seeks for the co-occurrence of items in transactions
under these two measures has been researched actively.

Apriori algorithm can extract co-occurrence of items in an efficient manner, but the
data structure, which can be handled, is limited to a set of items. The extensions to treat
structured data in form of sequences and/or taxonomy have been reported in recent studies.
The approach proposed by Agrawal and Srikant for mining sequential patterns was an
initiating work in this field (Agrawal & Srikant, 1995). Since then several approaches
have been proposed from different angles for sequential or structural data. Mannila et al.
proposed an approach to mine frequent episodes from sequences (Mannila, Toivonen, &

*Present address: Tokyo Research Laboratory, Japan IBM, Japan.



322 A. INOKUCHI, T. WASHIO AND H. MOTODA

Verkamo, 1997). Srikant et al. used taxonomy hierarchy as background knowledge to mine
association rules (Srikant, Vu, & Agrawal, 1997). Our previous work also suggested that
Apriori algorithm can be applied to graph structured data after a simple preprocessing of
the data (Inokuchi, Washio, & Motoda, 1999). However, this technique works only for a
limited case where all nodes in a graph are distinct, i.e., all nodes have different labels, and
thus it is not applicable to mine frequent patterns in graphs where multiple nodes of a same
label are contained, e.g., chemical molecule structures.

The isomorphism problem of a “general subgraph” has been proved to be in NP-
complete (Garey & Johnson, 1979), where a general subgraph of G consists of a subset of
the nodes of G and a subset of the links connecting node pairs in the node subset. Accord-
ingly, some heuristic based incomplete search or some limitation on the class of subgraph
must be introduced to alleviate the complexity issue. GBI (Graph Based Induction) quite
efficiently extracts typical subgraph patterns that appear frequently in a set of graph data.
It applies recursive pair wise chunking operations (Yoshida & Motoda, 1995). SUBDUE
is another approach to seek the characteristic subgraph patterns by efficiently compressing
the original graphs under MDL principle (Cook & Holder, 1994). These approaches do
not face the severe computational complexity. However, they may miss some significant
subgraph patterns, since the search strategies are greedy or heuristic. Some other methods
have been proposed to perform non-greedy searches which completely find some limited
classes of subgraph patterns. de Raedt and Kramer proposed the level-wise version space
algorithm to mine sequence patterns of the connections of nodes and links characterized by
the combination of monotonic and anti-monotonic measures such as frequency and gener-
ality (de Raedt & Kramer, 2001). Though this method can apply a variety of measures and
avoid the computational complexity issue, the class of the pattern to be mined is limited
to sequence patterns embedded in the graphs. Geibel and Wysotzki proposed a method
to derive induced subgraphs of graphs given in data and to use the induced subgraphs
as attributes to classify the graphs in the data under decision tree approaches (Geibel &
Wysotzki, 1996). The “induced subgraph” of a graph G has a subset of the nodes of G and
the same links between pairs of nodes as in G. Their method can be used to find frequent
induced subgraphs in the set of graph data. However, the upper limit number of the nodes
to be included in the subgraph must be initially specified to avoid the exponential explosion
of the computational time, and thus the search is not complete. Liquiere and Sallantin pro-
posed a method to completely search homomorphically equivalent subgraphs which are the
least general over a given set of graphs and do not include any identical triplet of the labels
of two nodes and the link direction between the nodes within each subgraph (Liquiere &
Sallantin, 1998). They show that the computational complexity to find this class of sub-
graphs is polynomial for 1/2 locally injective graphs where the labels of any two nodes
pointing to another common node or pointed from another common node are not identical.
However, many graphs appearing in the real-world problems such as chemical compound
analysis are more general, and hence the polynomial characteristics of this approach do not
apply. In addition, this approach may miss many interesting and/or useful subgraph patterns
since the homomorphically equivalent subgraph is a small subclass of the general subgraph.

To our knowledge, a first system to perform complete search for the wider class of fre-
quent substructure in graphs is WARMR proposed by Dehaspe, Toivonen, and King (1998).



MINING GRAPH DATA 323

They applied ILP (Inductive Logic Programming) in concert with Apriori-like level wise
search to a problem of carcinogenesis prediction of chemical compounds. The structures of
chemical compounds are represented by the first order predicates such as atomel(C, Al, ¢),
bond(C, Al, A2, BT), aromatic — ring(C, S1) and alcohol(C, S2). The first two state that
A1 which is a carbon atom bonds to A2 where the bond type is BT in a chemical compound
C. The third represents that substructure S1 is an aromatic ring in a chemical compound
C, and the last represents that S2 is an alcohol base in C. Because this approach allows
variables to be introduced in the arguments of the predicates, the class of the structure which
can be searched is more general than the graph. However, this approach easily faces the
high computational complexity due to the equivalence checking under #-subsumption on
atoms and the generality of the problem class to be solved. To alleviate this difficulty, a new
system called FARMAR has been recently proposed by Nijssen and Kok (2001). It also
uses the level wise search, but applied less strict equivalence relation under substitution to
reduced atom sets. FARMAR can also find the predicates including variables and runs faster
in the second order of magnitudes of time. However, its result includes some predicates
having different forms but equivalent in the sense of the ®-subsumption due to the weaker
equivalence criterion. Though these two systems can discover the frequent structures in
high level of descriptions, the class of the structures to be searched is limited to connected
structures, i.e., all variables and constants are related with predicates in a clause. For in-
stance, a frequent clause atomel(C, Al, c)A bond(C, Al, A2, BT)A atomel(C, A2, c)A
atomel(C, A3, cl) which represents two carbons connected by a bond BT and an isolated
chlorine in a chemical substance C is not searched in the systems. Because many con-
text dependent data in the real-world problems can be represented by a set of grounded
first order predicates which is represented by graphs, the approach to mine each frequent
pattern consisting of some subgraphs in a set of graph data will address many practical
problems.

Among the aforementioned classes of the subgraph, the general subgraph is the most
general. However, the general subgraph does not represent the topological substructure
of the original graph sufficiently, because many general subgraphs lack the information
of links among the nodes. For example, a set of 6 carbon atoms without any links is a
general subgraph of an aromatic ring, but it does not represent any topology of the ring.
In addition, the complete search of the general subgraphs has very high computational
complexity. When the original graph consists of many nodes and links, the number of
the combinations of the nodes and the links to form its general subgraphs become huge.
In contrast, an induced subgraph represents the generic substructure of a general graph
while reflecting the topology of the links among the nodes in the graph. The search of
the induced subgraphs has relatively low computational complexity due to the constraints
on the link topology, though the complexity of the isomorphism problem of the induced
subgraphs including the ones consisting of multiple subgraph fragments is not clear yet.
Some mathematicians proved that the connected induced subgraph isomorphism is a type
of PB (Polynomially lower Bounded)-complete problem (Kann, 1995). Hence the induced
subgraph isomorphism problem is likely to lie between NP-complete and PB-complete
problems, and is clear not to be computed within low order polynomial time in terms of the
problem scale. Accordingly the complete search of the frequent induced subgraphs must



324 A. INOKUCHI, T. WASHIO AND H. MOTODA

be designed in highly efficient manner, and such search method is expected to provide a
powerful measure to mine structural knowledge in many problems.

In this paper, we propose a novel principle and an algorithm that can capture all “frequent
induced subgraphs” and “association rules among induced subgraphs” which are observed
in many transactions where each is a general graph. The graph can be either directed or
undirected. It can have loops (including self-loops), and the nodes and links can have labels.
Further, it is not limited to a connected graph but also a set of isolated graphs. Our method
can extract topological information involved in the graph in addition to the features of nodes
and links. The paper is organized as follows. The proposed algorithm, which is obtained by
the extension of Apriori algorithm, is outlined in Section 2. The details of the extension are
described in Section 3. Its performance evaluation on test datasets is reported in Section 4,
followed by two application results, one to Web browsing pattern analysis and the other to
chemical carcinogenesis analysis, in Section 5. The related work is discussed in Section 6,
and the paper ends with the concluding remarks in Section 7.

2. Outline of proposed algorithm

The aforementioned Apriori algorithm can handle only sets of items, i.e., “ifemsets”. For
the extension to the graph structured data, a data representation called “adjacency matrix”
is introduced. The proposed algorithm mines induced subgraphs frequently included in
graph structured transactions. Similarly to Basket Analysis, the association rule to relate a
body induced subgraph with another head induced subgraph is defined under almost same
definitions of the support and the confidence of Apriori algorithm.

Because the adjacency matrix and the matrix coding, which will be mentioned later, are
only suitable to represent a graph which includes labeled nodes but not suitable to represent
labeled links and self-loop links, a preprocessing is applied to convert the general graph
transaction data to the graphs having labeled nodes, unlabeled links and no self-loop links.
Moreover, the rows and the columns corresponding to the graph nodes in the adjacency
matrix are lexicographically ordered in terms of the node labels to reduce the ambiguity
of the graph representation. Since the graphs represented by the adjacency matrices also
needs to be uniquely ordered in the later mining process, a code for each adjacency matrix
is introduced. The code is defined by the non-diagonal elements of the matrix. This coding
also has an advantage that it reduces the memory requirements as a matrix representation
needs much memory, while a coding does not.

Once the graphs are represented by the codes of their adjacency matrices, the codes of
the frequent induced subgraphs are derived in the bottom up manner similarly to Apri-
ori algorithm. The adjacency matrix of a graph is not unique. There are more than one
adjacency matrix that represent the same graph. Accordingly, the matrix to represent a
frequent induced subgraph is limited to a specific form called a “normal form”. Based on
the representation of the normal form matrix, the “join operation” to generate candidate
frequent induced subgraphs having a larger size is conducted. After the code generation of
all candidate frequent induced subgraphs, their frequencies are counted by accessing to the
graph transaction data. However, since the normal form representation still has ambiguity
that multiple normal forms represent a graph, the “canonical form” representation of the



MINING GRAPH DATA 325

adjacency matrix and its code are introduced to collect all counts for each frequent induced
subgraph.

As noted in this outline, the extension of Apriori algorithm to the application to the graph
structured data is not straightforward in terms of the data representation and the associated
operations. Some novel principles have been introduced for the extension.

3. Details of extension to graph structured data
3.1. Representation of graph structured data

While an itemset is a transaction for Apriori algorithm, a graph constitutes a transaction in
our extension. The graph-structured data can be transformed without much computational
effort into an “adjacency matrix”, which is a well-known representation of a graph in
mathematical graph theory (Biggs, 1974). Each row and column of the matrix correspond
to a node that appears in the graph, and if there is a link from the i-th node to the j-th node
in the transaction, the value “1” is assigned to the (7, j)-element of the matrix, otherwise the
value “0” is assigned. We call a node which corresponds to the i-th row (the i-th column)
the i-th node v; and the number of nodes contained in a graph its “size”. We note a graph
whose size is k as a k-graph, an adjacency matrix of a k-graph as Xy, the (i, j)-element of
X as x;; and the graph corresponding to X as G(Xj). We further represent the node label
as N, (g-th label and 1 < g < p) and the link label as L;, (h-th label and 1 < h < g).
“support”, “confidence” and an “association rule” for induced subgraphs are defined as
follows.

number of transactions including an induced subgraph G

sup(G) = . ;
total number of transactions
sup(B U H)
sup(B = H) =sup(BU H), conf(B= H)= ——,
sup(B)

where B and H are induced subgraphs of some graph transactions in the given data, and
B U H is the graph constituted by the unions of the sets of nodes and the sets of links
involved in B and H. B = H indicates that H is included in a graph transaction under the
confidence conf (B = H) if B is included in it.

Here, the formal definition of the “induced subgraph” is given. Let V(G) be the set of
all nodes in the graph G, and let £(G) be the set of all links {u, v} connecting u and v in
the graph G where u, v € V(G). G’ is an induced subgraph of G if and only if

V(G C V(G), E(G)C E(G) and
Yu,v € V(G {u,v} € E(G) & {u,v} € E(G). (1)

More intuitively speaking, an induced subgraph of a graph G has a subset of the nodes of
G and the same links between pairs of nodes as in G. For example, the subgraph (b) in
figure 1 is an induced subgraph of the graph (a), but the subgraph (c) is a general subgraph



326 A. INOKUCHI, T. WASHIO AND H. MOTODA

L2 L2 L2

I OnNi OnN1
L1 N1 N1 N1

L1 L1

N2 N2
(@) (b) ©

Figure 1. An induced subgraph and a general graph.

but not an induced subgraph since the incoming links of the node labeled as N, is not
retained while the node labeled as N, is included in (¢). “minimum support’ and “minimum
confidence” are defined in the same way as in Apriori algorithm. They provide threshold
levels where the mined induced subgraphs and their association rules must have higher
support and confidence values. We call the graph whose frequency exceeds the minimum
support as a “frequent induced subgraph”.

If a graph has labeled links, the following conversion of the graph to a new graph
that has labels at its nodes only, is applied. This reduces the ambiguity in the adjacency
matrix representation and the candidate generation of the frequent induced subgraph.
Given a node pair u, v and a directed or undirected link {u, v} between the nodes, i.e.,
node(u) — link({u, v}) — node(v) where node() and link() stand for the labels of a node and a
link respectively, its dual expression, where the link becomes a node, and the nodes become
links, is represented as link(u) — node({u, v}) — link(v). Because the dual expressions are
mutually equivalent and thus redundant when they are combined together as follows,

node(u) link({u, v}) ——— node(v)

link(u) node({u, v}) —— link(v)

the /ink() label information can be removed from the combined graph, and the following
triangular graph is deduced where the original information of the node pair and the link
between them is preserved.

node(u) unlabeledlink node(v)
~— —
unlabeledlink unlabeledlink

node({u, v}))

This operation on each link in the original graph can convert the graph into another graph
representation having no labels on the links while preserving the topological information of
the original graph. Accordingly, as shown in figure 2(a) and (b), when there is a link labeled
as L, (1 < h < q) between two nodes labeled as Ny and N, (1 < f, g < p) where N and
N, can be a same label, a new node with the label L}, is inserted between the two nodes, and
the original link between the nodes labeled as N and N, is retained as an unlabeled link.
For example, the link labeled as L; directing to a node labeled as N, from a node labeled as



MINING GRAPH DATA 327

L2
N1

LI N1 N1

< =

N N2 L N2 Li
@ ® ©

Figure 2. Preprocessing of labeled links and self-looped nodes in a graph.

N; becomes a node labeled as L between the nodes Ny and N, while the link which label
is removed is retained. Similarly, the link labeled as L directing to a node labeled as N;
having a self-looped link from a node labeled as N, becomes a node labeled as L between
the nodes while the original but unlabeled link is retained. Moreover, the self-looped link
labeled as L, becomes a node labeled as L, having the incoming and outgoing unlabeled
links with N, and the original self-looped but unlabeled link is retained. Accordingly, the
adjacency matrix of figure 2(a) is converted to that of (b) as follows.

N1 N1 N2 L1 Ll L2

N N N Ny 1 0 0O 0 O 1
Ny 0 0 1 0 1 0

Ni (L, 0 O
N, 1 0 0 1 0 0

Ny 0 0 L, =

1 1 0 O o0 0 O

N\Ly 0 O
Ly 0 O 1 0O 0 O
L> 1 0 0 0 0 0

The need to retain the direct link from the node N to the node N, is also demonstrated
in figure 3. According to the definition of an induced subgraph, graph?2 is not an induced

NI NI
N2 L1 E%
graphl graph2
7%
N1 NI
N2 N2
L1 L1
graphl-1 graphl-2

Figure 3. The need to retain the direct link from N, to Nj.



328 A. INOKUCHI, T. WASHIO AND H. MOTODA

subgraph of graphl. When graphl is transformed into graphl-1, then graph2 is not an
included subgraph of graphl-1. However, if preprocessing which deletes the direct link
from N, to N, is applied, then graphl is transformed into graphl-2 in which graph?2 is
an induced subgraph. Accordingly, the latter preprocessing causes some spurious induced
subgraphs.

When there is a self-looped node labeled as | as shown in figure 2(b), its label is changed
to a different and distinct label N| as depicted in figure 2(c) for the ease and efficiency of
matrix coding as described later. Hence, the adjacency matrix of this graph is represented by

Nl/ N] N2 Ll Ll L2

N /O 0 0 0 0 1
Mlo o 1 0 1 0
Ml1oo 0o 1 0 0
L1 o 0o 0 0 0
Lo o 1 0 0 0
L\l 0 0 0 0 0

The fact that N| has a self-loop is recorded, and is backed up again in the final result of the
mined frequent induced subgraphs. This preprocessing increases the number of the label
types of the rows and the columns of the adjacency matrix of this graph, and reduces the
ambiguity of the possible lexicographic sort patterns of the rows and the columns needed
in the subsequent stage. This also provides another advantage that the nodes having more
than one self-loop link can be represented by different and distinct labels according to the
number of the self-loop links. Hereafter, we consider only the graphs that have only labeled
nodes without any labeled links and self-looped nodes.

The representation of a graph structure by an adjacency matrix can have some variety
depending on the way to assign each node to a row (a column) of the matrix. To avoid the
ambiguity of the representation and the inefficiency in the graph pattern search, the node
labels are ordered according to some rule such as the lexicographical order.

’ /7
Ni<--+<N,,<---<N <---<N. <---<Lj<--- <Ly,

where r is the number of the node labels representing self-looped nodes. By applying this
ordering, the graph in figure 2(c) is represented by

N Ny N L L L,

N/O 1 0 0 1 0
MmMlo o 1 1 0 0
Nlo o o o o0 1

. 2)
Lylo o 1 0 0 o0
Lo 1 0 0 0 0
Lb\0o 0 1 0 0 0

where the order of nodes labels is Ny < N, < N{ < L < Ls.



MINING GRAPH DATA 329

N1

N3 N3

N2 N4

Figure 4. An undirected graph.

The aforementioned explanation is for directed graphs. But the identical preprocessing
is applied to undirected graphs. The difference from the case of directed graphs is that
the adjacency matrix becomes diagonally symmetric. The adjacency matrix of figure 4 is
represented by

N1 N, N3 N3 Ny

N (O 0 1 1 0
Nl O 0 0 1 1
N3] 1T 0 0 0 O 3)
N3 | 1 1 0 0 1
N\O 1 0 1 0

For the sake of the efficiency in memory consumption, we define an efficient code repre-
sentation of an adjacency matrix as follows. In case of an undirected graph, the code of an
adjacency matrix X, i.e., code(Xy), is represented by a binary number as shown in Eq. (4).
It is obtained by scanning the upper triangular elements of the matrix along each column.

0 xiob xi3] - Xk
x21 0 xa3p o X
X, = |*1 x2 0 oo gl |
Xkl Xk2  Xk3 - 0
code(Xy) = X12X1,3X23X1,4 * * * Xk—2 k Xk—1 k- 4

For example, the code of the adjacency matrix (3) is given by
code(Xy) = 0101100101.

In case of a directed graph, code(X}) is represented by a base 4 number. If both (i, j)-
element and (j, i)-element are 0, “0” is assigned to the digit of the code. If (i, j)-element is



330 A. INOKUCHI, T. WASHIO AND H. MOTODA

1 and (j, i)-element is 0, “1” is assigned. In case that (i, j)-element is O and (j, i)-element
is 1, “2” is assigned, and finally in case that both (i, j)-element and (j, i)-element are 1,
“3” is assigned. Thus code(X}) for a directed graph is defined by

code(Xy) = €12€1,3€2,3C1,4 " * Ck—2,kCk—1 k>
where
Cij =2xj; +x ;.
For example, the code of the adjacency matrix (2) is given by

code(Xy) = 101012120000300.

3.2.  Extraction algorithm of frequent graph

3.2.1. Candidate generation of frequent graph. The Apriori algorithm generates frequent
itemsets very efficiently by the use of the constraint on the orders among items to generate
a candidate frequent k 4 1-itemset from the frequent k-itemsets. Similarly, two frequent
induced subgraphs are joined only when the following constraints are satisfied to generate
a candidate frequent induced subgraph of size k + 1, i.e., induced k + 1-subgraph. Let X
and Y; be adjacency matrices of two frequent induced k-subgraphs G(X;) and G(Yy). If
both G(X;) and G(Y}) have equal elements of the matrices except for the elements of the
k-th row and the k-th column, then they are joined to generate Z;. .

Constraint 1.

¥ — Xi-1 X1 v, — X1
k — T 0 ’ kK — T O ’
X A)

Xe-1 X yi x Y1
k
— T —
Ziv1 =\ x 0 Zen | = ksl |
T
Y2 ek 0 ¥ Zeqru| O

where X;_, is the adjacency matrix representing the graph whose size is k — 1, x; and
y;(i =1,2)are (k — 1) x 1 column vectors. Let the label of the i-th node of the adjacency
matrix Xy be N(Xg, i), then there must be the following relations among the adjacency
matrices Xy, Yy and Z; ;.

Constraint 2.

N(Xy,1) = N(Yi,1) = N(Zy41,1) and
N(Xe,i) < NXg,i+1) fori=1,....k—1.
N(Xi, k) = N(Zis1, k), N(Ye, k) = N(Zior, k+ 1), and N(Xg, k) < N(Yg, k).



MINING GRAPH DATA 331

Here, the (k,k 4+ 1) and the (k + 1, k) elements of the adjacency matrix Z;;; are not
determined by X and Y;. In case of an undirected graph, two possible cases are considered
in which 1) there is a link between the k-th node and the (k 4 1)-th node of G(Z;+) and 2)
there is no link between them. Corresponding to these two cases, two adjacency matrices
whose (k, k + 1)-element and (k + 1, k)-element are “1” and “0” are generated respectively.
In case of a directed graph, four possible cases are considered where 1) there is a directed
link from the k-th node to the k 4+ 1-th node of G(Z;41), 2) there is a directed link from
k + 1-th node to the k-th node, 3) there are bi-directional links between them and 4) there is
no link between them. Accordingly four different adjacency matrices are generated. We call
Xy and Yy, the “first matrix” and the “second matrix” to generate Z; | respectively. Note that
when the labels of the k-th nodes of X and Y}, are the same, switching X and Yy, i.e., taking
Y, as the first matrix and X; as the second matrix, produces another adjacency matrices
representing an identical graph. In order to avoid this redundant candidate generation, the
two adjacency matrices are joined only when the following constraint is satisfied.

Constraint 3.

code(the first matrix) < code(the second matrix).
We call the join of two matrices under these three constraints the “join operation” and the
adjacency matrix generated by this operation a “normal form” matrix.

The join operation is demonstrated through the example depicted in figure 5. The exam-
ples of the adjacency matrices representing the graphs (a) and (b) are given as follows.

N1 N2 N3 N3 Nl NZ N3 N3
Ny 0 O 1 0 Ny 0 O 1 1
Nl O 0 O 1 Nl O 0 O 1
X4 e ) Y4 =
N3 1 o 0 O N3 1 o 0 O
N3 \ 0 1 0 O N3 1 1 0 0

In this case, since the upper left 3 x 3 submatrix parts, i.e., X3 in both X4 and Y, are
identical, and the (4, 4)-elements of both matrices are 0, the conditions for X4 and Y, in
the Constraint 1 are met. Fori = 1, ..., 3, the label of every i-th node is identical between
X4 and Y4, and their order is lexicographic. Accordingly, the conditions for X4 and Y,

N1 N1
5/0 N3 N3
+ m)
O—O
N2 N3 T
(@) (b)

Figure 5. An example of join.




332 A. INOKUCHI, T. WASHIO AND H. MOTODA

in the Constraint 2 are also met. Moreover, because the labels of the 4th nodes in X4
and Y, are identical, the Constraint 3 must be checked. This constraint is also met since
code(X4) = 01001 < code(Y4) = 01011. In summary, these two matrices are joinable, and
the following Zs which satisfies all constraints is obtained.

Ny Ny N3 N3 N;

N (O O 1 0 1
Nl O 0 0 1 1
Zs=N3;| 1 0 O O O
N3] O 1T 0 0 ?
N3 \ 1 1 0 7 O

The (3, 4)-element and the (4, 3)-element which correspond to the dashed line in figure 5(c)
can be either O or 1.

In Apriori algorithm, the (k + 1)-itemset becomes a candidate frequent itemset only
when all the k-sub-itemsets of the (k + 1)-itemset are confirmed to be the frequent itemsets
according to the monotonicity of the support. Similarly, in case of graph structured data,
the k + 1-graph G(Z;) is considered to be a candidate of frequent induced subgraphs
only when the adjacency matrices of all induced k-subgraphs of G(Z;;) are confirmed
to represent frequent induced subgraphs. Because our proposed algorithm generates only
adjacency matrices of the normal form in the earlier k-stages, if the adjacency matrix
of the induced subgraph generated by removing the i-th node, i.e., i-th row and column,
(1 <i < k+1)isanon-normal form matrix, it is not easy to confirm whether it is a frequent
induced subgraph or not. Thus, a method to transform a matrix of non-normal form to that
of normal form is needed. An adjacency matrix of non-normal form is transformed into a
normal form matrix by reconstructing it. Figure 6 shows an example of the transformation
of an adjacency matrix X, which is a non-normal form matrix. The numbers below the

0 (0] 4=A
VIVIVIVE /
O s
{1 | 00
wvil 1101 0o
wh 0110 0
011011 " +D
Xa:adjacency malrix N o A
for non-normal form E /t]”(fl]']\ ’Jnl 1{71(?\
— — 001 001
vIC—— 3 110) 01
011 (oo1 )
~ vty
2 (C——Ow 000 1
0011 Adjacency matrix transformed
0101 |intothe normal form
o
001111

Figure 6. Transformation into the normal form.



MINING GRAPH DATA 333

adjacency matrices in this figure show the corresponding codes, and v; denotes the i-th
node of the adjacency matrix X4 to be normalized. It starts with the adjacency matrices
representing the induced subgraphs of X4 consisting of one node (see figure 6(A)). As
it is necessary to find a normal form matrix of G(X4) among many normal forms, the
combination for joining should be restricted. We choose a matrix consisting of v; as the
first matrix and the others the second matrix (see figure 6(B)). The values which can not
be determined by join operation, for example (1, 2)-element and (2, 1)-element of a matrix
consisting of v; and v,, are taken from x5 and x,; of X4 to reflect the graph structure of X4
(see figure 6(C)). Next, matrices whose graphs have two nodes are joined (see figure 6(D)).
Here, the matrix whose code is the least becomes the first matrix, and the others become the
second matrices (see figure 6(E)). If there are adjacency matrices whose codes are tie, we
simply choose one randomly. This process continues until an adjacency matrix having the
same size with the original adjacency matrix is found. Because the rows and the columns of
the original adjacency matrix are re-ordered by following the aforementioned constraints to
generate a normal form matrix while retaining the graph structure, the resultant adjacency
matrix becomes a normal form matrix.

3.2.2. Canonical form. After all candidate graphs are derived, their support values are
counted by scanning the database. However, as mentioned earlier, multiple normal form
matrices can represent an identical graph. For example, the following two matrices, which
are all normal forms, represent an identical graph where Y5 is the “canonical form” of the
graph representation as explained later.

Ny Ny Ny Ny N Ny N, N Ny N

N 0 O 0 1 1 N 0 0O 0 O 1

Ny 0 0 0 O 1 M 0 0 O 1 0

Xs = N; 0 0 0 1 0], Ys=N; 0 0 0 1 1
Ny 1 0 1 0 1 Ny 0 1 1 0 1

Ny 1 1 0 1 0 N 1 0 1 1 0

®)

Increasing the counter of X5 for a transaction and increasing the counter of Y5 for another
transaction by treating them as different candidate graphs lead to a wrong result of the
support value of the graph. Therefore, before counting the support, the identification of the
normal form adjacency matrices representing an identical graph must be conducted. For
doing so, we introduce a unique normal form matrix called the “canonical form” among
all normal form matrices representing an identical graph G, and set pointers from the
normal form matrices to the canonical form matrix. Let k£ be the size of G and I'(G) =
{X | Xt is a normal form matrix and G = G(Xj)}. Then the canonical form C; of G is
defined as follows.

Cry w.ort code(Cy) = min code(Xy)
X(el(G)



334 A. INOKUCHI, T. WASHIO AND H. MOTODA

The canonical form matrix Cy of G(= G(Xy)) is obtained through the permutations of the
rows and columns of the normal form matrix X;. The permutations are made through the
operation Cy = WkT X Wy where each element of Wy, i.e., w;j, is 1, when the i-th node of
X should be permuted with the j-th node, otherwise 0.

We consider to derive W, to transform a normal form matrix X to the canonical form
matrix Cy under the assumption that the permutation matrix to transform a normal form
matrix to its canonical form matrix is already known for every frequent induced k — 1-
subgraph. As shown by Theorem 1 in Appendix, the first matrix of the canonical form
matrix Cy of a normal form matrix Xy, i.e., the submatrix obtained by removing the last
row and the last column of Cy, is also the canonical form matrix C;_; of an induced
k — 1-subgraph of G(Cy) = G(X}). Because G(Cy—) is an induced subgraph obtained from
G(Cy) = G(Xy) by removing a node in G(Xy), the code of Cy_; is equal to the code of
the canonical form matrix can(X}" ) of the matrix X;’ ; which is produced by removing
one of k nodes, i.e., the m-th node for a number m (1 < m < k), from G(X;). Moreover,
according to Theorem 2 in Appendix, the canonical form can(X}" ) having the minimum
code over 1 < m < kis C_;. Combination of this fact and Theorem 1 deduces Corollary 1
which ensures the existence of a permutation matrix to transform X} to its canonical form
Cy in which the part C;_; is can(X}" ) for a m. Here, the following new definition of a
matrix C; named “pseudo-canonical form” is introduced.

cr— (Ck—l CP])
g ey 0)
2

where G(C!) = G(Cy) = G(X;) and Cy_; is identical with the first matrix of C; whereas
the last row and the last column do not have to be identical with those of Cx. C} has the
same code digits with C; except its lower k — 1 digits. The pseudo-canonical form matrix
C} is derived quite easily.

First, the matrix X7, (1 < m < k) is transformed into the normal form by the procedure
explained in figure 6. The permutation matrix for this transformation is expressed as 7" |,
and the matrix transformed into a normal form is given by (7", D¢ i " . The matrix to
transform the normal form (7, , YT X i T, , into its canonical form can(X}"_,) is expressed
as S, and can(X}" ) is given by (Tkn1151?11)TX1’<"71T/!LSlir The matrices S and 7" to
transform X, are defined from S} | and 7" | through Egs. (6) and (7).

sl.’j- O0<i<k—landO0<j<k-1,

sij=11 i=kandj=k, (6)
0  otherwise,

13 i <mandj #k,
t". . i >mand ] #Kk,
=1 7 ™
1 i=mand j =k,

0 otherwise,



MINING GRAPH DATA 335

where s, s{';, t;j and ti’;‘ are the (i, j)-elements of matrix S}", S} ,, T)" and T} | respectively.
According to Theorem 3 in Appendix, a pseudo-canonical form C/ for X is given by

C! w.rt. code(C{) = min code((TkmS}Z’)TXk (T"S¢)) ®)

forallm =1, ..., k satisfying N(Xy, m) = N(X, k). As the last row and the last column
of C} can be different from those of Cy and code(Cy) < code(C} ), some rows and columns
of C} must be further permuted to obtain Cy from C; while maintaining the first matrix
Ci—1. This can be done by introducing a transformation matrix U; which permutes the
nodes of C ,f' having an identical node labels, the identical rows and the identical columns
in Cy_;. Given the set of all U for C,f as A(C,f ), the canonical form C; of X is given by
the following search.

Ci w.rt code(Cy)= min code(U! CJUy) 9)
UreA(C))

The matrix 7" §}" Uy minimizing the code is stored as S; for the next (K + 1)-th step
calculation to derive the canonical form of X;,;. The computational complexity of the
search of Cy is O(k!) in the worst case. However, because of the variety of node labels
and the heterogeneity of the graph topology in the real data, the required search space
is far less in many real applications. In addition, during the computation of Eq. (8), if a
matrix (7;" S,’Z“)TX (T Sy") is derived where one of the matrices S to transform it into a
canonical form have already been found, the canonical form of X} is given by the following
transformation, and the further computation of Eq. (8) for each m is stopped.

Ce = ST(TESP) " Xi (T S . (10)

In the example of Eq. (5), X5 is not the canonical form since code(Ys) = 0000111011 <
code(Xs) = 0001011101. The X})'s form =1, 2, 3, 4 and 5 are as follows.

00 0 1 00 1 1 00 1 1
. oo 1o , oo 10 , oo o1
X4= ,X4= 7X4: )
01 0 1 1 1 0 1 1 0 0 1
1 010 1 01 0 1 110
0 0 0 1 0 0 0 1
00 0 1 00 00
X4 = X; =
t71o o0 o0 o0 "7 lo o o0 1
1 100 1 01 0

Since X j is already a normal form matrix, the nodes is not permuted in the procedure of
figure 6. Hence T41 is the 4 x 4 unit matrix, and (T41)TX i T41 isequal to X }‘. In addition, Sj is
the 4 x 4 unit matrix, because X }1 is already the canonical form matrix where code(X }1) =



336 A. INOKUCHI, T. WASHIO AND H. MOTODA

001101. Accordingly, the following T4 and S are obtained through Egs. (6) and (7).

0

Ty = Ss

S o O = O
S = O
S = O O O

o
- o o o o
I -
Il
©c o o o~
o oo~ o
o o~ o o
o - o o o
- o o o o

Then the following (74 ST X5(TJ 1) is derived where the code is 0011010011.

(1d53)" x5(1¢88) = a1

o - o o o
o o~ o o
= =)
—_ O = O -
S = = o o

For m = 2,3,4 and 5, similar transformations are applied, and their resultant codes of
(T ST X5(T2" S2) are 0011110010, 0011110010, 0000111011 and 0000111101 respec-
tively. Among these codes, the one for m = 4 is the minimum, and thus the pseudo-canonical
form C? of X5 is known to be equal to ¥s in Eq. (5). Furthermore by applying Eq. (9), the
canonical form matrix Cs is searched. In this example, the code of Eq. (5) is already the
minimum, and hence Y5 is known to be the canonical form Cs.

The algorithm shown in figure 7 performs the aforementioned operations. In the loop
from (3) to (14), the operations defined by Eqgs. (8) and (10) are performed. S} and 7"
required in (5) and (6) are obtained by Eqs. (6) and (7). At the step (8), the operation of
Eq. (10) is conducted, if the appropriate transformation matrices have been obtained before.
At the step (16), the permutation search of Eq. (9) is conducted to derive the canonical form
matrix Cy.

3.2.3. Frequency calculation. Frequency of each candidate frequent induced subgraph is
counted by scanning the database after generating all the candidates of frequent induced
subgraphs and obtaining their canonical forms. Here, the counting method is explained
through an example to count frequent induced subgraphs of size 3 in a directed and unlabeled
graph shown in figure 8. We assume that the candidates of frequent induced subgraphs
of size 3 have already been obtained. The codes of the adjacency matrices are base 4
numbers, and v; denotes the i-th node of the transaction. Further we assume that all the
graphs of size 2 except for the one whose code is 3 are known to be frequent induced
subgraphs. Starting with the adjacency matrices of size 1, the larger submatrices of the
given matrix (code = 301011) are sequentially generated. Similarly to the procedure of
figure 6, (k, k — 1) and (k — 1, k)-elements of the joined matrix are taken from the given
transaction matrix. Since the adjacency matrix consisting of v; and v, has code 3, and is
not the frequent induced subgraph, this is not joined with any other matrices. In addition,
the right most matrix consisting of v; and vy is not joined with the others since the node



MINING GRAPH DATA 337

) forall X}, in a set of candidate frequent induced subgraphs
) X=X, m=1
) while m <k do begin
4)  if(N(Xg,m) = N(Xg,k)) then do begin
) if(code(X}) > code((T/*SP)T X1 (T{*Si™)) then do begin
) X] = (TS X (TSP
if(the transformation matrix of X, to the canonical form
) ( K
is known) then do begin
8) X = S XS
//where Sy, is the matrix to transform X,
in r.h.s. to its canonical form.//

Canonical form of Xj, is X ;
end

9) break;
10) end
11) end
12)  end
13) m=m+1
14) end
15) if(the canonical form of X has not been derived in the step 8)
16)  Xj=permutation(Xj);
17) end
)
)

VYIS Vi v V3 v4
0100 0 0 [4] 0
vzl 1011 [ } [ ] [ ] [ J
v3 g 8 8 (1) VIV2  VIVZ VIV4 Vav3 VIv4 VAw4
: FEEHENENED
301011 1oJlooJloo)lootloo)loo
Transaction 3 0 0 1 1 I
g g ST
[VO 01 G) 01
000 000
v2 vd 001 11

Figure 8. An example of frequency calculation.

label in its first matrix part, i.e., vs, is not shared with any other matrices of size 2. The
other matrices of size 2 are mutually joined into size 3 if the node label is shared in their
first matrix part. Subsequently the joined matrices are checked if they correspond to any
canonical forms of candidate frequent induced subgraphs. In this example, both normal
form matrices of the codes 001 and 111 generated in the join operation are sought in the
set of normal forms of candidate frequent graphs derived in the previous sections. Then,
the counter of each canonical form is incremented by 1. Even when there are more than
one isomorphic induced subgraphs in a transaction, the default is that we increase the
counter by 1. This is based on the definition of support that is the fraction of the graph
transactions containing a certain subgraph pattern in all transactions. As a second option we



338 A. INOKUCHI, T. WASHIO AND H. MOTODA

can increase the count by the number of occurrences of the isomorphic subgraph within a
transaction.

3.3.  Implementation

The algorithm explained in the previous subsections is implemented using a “trie” data
structure. The trie is one of basic and popular data structures used in the search domain,
and is a specific case of the tree data structure. The trie is used to represent and retrieve
sequences of symbols. Starting from the top root where the null symbol is assigned, a
branching point representing a symbol sequence is added downward in a recursive manner.
If an identical symbol subsequence appears at the beginning of multiple symbol sequences,
the sequences share the path from the top root to a branching point corresponding to the
identical symbol subsequence, and the point has branches to connect to another point for
each symbol sequence. Thus the trie represents many symbol sequences hierarchically in
a compact fashion. Figure 9 is an example of undirected graphs that have two node labels
N; and N,. A branching point of the trie corresponds to the normal form of a matrix. The
symbol sequence consisting of literal (above) and the numeral (below) in each point show
respectively the node label order and the code of the adjacency matrix. The depth of the trie
corresponds to the size of the graphs, and the parent matrix of each matrix in the trie is the
first matrix to generate the matrix.

Assuming all frequent induced subgraphs of size i and their matrix codes have been
already found, and they are located in the i + 1-th level of the trie, we consider to search
the frequent induced subgraphs of size i 4+ 1 and their matrix codes. Because the matrices
that satisfy the join constraints with a given matrix is located only on the right hand side of
the given matrix, the matrix can be efficiently joined within this trie data structure. After
the join operation, each node of the constructed graph is removed in sequence, and the
resulting graphs having one smaller size i are checked if all of them have been found in the
i 4 1-th level of the trie as frequent induced subgraphs. If they are, the graph becomes a
candidate frequent induced subgraph, and the canonical form is obtained for the candidate.
After generating all candidates, the database is accessed, and all the induced subgraphs
corresponding to the candidates are derived from each transaction, and the frequency for
each candidate is counted. If it exceeds the minimum support threshold, the graph is found

(_ r 1(‘_[-_-)
. «-[___ = -___- o=y . d{ __.\..\.\___

CNINTY ANINTY ANINDY A NINDY A N2NTY S N2NY

N AR AN AN AN A

/_;._?—\ . N T f__.r\ \\

g - \, | \\ J_.-" \\\

ANNINDANINING, - AININD | \\ """" AN2NT ANINZNT
000 A 001 _elon )N (1o A 1)

Figure 9. Trie data structure.



MINING GRAPH DATA 339

to be a frequent induced subgraph, and a new point of its normal form matrix is added at the
i 4+ 2-th level under the point of its first matrix. The above process is repeated from the root
to downward in a stepwise manner. Note that the candidate generation and the frequency
calculation interleave, and thus the further expansion from the matrix whose frequency is
below the minimum support threshold is terminated.

4. Performance evaluation

The basic performance of the proposing method was examined using the graph-structured
transactions that were artificially generated in a random manner. An representative random
graph generation method named “G |, model” is applied in this evaluation where graphs
having an expected number of | 7| nodes and an expected number of p|T|(|T| — 1)/2 links
are generated where each of the |T'|(|T| — 1)/2 possible links is set with fixed probability
p. The set of graphs generated by this model is known to have a similar topology over the
entire set (Walsh, 2001), and thus contains many and various frequent induced subgraphs.
On the other hand, the graphs commonly seen in real world problems are known to have
non-uniform topology such as the link network of Web pages which includes some nodes
having very many links and the other having a few links. Their several models, such as
small world model, ultrametric model and power law model, have been proposed (Watts &
Strogatz, 1998; Hogg, 1996; Barabasi & Albert, 1999). Recently, Walsh showed that the
graphs generated by the random models, e.g., G r|,, model, induce far higher computational
complexity than the above models of real world data to search some specific topological
patterns such as graph coloring (Walsh, 2001). Accordingly the evaluation of our method
provides almost the lower bound of the performance.

Table 1 summarizes the parameters to generate the test data and their default values that
are used in the experiments. The size of each transaction, i.e., the number of nodes in a
graph, is determined by the gaussian distribution having the average of | T'| and the standard
deviation of 1. The node labels are randomly determined with equal probability. The links
are attached randomly with the probability of p according to the G|r| , model. Similarly,
L basic patterns of induced subgraphs having the average size of |I| are generated. One
of them is chosen by equal probability, i.e., 1/L, and overlaid on each transaction. In the

Table 1. Definitions of parameters of test data.

Parameter Definition Default value
D Number of transactions 10,000
|T| Average transaction size 10

L Number of basic patterns 10

|1] Average basic patterns size 4

N Number of node labels 5

P Link existence probability 50%

minsup Minimum support 10%




340 A. INOKUCHI, T. WASHIO AND H. MOTODA

500 = directed graph cow undirected graph 90
450 w directed graph --+- undirected graph -

Number of frequent graph (bars)
8
Computation time[sec] (lines)

L. S | | I A
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of graphs in database

Figure 10. Computation time vs. number of transactions.

overlay, the node to be mapped to each node in the basic pattern for every node label is
randomly selected in the transaction. Once the nodes in the transaction for the mapping are
determined, all links among them are removed from the transaction, and all links in the basic
pattern are attached. By this preprocessing, the L basic patterns are embedded as induced
subgraphs in the transaction data. The test data are generated for both cases of directed and
undirected graphs. The machine used for the evaluation is a PC having a Pentium CPU of
400 MHz and main memory of 128 MB.

Figures 10—13 are the results of how computation time varies when the number of trans-
actions, average transaction size, number of node labels and minimum support threshold
are changed respectively. The default parameter values were used in each figure except
the value of the parameter that was changed. Figure 10 shows that the number of different
frequent induced subgraphs is nearly constant, and the computation time is proportional to
the number of transactions. Computation time and the number of different frequent induced
subgraphs increase exponentially with the transaction size in figure 11. Figure 12 shows
that computation time rapidly decreases as the number of node labels increases. Figure 13
indicates that the computation time and the number of different frequent induced subgraph
increase as the minimum support is reduced. The observed tendencies in figures 10, 11 and
13 are almost identical with the properties of Apriori algorithm (Agrawal & Srikant, 1994).
Figure 12 also shows the tendency similar to Apriori algorithm. Because the increase of the
number of node labels increases the variety of graph transactions, the frequency to observe
isomorphic subgraphs decreases in the transaction data, and this effect reduces the search
space of the frequent induced subgraphs. The complexity of the problem which Apriori
algorithm solves is known to be in NP-complete (Agrawal & Srikant, 1994). On the other
hand, the problem to search induced subgraph isomorphism is also known to be between
NP-complete and PB-complete problems as mentioned in the first section. Hence this ex-
perimental consequences are very natural. Further, we note that analysis of directed graphs
generally requires less computation time than the analysis of undirected graphs. This is
because the number of different graphs that are represented by the same number of nodes



MINING GRAPH DATA 341

3000 4000
== directed graph 3500

2500 e undirected graph
—8— directed graph 3000

2000 ~+#-  undirected graph
£rap 2500
1500 2000

1500

=
=]

1000

Number of frequent graphs (bars)
Computation time[sec] (lines)

@
=
=

500

R P 1 i 1151

0 = ]
5 6 7 8 9 10 1 12
average size of transactions
Figure 11. Computation time vs. transaction size.

900 N == directed graph 3000

800 p = undirected graph
—a— directed graph 1 2500

700 --#-- undirected graph

600 i - 1133 i ] 2000
s00f
11500
a00f
aoof i i 11000

200

Number of frequent graphs (bars)
Computation Time[sec] (lines)

B
100f B

Number of node labels

Figure 12. Computation time vs. number of node labels.

is much larger for the directed graphs, and thus their frequencies become smaller. This fact
effectively prunes the candidate graphs at early stages.

Figure 14 is the results when the link existence probability p between any two nodes is
changed in the generation of the directed and undirected graph transaction data. All nodes in
the graphs have an identical node label in these transaction data, and thus they are equivalent
to unlabeled graphs. Each computation time for a p was evaluated for a data set generated
under the p. The decrease of the computation time is observed as the probability increases.
This can be explained by the following reason. Most of the non-normal form matrices, if
generated, would be on the right hand side of the trie in figure 9, and they are not generated
in our algorithm. Accordingly the number of matrices in the right hand side of the trie is
relatively small. On the other hand, the graphs in this region have relatively many links. If the
average number of links of all transactions is larger, the number of matrix generation in the



342 A. INOKUCHI, T. WASHIO AND H. MOTODA

2500 600
=== directed graph [ i
= o undirected graph I 500
& 2000f : @
a —a— directed graph 2
1] -4 undirected graph i -
-§ i 1400 3
& 1500 7] ,E,
2 il 2
g [
g c
£ 1000f 2
w it 1200 3
s Eai 3
£ 500 5
L]

2 =i 100

0 = i it it 0

20 15 10 15 5 33 25
minimum support [%]
Figure 13. Computation time vs. minimum support threshold.
4000 - -

— —®— directed graph ---/y--- directed complement graph

§ 3500 L= -4 - undirected graph  —-X- - undirected complement graph | _ #

o 3000 R SN

g 2500

g 2000

p=

8 1500

=

g* 1000

< 500

O

0 L ] ] ] L

20 30 40 50 60 70 80
link existence probability[%]

Figure 14. Computation time vs. link existence probability.

trie will be less. Figure 15 shows examples of unlabeled and undirected graphs. The graph
of the right hand side is the one complementary on the left hand side to the complete graph.
A complete graph is a graph where there exists a link for every node pair. Let the graph
G’ be a subgraph of a complete graph G. G’s complementary graph to G is the graph that
results by removing all the links of G’ from G. The numbers below each graph in figure 15
are the codes of all normal form matrices corresponding to the graph. The graph of the right
hand side has more links, and has less normal forms. Thus the number of normal forms
can be reduced by transforming the graph of the left to the one of the right. Consequently,
if the average number of links of all graph transactions is less than half of that of their
complete graphs, it is worth to convert all transactions to the graph complementary to their
complete graphs as shown in figure 16, where the upper represents the case of an undirected
graph and the lower the case of a directed graph. Because the proposed method searches
the induced subgraph defined by Eq. (1), the subgraphs satisfying the contrapositive of
Eq. (1) are also searched. Therefore, the identical results on the frequent induced subgraphs



MINING GRAPH DATA 343

g

000011 111001
000101 110110
000110 010111
010100 001111
100010

Figure 15. Comparison of codes for two graph structures.

GI' s complementary graph

Graph G1 Complete graph to complete graph

complete symmetric G2’ complementary graph to

Graph G2 directed graph  complete symmetric directed graph

Figure 16. Graphs and their complementary graphs.

are obtained under the application of this preprocessing, if the re-conversion of the found
frequent induced subgraphs to their complements are applied after the mining. In figure 14,
the computation time for the directed and undirected complement graphs is also indicated.
As supposed by the above consideration, the reduction of the computation time for p < 50%
is observed.

5. Applications

In this section, two applications of our proposing method are described. One is Web browsing
pattern analysis, and the other is chemical carcinogenesis analysis.

5.1.  Web browsing analysis

Figure 17 is an imaginary example of a Website where there are 5 URLSs that are hyper
linked. The user of this Web site visits the URLs by following the hyperlinks. A sequence



344 A. INOKUCHI, T. WASHIO AND H. MOTODA

Figure 17. Graphs of URL.

Figure 18. Sequence data.

Figure 19. Conversion of sequence data to graph structure (n = 4).

in figure 18 represents an access history of a user recorded in the WWW server log file. It is
the order of access whereas the arrows in figure 17 shows the existence of hyperlinks. Many
users visit A, then go to C via some URLS, and finally visit to E via some URLs. Since there
is no direct hyperlink from C to E, the user must have visited other URLs before reaching E.
If such a sequence starting from A to E via C is mined as a frequent sequence, the potential
need of clients to directly link from C to E is suggested. Accordingly, we have added extra
links labeled as “virtual” up to the n-th next URL from each URL in each history in order
to explicitly indicate the order of the discontinuous access to URLs as shown in figure 19.

The access history of one-day log of a commercial WWW site called “Achara NAVI” of
Recruit Co. Ltd. is analyzed in this study. The log is a text file that contains each user’s IP
address, access time stamp and a visited URL in each line. The number of URL registered
in this site is about 25,000. The size of this file is about 400 MB and includes about 8,700
URLs and the associated links. If there is no access for more than 5 minutes from the
same IP address, the access history is separated from one another assuming that they are
independent browsing activities. An access history forms a transaction. The value of n was
set to 5 in this analysis. The conversion of the access log into a set of transactions, which
includes the operations to remove IP addresses and time stamps, was applied. Moreover,
the conversion of the links to the nodes is conducted as described in Section 3.1. The size
of the resultant data file became nearly 800 MB. The number of transactions was 50,666,
the average size of one transaction 3.2, the maximum size of the transactions 118 and the
number of node labels, i.e., URLs, 8,655. For the efficient analysis, each URL label was
replaced by its short index symbol. This data compression reduced the size of the data file



MINING GRAPH DATA 345

Table 2. Mapping from alphabet to URL.

/NAVI/mscategory/Sub/s01.html
/NAVI/mscategory/Sub/s03.html
/NAVI/mscategory/Sub/s04.html
/NAVI/mscategory/Sub/s05.html
/NAVI/mscategory/Sub/s06.html
/NAVI/mscategory/Sub/s08.html
/NAVI/mscategory/Sub/s09.html
/NAVI/mscategory/Sub/s12.html
/NAVI/mscategory/Sub/s13.html
/NAVI/mscategory/Sub/s14.html
/NAVI/mscategory/Sub/s16.html

(1) Extracted pattern (Frequency 76).

GXOY0R0R080%0
(2) Extracted pattern (Frequency 80).

CRORORONGRT)

(3) Extracted pattern (Frequency 77).

N = =~ T QmmI QO w >

Figure 20. Extracted patterns from Web browsing data.

significantly to 79 MB. For the minimum support of 0.15%, the number of frequent patterns
extracted was 1,898, and the maximum size was 7. The computation time was 52.3 sec.

Three examples of the extracted patterns are shown in figure 20. The mapping between
each alphabet symbol to each URL is given in Table 2. Figure 20(1) is a case where the user
followed the 6 URLSs in order. Since there is a link for every ordered pair of URLs, these
URLs are known to be indeed visited in sequence. Figure 20(2) is a case where the user
visited 7 URLSs. In this case since there is no virtual link from K to B, the user has visited some
other URLSs on the way from K to B in some of the 80 cases. Figure 20(3) shows two patterns
that are isolated from each other. It shows that many clients visit K, G, A and I in sequence
while visiting F and H independently within the same browsing session. This case suggested
to the Webmaster that some new links are needed between these two groups of URLSs.

5.2.  Chemical carcinogenesis analysis

The biological experiments on the toxicity of chemical compounds are quite expensive
and very time consuming, and thus it is prohibitive to rely solely on the experiments from



346 A. INOKUCHI, T. WASHIO AND H. MOTODA

_CH-_ -l
CH: CH:
_C____Cl
o c-
@ O G

double borid  single band singté bond -

(c {(C) (1.5<LogP<2.3
'{lzé:ugale lzn:l-njl-' (" — sméle b__md ) ,.-"{.: b Class=10)

o8 NGl vondp (L5ogP<2S
'd:u._[Ehlc bl_;_;ﬂ?'_' (‘ T }-ILI_L{!L hl_\iil-i. ~ (‘U

C ( 4

Figure 21. Preprocessing applied to an organic chloride.

both economical and time efficiency views. The prediction of some properties based on
the molecular structures is highly required to search useful chemical compounds. Upon
this background, the possibility to predict chemical carcinogenesis has been explored us-
ing our method. The task is to find structures typical to carcinogen of organic chlorides
comprising C, H and CI. The data were taken from the benchmark data site of Oxford Uni-
versity (Srinivasan et al., 1997). The data consists of 41 organic chlorides out of which 31
are carcinogenic (positive examples) and 10 non-carcinogenic (negative examples). There
are three kinds of links: single bond, double bond and aromatic bond.

Figure 21 shows the preprocessing to convert an organic chloride to the corresponding
undirected labeled graph. The hydrogen H was removed from the graph. This simplifica-
tion is commonly applied in the chemistry, and is known not to affect the mining result
significantly because the removed atoms are always known to be hydrogen, and the original
structure can be easily reconstructed. The three labeled links are preprocessed by adding
three new nodes as described in the Section 3.1. Log P value that was given for each sub-
stance was discretized into 4 intervals. This value is related with the chemical activity of a
compound, and its boundaries are set at 1.5, 2.5 and 3.5 based on the chemist’s expertise.
The Log P value and the class value (positive or negative) were added as two isolated nodes
to the graph representing the molecular structure. Noting that there exists only single bond-
ing between C and CI, the node representing the link label between these two nodes was
removed as depicted in the bottom line in figure 21. With this preprocessing, the average
node number of the graph was reduced to 16.8, and the computation time to extract all the
frequent induced subgraphs was 1.92 sec when the minimum support was set to 50%.

For the minimum support of 30%, 200 different frequent induced subgraphs were dis-
covered in the computation time 216.1 sec. Two examples of the extracted rules are shown
in figure 22. The support of the association rule of example 1 is 31.7%, and its confidence
is 86.7%. This rule implies that if there is a structure CCl, and a Cl that is not directly
connected to CCl,, the substance is carcinogenic. The support of the association rule of



MINING GRAPH DATA 347

CI/C\CI cl @ Class=Y

Ex1. support=31.7%, confidence=86.7%

e C\Cl c @ Class=Y

Ex2. support=36.6%, confidence=83.3%

Figure 22. Extracted association rules.

example 2 is 33.6%, and its confidence is 83.3%. This rule implies that if there is a structure
CCl and an atom that is single bonded to its C, and further there is a CI that is not directly
connected to C, the substance is carcinogenic.

The performance of our proposing method on the computational efficiency was also
evaluated through the mining experiment for a larger data set. The objective data were
obtained from the Website of National Toxicology Program (NTP) (Srinivasan et al., 1997).
In total, the 300 compounds whose classes are known were selected for the analysis of
which 185 compounds have positive carcinogenesis and the rests are negative. The types of
atoms involved in the compounds are C, H, O, Cl, F, S and some cations, and the types of
bonds are single, double, aromatic and cation bonds. The minimum support threshold was
changed in the range from 10% to 20%. In each minimum support case, all frequent induced
subgraphs were exhaustively discovered. The computation time required to complete the
search was far longer for the smaller value of minimum support, and was almost 8 days for
10%, while it was only about 40 minutes for 20%. The size of the largest frequent induced
subgraph discovered in the case of 10% was 13.

6. Discussion and related work

As described in the first section, an algorithm for the complete search of the structure
which belongs to a more general class than the graph has been proposed by Dehaspe,
Toivonen, and King (1998). They tried to mine carcinogenic substructures in the chemical
molecules in form of the first order predicates using PROGOL which is a system used in
inductive logic programming (ILP). They combined ILP principle with a level wise search
technique to improve the search efficiency. However, the search space is still large and so
only the substructure descriptions of short length consisting of six predicates at maximum
were found within a tractable computation time even by the improved search technique.
In the direct representation mode in which the molecule structure is described by the set
of individual atoms and bonds such as atomel(C, Al, c¢) and bond(C, Al, A2, BT), the
small frequent substructures consisting of only three atoms or so could be found since each
predicate is consumed to represent either an atom or a bond. In the synthetic representation
mode in which the descriptors of some characteristic molecule substructures based on the
chemical background knowledge such as aromatic — ring(C, S1) and alcohol(C, S2) are



348 A. INOKUCHI, T. WASHIO AND H. MOTODA

initially given in the data, the frequent substructures consisting of more than ten atoms could
be found. The subsequent work of FARMAR proposed by Nijssen and Kok significantly
increased the search efficiency by relaxing the equivalence criterion among clauses (Nijssen
& Kok, 2001). However, their result includes some predicates having different forms but
equivalent in the sense of the ®-subsumption, and the class of the structures to be searched
is limited to connected structures.

Though these approaches allow the introduction of variables in the predicates, most of
the results of the carcinogenesis analysis were the grounded first order predicates which
could be represented by graphs. In addition, our results shown in the previous section
suggest many important structures consisting of some isolated subgraphs to characterize the
data. In this regard, our approach showed the strength when analyzing complex structures,
since the adjacency matrices have a strong and highly flexible expressiveness of the graph
structures. Our approach is similar to the direct representation mode of Dehaspe et al. and
is considered to be very powerful because it can exhaustively mine large and complex
substructures including the substructures consisting of 13 atoms, while the past approaches
could not achieve the exhaustive search because of the limit on the tractable computation
time. If the synthetic nodes describing some characteristic substructures such as an aromatic
ring and an alcohol base are introduced to the graph transaction, our approach is expected
to mine far larger frequent substructures though this mode has not been assessed.

In our study, the association between the chemical substructures and the carcinogenesis
was investigated exhaustively, but significant association was not observed. This fact is
consistent with the claim made by Dehaspe et al. that the causation of chemical carcino-
genesis is highly complex with many separate mechanisms involved (Dehaspe, Toivonen,
& King, 1998). We also applied our approach to the chemical compound data of mutagene-
sis (Debnath et al., 1991). The chemical mechanism to cause the mutagenesis is considered
among chemists to be more direct and simpler than the case of carcinogenesis. In fact, our
approach found quite significant and complex substructures in this case (Inokuchi et al.,
2000).

GBI and SUBDUE mentioned in the first section can use powerful measures such as
information entropy, gini-index and description length to figure out important graph struc-
tures (Yoshida & Motoda, 1995; Cook & Holder, 1994). Chen et al. proposed a method to
derive the longest access sequence and/or tree patterns among URLs (Chen, Park, & Yu,
1998). The method proposed by Liquiere and Sallantin completely searches homomorphi-
cally equivalent subgraphs (Liquiere & Sallantin, 1998). The method proposed by de Raedt
and Kramer can mine sequence patterns in graphs characterized by the combination of
monotonic and anti-monotonic criteria (de Raedt & Kramer, 2001). The method of Geibel
and Wysotzki can derive frequent induced subgraphs of a limited size in graph data (Geibel
& Wysotzki, 1996). Many of them work efficiently under some mining criteria which can
be set in flexible manner to some extent. However these works take some measures of
greedy search, heuristic search, limitation on graph size and/or strong limitation on the
class of graphs. Thus, they are not suitable for applications that require the complete search
of generic graph substructures.

In the area of the mathematics on the isomorphism and the subisomorphism of graphs, a
great deal of research has been done. The most representative work on the graph



MINING GRAPH DATA 349

subisomorphism checking is the algorithm proposed by Ullman (1976). It checks if a given
smaller graph is the general subgraph of another given larger graph. Its basic approach is to
match the nodes and the links in a smaller graph to those in a larger graph by the depth first
search (DFS). For the isomorphism checking between given two graphs, NAUTY (Mckay,
1990) would be the most well known program. It uses graph invariants to decompose the
given graph to a set of subgraphs and to efficiently verify the isomorphism of these smaller
subgraphs by node matching. However, since the invariants of the given graph such as
degree of each node are not preserved in the subgraph, NAUTY is not suitable to check
the existence of a subgraph in a given graph efficiently. Though these algorithms check the
graph isomorphism or subisomorphism between given two graphs within tractable compu-
tation time, they have no capability to search for frequent subgraph patterns from a huge
dataset.

7. Conclusion

We proposed a new algorithm by extending the Apriori algorithm to mine frequent induced
subgraph structures in graph transaction data. The algorithm can handle general graphs and
perform a complete search efficiently. A graph can be either directed or undirected, and have
any number of labels for nodes and links and any loops including self-loops. Its performance
was evaluated in terms of the required computation time for number of transactions, size
of transactions, number of node labels, values of minimum support and values for link
probability. The problem to search induced subgraph isomorphism is known to be between
NP-complete and PB-complete problems. Though the computational complexity shown in
the experiments through simulated graph structured datasets is consistent with the theoretical
insight, the efficiency is confirmed to be practical for many real world purposes. Two real
world problems were chosen for applications, and some characteristic frequent subgraph
patterns were discovered.
For the future work, the following two issues are currently under development.

(1) The generalization of the adjacency matrix representation and the improvement of the
efficiency to search frequent induced subgraphs.
(2) The extension to the other class of subgraphs and mining criteria.

Currently, a new representation of the adjacency matrix which can directly handle the link
information is sought for the first issue. For the second issue, new approaches to focus on
the mining of the connected subgraphs and the mining under non-monotonic criteria are
expected to have contributions to real-world applications.

Appendix

Theorem 1. The first matrix of a canonical form matrix is also the canonical form matrix.



350 A. INOKUCHI, T. WASHIO AND H. MOTODA

Proof: Let C; and Cy_; be as follows.

0 c2 a3 -+ cix
1 0 3 -
Ck . (Ck—l Cl) _ 1l C32 0 cee o C3k
= ; =
¢, O . . . .
k1 k2 ck3 - 0

code(Cy_1) = €1,2€1,3€2,3C1,4C2,4 * * * Ck—dt,k—1Ck—3,k—1 Ck—2,k—1
code(Cy) = €12€1,3€2,3C1,4C2,4 * * * Ck—=3,kCk—2,kCk—1 k

= code(Cr—1)C1k -+ Ch—1.k

If Cy is the canonical form and Cj_; is not the canonical form, adjacency matrices of normal
forms C; and C;_, which meet the following conditions exit.

C/ 0/1
c =% ) G(Cy) = G(C;
k <c'2T 0 ( k) ( k)

G(Cy1) = G(C,_)), code(C,_,) < code(Cy—1)
Thus,

code(Cy) = code(Cy_1)c1y -+ - k-1 > code(C}) = code(C_\)C1x - Ck—1.k-

This is contradictory to the fact that Cy, is the canonical form matrix. Thus, the first matrix
of the canonical form matrix is also the canonical form. |

Theorem 2. Let the adjacency matrix for which the m-th node of Xy (1 < m < k,
N(Xy, m) = N(Xy, k)) is deleted be X}'_|. Also let the canonical forms of X and X}, be
Ci and can(X}" ) respectively, then

code(Cy_1) < code(can(X,’c"_l)).
The equality holds when G(Cy—1) and G(X]'_,) are isomorphic.

Proof: Cj can be represented as

Cr-1 €1
o (%9
c;, O
As X and Cy, are isomorphic, G(Cy—_;) is one of induced subgraphs of X;. If A;_; represents

an induced subgraph of X; and meet

code(Ar_1) < code(Ci_1), (12)



MINING GRAPH DATA 351

adjacency matrix A; which meets

A1 ag
G(X;) = G(Cy) = G(Ay) where Ay = T
a,

exists. By Eq. (12),
code(Ay) < code(Cy).

It is contradictory to the fact that Cy is canonical form. Thus,
code(Cr_1) < code(Ay_1).

Above derivation shows that the codes of any induced subgraphs of X; whose sizes are
k — 1 are greater than or equal to code(Cy_). Thus,

code(Cy_1) < code(can(X,’f_l)). (13)

As Cy_ is the canonical form based on Theorem 1, l.A.s of Eq. (13) equals its zA.s in the
case that G(Ci—1) and G(X}" ) are isomorphic. O

Corollary 1. An m and a transformation matrix Wy exist, where Cy is given by

Ci_1 01) <can(XZ’1) C])
¢ ( k0 ey 0 S

Theorem 3. Eq. (8) gives a pseudo-canonical form of Xj.

Proof: A matrix S for X, is represented by

S0
S":<o1 1)'

And a matrix 7" for X is represented by

I = PO,



352 A. INOKUCHI, T. WASHIO AND H. MOTODA

where
1 m—1 m k—1 k
1 1
: 0
m—1 1
P'=m 1
m+1 1
: 0
k 1
and

m Tknil 0
Oy —( 0 1>~

(1S Xu(Tsy) = (P oy si)’ Xe(P QY sy
(orsy) PIT X P (O)SY)

xm X/
m\T ~m k—1 1 m om
:(Sk) QkT<x,T O)QkSk
2

Thus,

(Tknil)TX/Tq ", (Tkm 1)Tx/1

= (5" ‘
() )" 0
_ (Tk”iISIT—I)TXIrcn—lTkWLISIT—I (Tknilslznfl)rxll
((Tkm—lslinq)Tx/z)T 0

Because the canonical form matrix of X; is a normal form matrix, its rows and columns
must be lexicographically ordered, and so is the pseudo-canonical form matrix. From this
constraint and the above expression, the label of the m-th node must be the last one in the
lexicographical order. Thus, N(Xy, m) = N(Xk, k) must be hold. If m = m,,;, minimizes
code((T}" | S 1)TX e TSP ), the following relation holds from Theorem 2.

Mupin QMimin T Mupin QMimin

(Tk Sk ) Xk(Tk Sk )
. \NT . . . -\NT

mmm mmm m/”!/l mm/n mNXUX lnmm mm/n !

(Tk—l Sk—l) X T S (Tk—l Sk—l) Xy

(T si) )"

can(X;")  ¢?) Ci_1 Py
ey o) \er7 0

0



MINING GRAPH DATA 353

From this fact and Corollary 1, Eq. (8) gives a pseudo-canonical form of X, i.e.,
cy. O

Acknowledgments

The authors acknowledge the support provided by Mr. Kumazawa and Mr. Arai at Recuit
Co. Ltd. and Prof. Okada at Kwansei Gakuin University. Furthermore, we extend our thanks
to anonymous referees for their valuable suggestions.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. of Twentyth Very Large
Dada Base Conference: VLDB’94 (pp. 487-499).

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In Proc. of Eleventh International Conference on
Data Engineering: ICDE’95 (pp. 3-14).

Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509-512.

Biggs, N. (1974). Algebraic graph theory. Cambridge: Cambridge University Press.

Chen, M. S., Park, J. S., & Yu, P. S. (1998). Efficient data mining for path traversal patterns. IEEE Transaction on
Knowledge and Data Engineering, 10:2, 209-221.

Cook, D. J., & Holder, L. B. (1994). Substructure discovery using minimum description length and background
knowledge. Journal of Artificial Intelligence Research, 1, 231-255.

Debnath, A. K. et al. (1991). Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. J. Med. Chem, 34, 786-797.

Dehaspe, L., Toivonen, H., & King, R. D. (1998). Finding frequent substructures in chemical compound. In Proc.
of Fourth International Conference on Knowledge Discovery and Data Mining: KDD’98 (pp. 30-36).

de Raedt, L., & Kramer, S. (2001). The levelwise version space algorithm and its application to molecular fragment
finding. In Proc. of Seventeenth International Joint Conference on Artificial Intelligence: IJCAI’01 (Vol. 2)
(pp. 853-859).

Fortin, S. (1996). The graph isomorphism problem. Technical Report 96-20, University of Alberta, Edmonton,
Alberta, Canada.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness.
New York: W. H. Freeman.

Geibel, P., & Wysotzki, F. (1996). Learning relational concepts with decision trees. In Proc. of Thirteenth Inter-
national Conference on Machine Learning: ICML’96 (pp. 166—174).

Hogg, T. (1996). Refining the phase transition in combinatorial search. Artificial Intelligence, 81:1/2, 127-154.

Inokuchi, A. Washio, T., & Motoda, H. (1999). Basket analysis for graph structured data. In Proc. of Third
Pacific-Asia Conference on Knowledge Discovery and Data Mining: PAKDD’99 (pp. 420-431).

Inokuchi, A. et al. (2000). Application of frequent substructure mining to mutagenesis data analysis. Working
notes of International Workshop of KDD Challenge on Real-world Data, PAKDD2000.

Kann, V. (1995). Strong lower bounds on the approximability of some NPO PB-complete maximization problem.
In MFCS 95, LNCS (Vol. 969) (pp. 227-236).

Liquiere, M., & Sallantin, J. (1998). Structural machine learning with Galois lattice and graphs. In Proc. of
Fifteenth International Conference on Machine Learning: ICML’98 (pp. 305-313).

Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1:3,259-289.

Mckay, B. D. (1990). NAUTY users guide (version 1.5). Technical Report, TR-CS-90-02, Department of Computer
Science, Australian National University.

Nijssen, S., & Kok, J. N. (2001). Faster association rules for multiple relations. In Proc. of Seventeenth Inter-
national Joint Conference on Artificial Intelligence: IJCAI’01 (Vol. 2) (pp. 891-896).

Read, R., & Corneil, D. (1977). The graph isomorphism disease. Journal of Graph Theory, 1, 339-363.



354 A. INOKUCHI, T. WASHIO AND H. MOTODA

Srikant, R., Vu, Q., & Agrawal, R. (1997). Mining association rules with item constraints. In Proc. of Third
International Conference on Knowledge Discovery and Data Mining: KDD’97 (pp. 67-73).

Srinivasan, A., King, R. D., Muggleton, S. H., & Sternberg, M. J. E. (1997). The predictive toxicology evaluation
challenge. In Proc. of Fifteenth International Joint Conference on Artificial Intelligence: IJCAI'97 (pp. 4-9).

Ullman, J. R. (1976). An algorithm for subgraph isomorphism. Journal of the ACM, 23:1, 31-32.

Walsh, T. (2001). Search on high degree graphs. In Proc. of Seventeenth International Conference on Artificial
Intelligence: IJCAI’2001 (pp. 266-271).

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 440-442.

Yoshida, K., & Motoda, H. (1995). Clip: Concept learning from inference pattern. Artificial Intelligence, 75:1,
63-92.

Received October 20, 2000

Revised June 24, 2002

Accepted June 24, 2002

Final manuscript September 1, 2002



