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Abstract. We compare two routing-control strategies in a high-speed communication network with c par-
allel channels (routes), where information on service completions in down-stream servers is randomly de-
layed. The controller can either hold arriving messages in a common buffer, dispatching them to servers
only when the delayed information becomes available (Wait option), or route jobs to the various channels,
in a round-robin fashion, immediately upon their arrival. Interpreting the delays as servers’s vacations and
considering overall queue sizes as a measure of performance, we show that the Wait strategy is superior as
long as the mean information delay is below a threshold. We calculate threshold values for various com-
binations of load and c and show that, for a given load, the threshold increases with c and, for fixed c, the
threshold decreases with an increasing load. If information is delayed on arrival instants, rather than on
service completions, we show that the system can be viewed as a tandem queue and derive a generalization
of a queue-decomposition result obtained by Altman, Kofman and Yechiali.
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1. Introduction

The main goal of this work is to compare, in terms of overall queue sizes, two routing-
control policies in communication networks where information on service completions
is delayed. In general, analysis and control of queueing systems with delayed infor-
mation, either on service completions or on arrivals, are complex issues that have been
studied very little in the literature (see, e.g., [1,4]). These issues are crucial in high-speed
networks where routing decisions have to be made based on delayed information on the
actual state of down-stream nodes. The lack of full information makes the problem of
optimal routing of packets, among various possible channels, extremely difficult.

Consider a network with c parallel channels (servers) and a controller. Variable-
length messages (jobs) arrive randomly, and the controller has to route (assign) them to
the various channels. If the controller has full information on the state of each server,
then holding a central single buffer for all queues and assigning a job to a server as soon
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as the latter becomes available, is the best policy in terms of minimizing queue lengths
and waiting times. However, if the information about the actual state of each queue
reaches the controller only after some considerable delay, then the problem of optimal
assignment of jobs to the various queues becomes much more complex.

Suppose, indeed, that the information about each service completion reaches the
controller only after some random delay. Then one can think of two possible routing
strategies: Wait or No-Wait policies. In the Wait option all arriving messages are held
in a single common buffer and the controller forwards a message to a server only when
he/she knows for sure that the server is free. This procedure implies that there are no sep-
arate buffers for the individual servers and that each arriving message will be assigned to
a server only after an additional random delay, which clearly increases queue sizes and
waiting times of the jobs. According to the No-Wait option the controller assigns jobs
to the various queues “blindly”, as soon as they arrive, without fully knowing the state
of each server. In such a case the assignment can be done either randomly, or by using a
round-robin (cyclic) procedure. The cyclic procedure has been shown to be much better
than the (independent and) uniform random assignment in terms of minimizing waiting
times (see, e.g., [8]). Another random assignment method is advocated in [4]. The pro-
cedure studied there is, given the delayed information on the queue size of each of the
c servers, the router, upon arrival of a new job, selects randomly two out of the c proces-
sors, and dispatches the newly arriving job to the least loaded processor among the two.
By applying a fluid-limit approach, leading to a deterministic model corresponding to
the limiting system as c → ∞, it is demonstrated via simulations that “the strategy . . .

performs well under a large range of system parameters”.
In this work we will mainly analyze the Wait policy of holding all arriving jobs in a

common buffer, which heavily depends on the delays in obtaining information on service
completions, and will compare it to the No-Wait round-robin strategy. We will show
that when the mean delay of obtaining information is below a (calculated) threshold
value, the Wait policy is better than the No-Wait policy of assigning the jobs “blindly”,
thus partially answering the question of efficient routing when information on service
completions is delayed. The key observation is that the analysis of the Wait policy leads
to a special vacation model where each server, after completing servicing a job, takes a
random-length vacation.

The motivation for the Wait policy stems from the following observation. Consider
a G1/M/c queueing system with i.i.d. inter-arrival times T having probability distrib-
ution function (p.d.f.) G1(t) = P(T � t) with mean E(T ) = 1/λ. Service times B

are i.i.d. with exponential p.d.f. and mean E(B) = 1/µ. The system is stable iff
ρ = λ/(cµ) < 1. Call this configuration “system-1”. Suppose that system-1 has to be
partitioned into c separate (probabilistically identical) queues, each forming a G2/M/1
queue with i.i.d. inter-arrival times X having p.d.f. G2(t) = P(X � t) and mean
E(X) = c/λ. Call this configuration “system-2”. Clearly, the traffic intensity for each
separate queue in system-2 is ρ = (λ/c)/µ, and system-2 is stable iff ρ < 1, similarly
to system-1. The method by which X is generated from T could be either a probabilistic
assignment, by which a newly arrived customer is routed to queue i (i = 1, 2, . . . , c)
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with probability 1/c, or a cyclic (round-robin) mechanism by which the (kc+i)th arrival
is assigned to queue i (k = 0, 1, . . .). It is important to indicate that in system-1 there is
a single common buffer where all arriving jobs are accumulated and from which, having
full information on the state of each server (busy or idle), the controller assigns jobs to
free servers; whereas in system-2 there are c separate queues and the controller, regard-
less of whether or not he maintains real-time information on the various queue sizes or
the state of each individual server, assigns each new arrival to a channel as soon as the
job arrives.

Denote by E[W1] the mean waiting time (not including service) in system-1, and
by E[W2] the corresponding value in system-2. Let r(ρ) = E[W2]/E[W1]. Then it
has been shown in [8] that for G1 belonging to the family of �(n, λn) distributions (i.e.
Erlang (Gamma) p.d.f. with n exponential phases, each having mean 1/(λn)), the ratio
r(ρ) possesses the following properties:

(1) r(ρ) is a monotone decreasing function of ρ, 0 � ρ � 1.

(2) For a probabilistic assignment, r(ρ) tends to infinity as ρ approaches 0, and

lim
ρ→1

r(ρ) = 2cn − n + 1

n + 1
.

(3) For a cyclic (round-robin) assignment

lim
ρ→0

r(ρ) = c(c!)n,

whereas

lim
ρ→1

r(ρ) = cn + 1

n + 1
.

That is, under probabilistic (random) assignment, the smallest value of r(ρ) is
r(1) = c (n = 1, T exponential), while r(1) → 2c − 1 when T becomes a deterministic
random variable (n = ∞). However, for any n, r(0) = ∞. Under the cyclic assignment
r(0) = c(c!) for n = 1 (T exponential) and is approaching infinity as n becomes large
(T deterministic), whereas r(1) = (c + 1)/2 for n = 1, while r(1) = c for n = ∞.

To summarize, for the family of Erlang inter-arrival distributions, the mean waiting
time of an individual job in system-2 is at least (c+1)/2 times larger than its correspond-
ing waiting time in system-1. Indeed, a much smaller mean waiting time for individual
jobs can be achieved if information on the system’s state is available when assigning
them to servers.

Thus, we present in section 2 an M/M/c-type queueing model where each server,
after every service completion, takes an exponentially distributed vacation. In section 3
we present two methods of analysis for this model: (1) we use a (partial) generating
functions approach (see, e.g., [2,3]) which requires finding roots of a polynomial in order
to be able to calculate the (two-dimensional) steady-state probabilities; (2) we employ
Neuts’s [5] matrix-geometric formulation, which also requires numerical calculation of
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a matrix R, which is the solution of a quadratic matrix equation in R. We implement the
first solution for small values of c.

For larger values of c we use in section 4 a direct approximation formula for cal-
culating mean queue size and waiting times and derive a threshold value such that, if
the mean delay is below that value, it is better to wait for the delayed information to
arrive before routing jobs to various channels, rather than routing them as soon as they
arrive but with lack of information on system’s state. We then extend the calculations to
the case where the delay is deterministic and calculate the threshold value for this case
as well. Finally, in section 5, we discuss some issues regarding delayed information on
arrivals.

2. The model

Consider an M/M/c-type queueing system with c parallel servers, each capable of serv-
ing jobs at a rate of µ jobs per unit time. There is a common buffer from which the
controller dispatches waiting jobs to servers. Such an assignment is performed only af-
ter the controller obtains information that the designated server is free and idle. However,
contrary to the classical M/M/c queue where information on service completions be-
comes available instantaneously, in our case this information is delayed. We assume that
the length of the delay is an exponentially distributed random variable with mean 1/γ .
For the controller, the server becomes available only when the delay is over. This state of
affairs leads to a two-dimensional birth-and-death process as follows. We interpret the
delay of information on service completion as a vacation: following each service com-
pletion of a job the server takes an exponentially distributed vacation (with mean 1/γ ) at
the termination of which it becomes available again. We say that a server is “operative”
if it is not on vacation (i.e. either busy or idle, ready to serve).

The present model differs from that of Levy and Yechiali [2] in that in the latter a
server takes a vacation only when the common buffer is empty, whereas in our case a
server takes a vacation after each service completion, regardless of whether the common
buffer is empty or not.

It readily follows that the stability condition for that model is

ρ = λ(µ + γ )

cγµ
< 1. (1)

Condition (1) says that for each server the mean inter-arrival time c/λ should be greater
than the quantity 1/µ + 1/γ , which can be interpreted as the mean duration of a gener-
alized service time being composed of two consecutive stages: service and vacation.

Assume that condition (1) is satisfied. In a steady state, let N be the number of jobs
in the system and J be the number of operative servers. Clearly, if N � J , all servers
are busy and N − J jobs are queueing. Further, let

pj,n = P(J = j, N = n), j = 0, 1, . . . , c; n � 0,
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be the steady-state probabilities that there are j operative servers and n jobs in the sys-
tem. Then, for j = 0, 1, . . . , c, the balance equations are given by[

λ + (c − j)γ + nµ
]
pj,n = (n + 1)µpj+1,n+1 + λpj,n−1 + (c − j + 1)γpj−1,n,

n < j,[
λ + (c − j)γ + jµ

]
pj,n = (j + 1)µpj+1,n+1 + λpj,n−1 + (c − j + 1)γpj−1,n,

n � j.

(2)

Here pj,−1 = 0 and p−1,n = pc+1,n = 0 for all n � 0.
Now, let L be the queue length in a steady state. Then

E[L] =
c∑

j=0

∞∑
n=j+1

(n − j)pj,n.

In the next section we describe two ways to compute the steady-state probabilities pj,n’s
and the value E[L] from equations (2). This would serve our goal to compare the two
routing strategies in terms of the steady-state mean queue size and show under what
conditions one strategy is better than the other.

3. Analysis

3.1. Analysis via generating functions

For j = 0, 1, . . . , c define the (partial) generating function

Gj(z) =
∞∑
n=0

pj,nz
n.

Then, multiplying every equation of (2) by zn and summing over n, we obtain[
λ(1 − z) + (c − j)γ + jµ

]
Gj(z)

= (j + 1)µz−1Gj+1(z) + (c − j + 1)γGj−1(z)

+
j−1∑
n=0

(j − n)µpj,nz
n − z−1

j∑
n=0

(j − n + 1)µpj+1,nz
n. (3)

Set

b0(z)= −µp1,0;

bj (z)= z

j−1∑
n=0

(j − n)µpj,nz
n −

j∑
n=0

(j − n + 1)µpj+1,nz
n, 1 � j � c − 1;

bc(z)=
c−1∑
n=0

(c − n)µpc,nz
n
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and

fj (z)= z
[
λ(1 − z) + (c − j)γ + jµ

]
, 0 � j � c − 1;

fc(z)= λ(1 − z) + cµ.

Also, define the matrix A(z) and the vectors b(z) and g(z) as

A(z)=



f0(z) −µ 0 0 . . . 0 0 0
−cγ z f1(z) −2µ 0 . . . 0 0 0

0 −(c − 1)γ z f2(z) −3µ . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −2γ z fc−1(z) −cµ

0 0 0 0 . . . 0 −γ fc(z)

 ,

b(z)= (
b0(z), b1(z), . . . , bc(z)

)T
,

g(z)= (
G0(z),G1(z), . . . ,Gc(z)

)T
.

Then (3) becomes: A(z)g(z) = b(z).
To obtain Gj(z) we use Cramer’s rule and write |A(z)|Gj(z) = |Aj(z)|, 0 � j

� c, where |A| is the determinant of the matrix A, and Aj(z) is a matrix obtained
from A(z) by replacing the j th column by b(z). It follows that the functions Gj(z) are
expressed in terms of c(c+1)/2 unknown probabilities pj,n, 0 � n < j � c, appearing
in the expressions for bj (z). From the first part of (2) we have c(c+1)/2 linear equations
for those probabilities, but with c more variables pj,j for j = 0, 1, . . . , c − 1. Using the
equation for p0,0 from the second part of (2) which involves only p0,0 and p1,1, we still
have to find c − 1 additional equations. The following theorem and the use of equations
(6) and (7) in the sequel give c − 2 of them.

Theorem 3.1. For any c = 2c0, c = 2c0 + 1, where c0 � 0, the polynomial |A(z)| has
a root of multiplicity c0 at z0 = 0, a root at z∗ = 1 and exactly c − c0 − 1 roots in (0, 1).

Proof. Let q0(z) = 1, and define the minors of the diagonal of A(z), starting from the
lower right-hand side corner, as follows:

q1(z) = fc(z), q2(z) =
∣∣∣∣fc−1(z) −cµ

−γ fc(z)

∣∣∣∣ , . . . , qc+1(z) = ∣∣A(z)
∣∣. (4)

The polynomials qj (z), 0 � j � c + 1, satisfy the following equations:

q1(z)= fc(z)q0(z),

q2(z)= fc−1(z)q1(z) − cµγ, (5)

qk+1(z)= fc−k(z)qk(z) − k(c − k + 1)µγ zqk−1(z), 2 � k � c.

From (4), (5) we see that

(a) q0(z) has no roots;
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(b) qk(z), where k � 1, is a polynomial of degree 2k − 1;

(c) qk(z) and qk+1(z) have no joint roots in (0,∞), because, if they do have such a
joint root, then it is also a root of qk−1(z), qk−2(z), . . . , q0(z), but q0(z) possesses no
roots;

(d) q1(0) > 0, q2(0) < 0;

(e) q2l+1(z) and q2l+2(z), where l � 1, have a root z0 = 0 of multiplicity l; the lth
derivative of q2l+1(z) at z = 0 has a sign (−1)l; the lth derivative of q2l+2(z) at
z = 0 has a sign (−1)l+1;

(f) if z′ > 0 is a root of qk(z), then qk+1(z
′) and qk−1(z

′) are opposite in sign to each
other;

(g) qk(1) = (c!µk)/(c − k)!, 1 � k � c;

(h) qc+1(1) = 0, q ′
c+1(1) = c!(µ + γ )c−1[cµγ − λ(µ + γ )];

(i) the sign of qk(∞) is (−1)k .

Let us now subsequently consider the roots of q1(z), q2(z), . . . , qc+1(z). Clearly,
q1(z) has only one root z1,1 = 1 + cµ/λ > 1. Further, q2(0) = −cµγ < 0, q2(1) > 0,
q2(z1,1) < 0, q2(∞) > 0, and thus q2(z) has roots z2,1 ∈ (0, 1), z2,2 ∈ (1, z1,1) and
z2,3 ∈ (z1,1,∞). There are no other roots, because q2(z) is of degree 3. Similarly,
q3(z) is of degree 5; it has a root z0 = 0, a root z3,1 ∈ (z2,1, 1), and there are also
three other roots: z3,2 ∈ (1, z2,2), z3,3 ∈ (z2,2, z2,3), z3,4 ∈ (z2,3,∞). Now, q4(0) = 0,
q4(+0) > 0, q4(z3,1) < 0, q4(1) > 0. Hence, there are roots z0 = 0, z4,1 ∈ (0, z3,1) and
z4,2 ∈ (z3,1, 1). Also, q4(z) has four other roots in (1,∞). Proceeding further, we see
that polynomial qc+1(z) = |A(z)| whose degree is 2c + 1 has a root of multiplicity c0 at
z0 = 0. Also, it has a root z∗ = 1. Since (1) implies that q ′

c+1(1) > 0, it follows that
there are roots zc+1,l ∈ (0, 1), l = 1, 2, . . . , c − c0 − 1, and c + 1 other roots in (1,∞).
This completes the proof. �

Now, from theorem 3.1 we have

dk

dzk
∣∣Aj(z)

∣∣∣∣∣∣
z=0

= 0, 0 � j � c; 1 � k < c0, (6)∣∣Aj(zc+1,l)
∣∣ = 0, 0 � j � c; 1 � l < c − c0. (7)

For 0 � j � c, equations (6), as well as equations (7), differ only by a constant multi-
plier. Hence, from (6) and (7) we get c−2 new equations for the unknown probabilities.
In order to use these equations, we have to find at least one of the determinants |Aj(z)|,
j = 0, 1, . . . , c. The determinant |A0(z)| can be found by the following recursive pro-
cedure. Put

a0(z) = bc(z); ak(z) = bc−k(z)qk(z) + (c − k + 1)µak−1(z), k = 1, . . . , c. (8)

Then |A0(z)| = ac(z).
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We now need one more equation in order to solve for the Gj(z). This equation
comes from the normalizing condition. Denote pj = Gj(1), j = 0, . . . , c. The nor-
malizing condition is

c∑
j=0

pj = 1. (9)

From theorem 3.1 it follows that |A(z)| = (z−1)B(z) and |Aj(z)| = (z−1)Bj (z), j =
0, . . . , c, where B(z) and Bj(z) are some polynomials in z, and B(1) = q ′

c+1(1). Since
Gj(z) = Bj(z)/B(z), the normalizing condition can be rewritten as

c∑
j=0

Bj(1) = B(1) = q ′
c+1(1) = c!(µ + γ )c−1[cµγ − λ(µ + γ )

]
giving the last equation needed to completely determine the generating functions
Gj(z), j = 0, 1, . . . , c.

However, if one is mainly interested in finding the mean queue size E[L], then
computing the determinants |Aj(z)| for all j = 0, 1, . . . , c can be avoided. In-
stead, it might be easier to get the needed number of equations by considering pj ,
j = 0, 1, . . . , c, as additional unknowns. Then the normalizing condition remains in
the form (9), and we can use (3) to find c+1 additional equations. By substituting z = 1
in (3), we get[

(c − j)γ + jµ
]
pj

= (j + 1)µpj+1 + (c − j + 1)γpj−1

+
j−1∑
n=0

(j − n)µpj,n −
j∑

n=0

(j − n + 1)µpj+1,n, j = 0, . . . , c, (10)

which gives c linear independent equations. Further, differentiating equations (3) at
point z = 1 we obtain

−λpj + [
(c − j)γ + jµ

]
nj

= −(j + 1)µpj+1 + (j + 1)µnj+1 + (c − j + 1)γ nj−1

+µ

j−1∑
n=0

n(j − n)pj,n + µ

j∑
n=0

(1 − n)(j − n + 1)pj+1,n, j = 0, . . . , c, (11)

where nj = G′
j (1). Summing over j = 0, . . . , c and using the normalization, we derive

the last needed equation for the pj ’s:

c∑
j=1

jpj −
c∑

j=1

j−1∑
n=0

(j − n)pj,n = λ

µ
. (12)
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Formula (12) can also be interpreted in the following way. In the left-hand side, the
first term equals to E[J ], and the second term equals to E[J0], where J0 is the number of
operative but idle servers in a steady state. Note that J1 = J − J0 equals to the number
of busy servers. Thus, it follows from (12) that E[J1] = λ/µ. Furthermore, since each
busy server can serve only one job at a time, we get J1 = N − L. This yields

E[L] = E[N] − λ

µ
=

c∑
j=0

nj − λ

µ
, (13)

where nj = ∑∞
n=0 npj,n = G′

j (1). Hence, in order to find E[L], it suffices to compute
the nj ’s. Since (11) gives c linear independent equations for c + 1 variables n0, . . . , nc,

we need one more equation which we obtain by taking the second derivative of (3) at
z = 1, summing over j = 0, . . . , c and applying (12). This yields

λE[N] = µ

c∑
j=1

jnj − λ − µ

c∑
j=1

j−1∑
n=0

n(j − n)pj,n. (14)

Now n0, . . . , nc can be computed from (11) and (14). Then we apply (13) to find E[L].
Equation (14) can be also rewritten as λ(1 + E[N]) = µ(E[JN] − E[J0N]).

Together with (13), this enables us to find the covariance between N , the number of jobs
in the system, and J1, the number of busy servers:

cov[N, J1] = E[J1N] − E[J1]E[N] = E
[
(J − J0)N

] − λ

µ
E[N] = λ

µ
.

As mentioned earlier and will further be exploited in section 4, a server’s vacation can be
viewed as the second phase of a generalized service. Since the mean number of arrivals
per unit time is λ and since each service is followed by a vacation with mean 1/γ , it
follows that the mean number of servers on vacation equals E[c − J ] = λ/γ , implying
E[J ] = c − λ/γ . If there are no delays, i.e. 1/γ = 0, we merely get E[J ] = c.
Finally, the mean number of servers involved in the generalized service (either busy or
on vacation) is given by E[c − J0] = λ(γ + µ)/µγ = cρ, so that E[J0] = c(1 − ρ).

Implementation. The discussion above suggests the following algorithm of finding
E[L] when c = 2c0 or c = 2c0 + 1.

1. Initialization. Set Sc = ∅.

2. If c − c0 > 1 then:

(a) compute |A(z)| using (5);

(b) find the roots zc+1,l ∈ (0, 1), 1 � l < c − c0, of |A(z)|;
(c) compute |A0(z)| using (8);

(d) add equations (7) for j = 0 to Sc;

(e) if c0 > 1 then add equations (6) for j = 0 to Sc.
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3. Add to Sc equations (2) for 0 � n < j � c and j = n = 0; (10) and (11) for
0 � j < c; (9), (12) and (14).

4. Solve the system of equations Sc with respect to pj,n, pj and nj , 0 � j � c; 0 �
n � min{c − 1, j}.

5. Find E(L) from (13).

When c is not too large, this algorithm is suitable for a software like MAPLE or
MATLAB. In the present work, we used MAPLE.

For c = 2, the polynomial |A(z)| does not have roots on (0, 1). Thus, there is no
need to compute |A(z)| and |A0(z)|. The algorithm results in a closed form expression
for E[L]. This formula can be written in terms of the values ρ and ξ , where ρ =
λ(µ + γ )/(cµγ ) is the utilization factor, and ξ = µ/γ is the ratio between the mean
delay and the mean service time:

E[L] = 2ρ3(ξ 6 + 3ξ 5ρ + 5ξ 5 + 7ξ 4ρ + 2ξ 4ρ2 + 12ξ 4 + 9ξ 3ρ + 2ξ 3ρ2

+ 16ξ 3 + 7ξ 2ρ + 2ξ 2ρ2 + 12ξ 2 + 3ξρ + 5ξ + 1
)

×[
(1 + ξ)2(1 − ρ)

(
ξ 4 + ξ 4ρ + 4ξ 3 + 7ξ 3ρ + 3ξ 3ρ2 + 6ξ 2ρ2

+ 4ξ 2ρ3 + 12ξ 2ρ + 6ξ 2 + 4ξ + 7ξρ + 3ξρ2 + ρ + 1
)]−1

.

When the system does not have delays, i.e. ξ = 0, the above formula reduces to E[L] =
2ρ3/(1 − ρ2) which is the mean queue length in the M/M/2 queue (see formula (16)
below).

For c > 2, the polynomial |A(z)| has roots in (0, 1). In general, these roots can not
be analytically expressed via the parameters, confining us to a numerical solution. It is
clear, however, that E[L] can always be seen as a function of ρ and ξ (without loss of
generality, we can choose time units in such a way that λ = 1).

3.2. Matrix-geometric approach

Following [5, section 6.3], we construct a quasi birth-and-death process with generator
Q̃ given by

Q̃ =



A0,0 A0,1 0 . . .

A1,0 A1,1 A1,2 . . .

. . .

Ac−1,0 Ac−1,1 Ac−1,2

A2 A1 A0

A2 A1 . . .

. . .


.
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The square blocks of dimension (c + 1) × (c + 1) are defined as

(A0,0)i,h =


−λ − (c − i)γ , 0 � i = h � c,

(c − i)γ , 0 � i = h − 1 � c − 1,

0, otherwise;

A0,1 =A1,2 = · · · = Ac−1,2 = A0 = diag{λ, λ, . . . , λ};

(An,0)i,h =
{
µmin(i, n), 0 � h = i − 1 � c − 1,

0, otherwise,
for 1 � n � c;

(An,1)i,h =


−λ − (c − i)γ − µmin(i, n), 0 � i = h � c,

(c − i)γ , 0 � i = h − 1 � c − 1,

0, otherwise,

for 1 � n � c;

A2 =Ac,0;
A1 =Ac,1.

Here (A)i,h for 0 � i, h � c is the element of the ith row and hth column of the matrix A.
The matrix Q = A0 + A1 + A2 is the generator of the classical machine repair

model with µ as a breakdown rate:

−cγ cγ 0 0 . . .

µ −(c − 1)γ − µ (c − 1)γ 0 . . .

0 2µ −(c − 2)γ − 2µ (c − 2)γ . . .
...

...
...

...
. . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0
0 0 0
0 0 0
...

...
...

(c − 1)µ −γ − (c − 1)µ γ

0 cµ −cµ

 .

In such a machine repair model each server is considered, independently, as alternating
between two phases: service (mean 1/µ) and breakdown, or vacation (mean 1/γ ). Let
π = (π0, π1, . . . , πc) be a stationary vector of the matrix Q, i.e. πQ = 0, where
0 = (0, 0, . . . , 0). In that machine repair model πj is the stationary probability that there
are j operative servers. In the case that vacations start after each service completion,
πj can be interpreted as a stationary probability that there are j operative servers given
that there are c or more jobs in the system. It is readily seen that

πj =
(
c

j

)(
γ

γ + µ

)j(
µ

γ + µ

)c−j

.
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Substituting this expression in the stability condition from [5, p. 83]

πA2e > πA0e,

where e = (1, 1, . . . , 1)T, we again yield (1) since

πA0e = λ

c∑
j=0

πj = λ and πA2e =
c∑

j=0

µjπj = cµγ

γ + µ
.

Now let pn = (p0,n, p1,n, . . . , pc,n). Then

pn = pc−1R
n−c+1, n � c − 1.

Here R is a minimal solution of the matrix quadratic equation R2A0 + RA1 + A2 = 0.
There are various comutational procedures for finding the matrix R (see [5, section 1.9]).

The vectors p0,p1, . . . ,pc−1 can be found from the equations

p0A0,0 + p1A1,0 = 0,

p0A0,1 + p1A1,1 + p2A2,0 = 0,

pn−1An−1,2 + pnAn,1 + pn+1An+1,0 = 0, 2 � n � c − 2,

pc−2Ac−2,2 + pc−1(Ac−1,1 + RAc,0)= 0,
c−2∑
n=0

pn1 + pc−1[I − R]−11 = 1,

where I is an identity matrix. The vector n = (n0, . . . , nc) is now determined from

n =
∞∑
n=0

npn =
c−2∑
n=0

npn + (c − 2)pc−1[I − R]−1 + pc−1[I − R]−2,

and we can apply formula (13) to find E[L].
Computationally, the matrix-analytic approach is more powerful than the solution

via generating functions, and it enables one to effectively solve the model even for large
values of c.

4. Performance evaluation

In this section we compare the performance of the two routing procedures: Wait and No-
Wait. The arrival flow is Poisson with intensity λ, and the service times are exponential
with parameter µ. As a comparing performance measure we choose the mean queue
length in steady-state.

Using the results of section 3, the mean queue length in the Wait strategy can be
calculated in two ways, following sections 3.1 or 3.2, respectively. For c = 2, 3 we
have implemented the algorithm from sections 3.1 utilizing the approach via generat-
ing functions. For larger values of c, the matrix-geometric approach from section 3.2
provides more efficient computational procedures. However, computational aspects are
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not the main concern in this paper. Our ultimate goal is to compare the two routing
policies in order to see whether the use of the delayed information can help improve the
performance of the system. Therefore, instead of diving into detailed calculations, we
use a direct approximation method. The comparison with explicit results for c = 2, 3 in
table 1 below proves that the approximations provide a very good accuracy to serve our
purpose. Moreover, the approximations can be easily generalized for non-exponential
delays. For instant, in table 2 we give results for the case when the delays are determin-
istic.

As mentioned earlier, our model where every server takes vacation after each ser-
vice completion can be interpreted as an M/G/c queue with a generalized service time
S composed of two consecutive phases: actual service B and vacation V . The queue
length in such a system is the same as in a system where the service itself is distributed
as B + V . Thus, in order to calculate E[L] we use a two-moment approximation (see
[7, p. 297]):

E
[
Lapp

] = (
1 − c2

S

)
E

[
L(det)

] + c2
SE

[
L(exp)

]
, (15)

where c2
S = Var[S]/E2[S] is the variation coefficient of the generalized service time

S = B + V ; E[L(exp)] is the mean queue size in a M/M/c queue with arrival rate λ

and mean service time E[S], and E[L(det)] is the corresponding mean for an M/D/c

queue for which we use Cosmetatos approximation

E
[
L(det)

] ≈ E
[
Lapp(det)

] = 1

2
βE

[
L(exp)

]
.

Here

β ≡ 1 + (1 − ρ)(c − 1)

√
4 + 5c − 2

16ρc

and ρ = λE[S]/c. Further, for the M/M/c queue with mean service time E[S] we have

E
[
L(exp)

] = ρ(cρ)c

c!(1 − ρ)2
p0, (16)

where

p0 =
[

c−1∑
k=0

(cρ)k

k! + (cρ)c

c!(1 − ρ)

]−1

.

For exponential service times and exponential vacation durations, where E[S] = 1/µ+
1/γ and Var[S] = 1/µ2 + 1/γ 2, we get c2

S = (γ 2 + µ2)/(γ + µ)2. This enables us to
write the right-hand side of equation (15) as a function of ρ and the ratio E[V ]/E[B] =
(1/γ )/(1/µ) = ξ :

E
[
Lapp

] =E
[
Lapp(exponential delay)

]
= (1 + ξ)−2[ξ 2 + βξ + 1

]
E

[
L(exp)

]
. (17)
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Another approximation for the mean queue size in M/G/c system is given by Nozaki
and Ross [6] as follows:

E
[
Lapp

(
M/G(S)/c

)] ≈ 1 + c2
S

2
E

[
L

(
M/M(S)/c

)] = 1 + c2
S

2
E

[
L(exp)

]
.

Clearly, for E[V ] = 1/γ = 0 we readily obtain, for both approximations, the classi-
cal M/M/c queue with arrival rate λ, mean service time E[S] = 1/µ and utilization
factor ρ0 = λ/(cµ). Note that if c2

S < 1, then the Cosmetatos approximation gives
higher E[Lapp] values than the Nozaki–Ross approximation, and vice versa. This fol-
lows since β > 1. Note also that, when c = 1, β = 1, making the two approximations
equal.

To ensure stability, condition (1) requires that the ratio ξ = µ/γ must be smaller
than a critical value

ξ crit = 1 − ρ0

ρ0
.

Moreover, for fixed µ, E[Lapp] increases with ξ .
Let us now compare the mean queue length E[L] in the Wait system, where the

controller assigns a newly arrived job to a server only (and immediately) after the for-
mer obtains the (delayed) information that the server has completed servicing an earlier
job, with the mean queue length E[L(cyclic)] in No-Wait system, where the controller
assigns jobs to servers “blindly,” as soon as they arrive, following the round-robin pro-
cedure. In the latter case there are c separate subsystems, each being an Ec/M/1 queue
with mean arrival rate λ/c, mean service time 1/µ and ρ0 = (λ/c)/µ. The mean queue-
ing time is given by (see [8])

E
[
W(Ec/M/1)

] = α

µ(1 − α)
,

where α is the unique root in (0, 1) of the equation

z =
(

λ

µ(1 − z) + λ

)c

=
(

cρ0

1 − z + cρ0)

)c

.

Thus, the mean queue length for each individual queue is

E
[
L(Ec/M/1)

] = λ

c
E

[
W(Ec/M/1)

] = ρ0α

1 − α
.

It follows that the total mean queue size among all c separate queues is

E
[
L(cyclic)

] = cρ0α

1 − α
.

Since, for any c > 1, the value E[L(cyclic)] is greater than E[L(M/M/c)] with
the same ρ0 (see [8]), and, for fixed ρ0, the value E[L] as well as E[Lapp] is an (increas-
ing) function of ξ , there exists a threshold value ξ ∗ ∈ (0, ξ crit) such that E[L] ≈ E[Lapp]
becomes equal to E[L(cyclic)]. Thus, as long as ξ < ξ ∗, it is better to keep all arriving
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Table 1
Threshold values ξ∗ when delays are exponential.

c = 1 c = 2 c = 3 c = 5 c = 10

ρ0 = 0.2 E[L(M/M/c)] 0.05 0.0167 0.0062 0.00096 0.00001
ξcrit = 4 E[L(cyclic)] 0.05 0.0414 0.0376 0.0353 0.0376

ξ∗ approximate 0 0.4263 0.6781 1.0332 1.5723
ξ∗ explicit 0 0.4303 0.6806

ρ0 = 0.5 E[L(M/M/c)] 0.5 0.3333 0.2368 0.1304 0.0361
ξcrit = 1 E[L(cyclic)] 0.5 0.6180 0.7406 0.9905 1.6232

ξ∗ approximate 0 0.2190 0.3373 0.4769 0.6411
ξ∗ explicit 0 0.2193 0.3371

ρ0 = 0.8 E[L(M/M/c)] 3.2 2.8444 2.5888 2.2170 1.6367
ξcrit = 0.25 E[L(cyclic)] 3.2 4.5564 5.9026 8.6090 15.3782

ξ∗ approximate 0 0.0744 0.1128 0.1534 0.1934
ξ∗ explicit 0 0.0744 0.1128

ρ0 = 0.9 E[L(M/M/c)] 8.1 7.6737 7.3535 6.8624 6.0186
ξcrit = 0.1111 E[L(cyclic)] 8.1 11.8589 15.6188 23.1394 41.9425

ξ∗ approximate 0 0.0352 0.0531 0.0715 0.0888
ξ∗ explicit 0 0.0352 0.0531

jobs in a common buffer and operate the system by using the delayed information on ser-
vice completions, rather than to assign arriving jobs “blindly,” immediately upon arrival,
to the various servers, even if it is done in a cyclic manner. However, if ξ > ξ ∗, then the
delays are too long, and it is better to have a separate buffer for each server and assign
new jobs to the various servers following the round-robin procedure, without waiting for
the delayed information to arrive.

In table 1 we give the values of ξ ∗, for some different values of ρ0 and c. Since
c2
S < 1 when the delay is exponential (or deterministic), we use the two-moment ap-

proximation (15) for calculations. The results show that, for example, if ρ0 = 0.8
then, for stability, we must have ξ < ξ crit = 0.25, while, for c = 10, as long as
ξ < ξ ∗ = 0.1934, it is preferred to operate the system by using the delayed information.
It is seen that, for a given value of ρ0, ξ ∗ increases with growing numbers of servers and
that, for fixed c, ξ ∗ decreases when ρ0 increases.

In fact, the above calculations can be extended to the case where the delay V is
deterministic with V = E[V ] = 1/γ . Here the approximations are especially valuable
since the exact solution is not available. In such a case E[S] = 1/µ + 1/γ , as before,
but Var[S] = 1/µ2. This implies that c2

S = (1 + ξ)−2 and 1 − c2
S = (1 + ξ)−2(2ξ + ξ 2),

where again ξ = µ/γ . Thus, equation (15) leads to

E
[
Lapp(deterministic delay)

] = (1 + ξ)−2

[(
ξ + ξ 2

2

)
β + 1

]
E

[
L(exp)

]
.
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Table 2
Threshold values ξ∗ when delays are deterministic.

c = 1 c = 2 c = 3 c = 5 c = 10

ρ0 = 0.2 ξ∗ 0 0.4532 0.7199 1.0877 1.6341
ξcrit = 4

ρ0 = 0.5 ξ∗ 0 0.2256 0.3487 0.4924 0.6581
ξcrit = 1

ρ0 = 0.8 ξ∗ 0 0.0747 0.1134 0.1541 0.1942
ξcrit = 0.25

ρ0 = 0.9 ξ∗ 0 0.0353 0.0532 0.0716 0.0889
ξcrit = 0.1111

It follows that (see (17))

E
[
Lapp(exponential delay)

] − E
[
Lapp(deterministic delay)

]
= (1 + ξ)−2

[
ξ 2

(
1 − β

2

)]
E

[
L(exp)

]
.

Table 2 gives, similarly to table 1, values of ξ ∗ for various combinations of ρ0

and c. It is seen that ξ ∗ in table 2 is slightly bigger than in table 1, but the difference
decreases when ρ0 increases.

5. Delayed information on arrivals

In this section we briefly discuss general queueing systems where information on ar-
rivals, rather than on service completions, is delayed. We consider an arbitrary structure
of arrival flow and arbitrary service discipline. Furthermore, we do not specify the num-
ber of servers or the distribution of the service times. It is assumed that the delays are
independent and are all distributed as some random variable K. The control policy is
such that a job is routed to a server only when the controller knows for sure that the
common buffer, which holds all arriving messages, is not empty.

Altman et al. [1] considered a queueing system satisfying the conditions above.
Specifically, they assumed that the delay K ∈ {0, 1, . . .} is a constant, and they studied
a queue length process {XK

n }, n = −K,−K + 1, . . . ,−1, 0, 1, . . . , in a discrete-time
single-server queue with a stationary process {Yn} of batch arrivals (Yn is the number of
jobs arriving at time slot n) and arbitrary service times. For such a system, they proved
that

XK
n

d= X0
n +

K∑
i=1

Yn−i+K, (18)

where {X0
n}, n = 0, 1, . . . , is the queue length process corresponding to no delay on

arrival information (K = 0), and XK
−K

d= X0
0. To explain formula (18) on an intuitive
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level, the authors pointed out that the delays of information on arrivals may be looked
upon as extra server’s vacations, since the server may stay idle even if there are jobs
present in the buffer. This observation is still true for more general systems with delayed
information on arrivals. Thus, once again, there exists a strong connection between
models with server’s vacations and models with delayed information.

However, for delayed information on arrivals, the interpretation via vacation model
is not that natural as for delayed information on service completions. For example, for
the system studied in [1], the description of the analogous vacation model may read as
follows: “The server takes a vacation at time n if the buffer became empty at time n−K.
The server becomes available again at time n + l, if the first arrival after time n − K

occurred at time n − K + l.” Within such a vacation model formula (18) expresses a
direct decomposition, where the first term of the right-hand side is the queue length in the
beginning of an arbitrary time slot in the system without vacations, and the second term
is the queue length at the beginning of an arbitrary non-serving slot. Yet, this formula is
still not very intuitive, and formally it requires a proof, which is of the same difficulty as
the direct proof for the system with delayed information.

Using the general model, we propose another outlook of delayed information on
arrivals: when a job arrives to the buffer, the controller does not know about its existence
during some random delay. When the delay is over, the controller recognizes the job,
and operates as if this job has just arrived. From the point of view of the controller, this
system differs from the system without delayed information only by the characteristics
of the arrival flow. For example, if the delay K is a constant, then the controller observes
the same arrival flow, shifted by K time units. Actually, the controller may have no idea
about the delays. However, in reality, the delays dictate that new arrivals have to waste
additional time, hanging in the system, causing an increased queue length.

This situation can be better visualized with the aid of figure 1. A new job first
arrives to a “preliminary” queue with infinite number of servers and immediately gets
served, where its service time is distributed as K. Completing this delay, the job imme-
diately proceeds to the main queue which is the same as our original system, but without
delays (and, of course, with a modified structure of the arrival flow). The queue length in
the original system with delayed information equals the number of jobs in the first queue
in figure 1 plus the buffer content of the second queue. In general, such a tandem queue-

Figure 1. A delayed information on arrivals can be seen as a “preliminary” service.
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ing system may not allow an explicit probabilistic analysis. Nevertheless, result (18)
follows immediately from the above interpretation. One just has to note that, at the be-
ginning of a time slot n, the number of jobs in the first queue is

∑K
i=1 Yn−1−K+i , and

the arrival flow to the second queue is the same as the original one, shifted by K slots.
Moreover, the tandem-queue interpretation immediately yields proposition 5.1 bellow
which is more general than (18).

Proposition 5.1. Let (A(t), t � 0) be an arrival process of some queuing system. Let
(XK(t), t � 0), where K = const � 0, be a queue length process in this system when

information on arrivals is delayed by K time units. If XK(0)
d= X0(0), then for any

t � 0,

XK(t)
d= X0

(
(t − K) ∨ 0

) + A(t) − A
(
(t − K) ∨ 0

)
. (19)

Using the tandem-queue interpretation, one can also derive some results when the
delay K is random. For example, the following proposition is based on the well-know
fact that in a steady-state, the number of jobs in M(λ)/G/∞ queue has a Poisson distri-
bution with parameter [λ(mean service time)], and the departure flow from such a queue
is Poisson(λ).

Proposition 5.2. Let XK be distributed as a steady-state queue length in some queueing
system where arrival process is Poisson(λ) and information on arrivals is obtained with
random delay K. Then

XK d= X0 + Y,

where Y is a Poisson(λE[K]) random variable independent of X0.

To conclude, we note that there is a considerable difference between delays of
information on arrivals and delays on service completions. First of all, the delays of
information on arrivals do not play any role in stability conditions, in contrast to de-
layed information on service completions. Second, the delayed information on arrivals
increases waiting times merely by the length of the delay, and, in general, changes the
original structure of the arrival flow. However, the delays of information on service com-
pletions affect the system via the extended “generalized” service which increases queue
lengths and waiting times significantly when the load is high.
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