é& Machine Learning, 51, 73-107, 2003
(© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Empirical Study of Two Approaches to Sequence
Learning for Anomaly Detection

TERRAN LANE terran @cs.unm.edu
Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

CARLA E. BRODLEY brodley @ecn.purdue.edu
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

Editor: David W. Aha

Abstract. This paper introduces the computer security domain of anomaly detection and formulates it as a
machine learning task on temporal sequence data. In this domain, the goal is to develop a model or profile of
the normal working state of a system user and to detect anomalous conditions as long-term deviations from
the expected behavior patterns. We introduce two approaches to this problem: one employing instance-based
learning (IBL) and the other using hidden Markov models (HMMs). Though not suitable for a comprehensive
security solution, both approaches achieve anomaly identification performance sufficient for a low-level “focus
of attention” detector in a multitier security system. Further, we evaluate model scaling techniques for the two
approaches: two clustering techniques for the IBL approach and variation of the number of hidden states for the
HMM approach. We find that over both model classes and a wide range of model scales, there is no significant
difference in performance at recognizing the profiled user. We take this invariance as evidence that, in this security
domain, limited memory models (e.g., fixed-length instances or low-order Markov models) can learn only part of
the user identity information in which we’re interested and that substantially different models will be necessary if
dramatic improvements in user-based anomaly detection are to be achieved.

Keywords: anomaly detection, application, instance-based learning, hidden Markov models, computer security

1. Introduction

Automated modeling of human behaviors is useful in the computer security domain of
anomaly detection (Anderson, 1980; Denning, 1987). In this domain, the task is to develop
a model or profile of the normal working state of a computer system, network, or user with
the ultimate goal of detecting anomalous conditions as deviations from expected behavior
patterns. In this article, we examine the problem of modeling users’ normal work patterns
and detecting abnormalities relative to their profiles. This definition of anomaly detection
encompasses not only intrusions by external agents but also insider abuses by authorized
site users (possibly including the account owner). In practice, many modern intrusion de-
tection systems are hierarchical and distributed and include dozens or hundreds of low-level
sensory agents, of which a user-level anomaly detection sensor of the type we describe may
be only one (Balasubramaniyan et al., 1998; Porras & Neumann, 1997; Cis, 1999; ISS,
2000).

74 T. LANE AND C.E. BRODLEY

The anomaly detection problem can be framed as one of learning a binary concept (valid
user versus anomaly) on a domain consisting of a temporal sequence of discrete, unordered
elements. For example, the data space may consist of command line strings, system call
traces, network packet logs, or even GUI event streams. For convenience, we will consider
time to be a discrete quantity and all observations to take place synchronously. The job
of the classifier is to label each time step in the observation sequence as normal or abnormal.
It may be insufficient to assign only a single label to an entire login session, as hostile
behaviors may constitute only a subset of the session’s data (as, for example, when a hostile
co-worker preempts the console of someone who has negligently left the console unattended
for some period).

In this work, we examine the task of learning user profiles at the user-interface level
(as opposed to analysis of system call traces (Wespi, Darcier, & Debar, 1999; Forrest
et al., 1996; Lee, Stolfo, & Chan, 1997), network packet traces (Lee, Stolfo, & Mok,
1998; Heberlein et al., 1990), or resource consumption patterns (Lunt, 1990)). In particular,
we examine traces of UNIX command line (shell) data, though the techniques presented
here can encompass any temporal sequence of discrete data. We consider a single user’s shell
history traces to form a single temporal stream of symbols (or tokens) drawn from a discrete
alphabet. Tokens are whitespace separated words (command names, their arguments, and
a count of the number of file names encountered on the command line) as well as shell
metacharacters (such as pipes or redirections).

Modeling of humans for anomaly detection presents a number of challenging machine
learning issues:

e Human-generated data are notoriously noisy.

e There are thousands of potential data sources to examine, many of which are defined on
extremely large alphabets.

e Humans are non-stationary data sources.

e Because of privacy and completeness concerns, user profiling data are drawn from only
a single user and represent single-class training data.

e The ratio of “normal” usage to “anomalous” or hostile activity is likely to be highly
skewed.

e The tradeoff between error types (generating false alarms versus failing to identify im-
postors) is site-specific and depends on local security policy.

e The profile learner and classifier are presented with unbounded data streams from poten-
tially very prolific data sources (e.g., system call traces).

For a more detailed analysis of these issues, please see Lane (2000).

In this article, we describe approaches to some of these problems based on two classes
of learning techniques. The hidden Markov model (HMM) formulation of this task is a
natural one as HMMs are explicit models of sequential data. In contrast, an instance-based
learner (IBL) does not typically include an explicit model of sequentiality. Nevertheless,
we demonstrate that, with a proper problem formulation, the IBL model yields comparable
performance to the explicit time-series model of the HMM. We also examine techniques
for learning temporal sequences of discrete data drawn from a large alphabet and address
noise and model scaling issues. Our empirical results are generated according to a range of

SEQUENCE LEARNING FOR ANOMALY DETECTION 75

misclassification costs, in a way compatible with Receiver Operating Characteristic (ROC)
analysis for optimal classifier selection under varied cost and distribution assumptions
(Provost & Fawcett, 1998).

2. Computer security goals

Before describing our anomaly detection sensor and empirical results in detail, we would
like to give some attention to the scope of this work and the goals for this sensor. Though
the ultimate goal of the anomaly detection domain is to produce a system capable of
distinguishing all hazardous or intrusive anomalies from all normal behaviors, it is not
necessary to fully achieve this target to make substantial contribution in this domain. Our
goal is not to produce a complete, stand-alone anomaly detection system that would catch
all impostors or to solve all security issues. Rather, we are operating within the context of
two operational principles, one drawn from the computer security community and the other
from the machine learning community:

Defense in depth: This principle is a result of the acknowledgement that in practice there is no
perfect security. All security mechanisms are susceptible to some form of compromise,
and substantially increasing the strength or reliability of any given mechanism may
require disproportionate effort or cost (e.g., retinal scanners are very powerful biometric
user identification systems but they require specialized hardware and software support
that may be beyond the reach of many organizations). Thus, it is desirable to construct a
layered network of imperfect but relatively cheap defenses. We can have high confidence
in the resulting system because of the redundancy of defenses even if we have only
moderate confidence in each individual mechanism (Pfleeger, 1997).

Hierarchical classification and data reduction: It is well known in the machine learning
literature that appropriate combination of a number of weak classifiers can yield a highly
accurate global classifier (Schaffer, 1994; Freund & Schapire, 1997). Although various
forms of voting have been shown to be effective in many cases, a natural alternative in
data-intensive domains is multi-layer or hierarchical classification. In such tiered deci-
sion systems, the function of the lowest layer of classifiers is to provide focus of attention
(FOA)—that is, to reduce the enormous data inputs to a manageable load for the more
computationally intensive upper layers of the hierarchy which are responsible for such
tasks as feature identification and final classification. In practice, hierarchical classifica-
tion systems have proven highly effective in such tasks as stellar classification (Fayyad,
Weir, & Djorgovski, 1993), planetary geology (Burl et al., 1994; Stough & Brodley,
1997), and medical image analysis (Shyu et al., 1999). A number of recent projects in the
computer security community have taken advantage of the power of hierarchical classifi-
cation in the design of distributed intrusion detection systems (Balasubramaniyan et al.,
1998; Porras & Neumann, 1997; Cis, 1999; ISS, 2000).

Thus, we do not aspire to provide a complete security solution but an incremental benefit.
The sensor we describe in this article is intended to function as a focus of attention unit at
the lowest level of a classification hierarchy; final decisions of hazard level and notification

76 T. LANE AND C.E. BRODLEY

of security officers is the responsibility of a higher level agent with access to distilled results
from many data sources. Nor do we intend to consider all of the thousands of potentially
relevant data sources; our sensor focuses only on human command-line level data, leaving
analysis of, for example, system call traces or network loads, to other sensors. We are, in
fact, currently engaged in testing our system as a sensory agent in the AAFID hierarchical
intrusion detection system (Balasubramaniyan et al., 1998).

The objective, therefore, for this sensor is threefold:

e To provide a reasonable level of accuracy and data reduction to a higher level classifier
in the decision hierarchy.

e To provide results in a timely manner so that security actions can be taken promptly.

e And to run efficiently, imposing little resource burden on the classification hierarchy and
the computer system as a whole.

In terms of accuracy, we focus on ability to discriminate impostors, recalling that a false
alarm on the valid user can potentially be discarded by a higher-level decision maker but
that an impostor missed by this sensor will never be available to higher-level classifiers.

Finally, security incidents can take place at a wide range of time scales. We can roughly
distinguish two classes of time scales: short-term attacks (consisting of a few tens of
tokens at most), which are traditionally addressed via signature matching detectors (Kumar
& Spafford, 1994; Cis, 1999; ISS, 2000; Gordon, 1996), and longer-term attacks, which are
often approached with statistical or learning techniques (as in this article). Documented
events in the latter class have occurred at such high-profile sites as the University of
California at Berkeley, Mitre Corp. (Stoll, 1989), the Air Force’s Rome Labs, Harvard
University, and Citibank Corp. (Power, 1998).

3. Learning from nominal-valued temporal sequence data

Our data are tokens drawn from UNIX command line history traces, and are directly gen-
erated by humans. Humans produce a different class of data than do machine-level sources
such as system call traces (Wespi, Darcier, & Debar, 1999; Forrest et al., 1996; Lee, Stolfo,
& Chan, 1997) or network packet logs (Lee, Stolfo, & Mok, 1998; Heberlein et al., 1990).
Machine-level data are almost exclusively produced by automated sources (sequences of
system calls arranged by a compiler, for example) and display high repetition and little
noise when compared to human-level data.

We assume the existence of some quantity of known “pure” data that is truly representative
of the user’s behaviors for the purposes of training the user model and selecting classification
parameters. The problem of effectively and securely initializing such a system is a critical
one for a fielded anomaly detection system, but we do not address that issue here. For some
approaches to this problem see (Smaha, 1988; Heberlein et al., 1990).

In this work, we employ two different techniques for user modeling. In the first approach,
using an instance-based learning (IBL: Aha, Kibler, & Albert, 1991) framework, the user
model consists of a set of behavioral exemplars drawn from historically observed user
data. The instances are fixed-length subsequences of the input data stream and instance

SEQUENCE LEARNING FOR ANOMALY DETECTION 77

proximities are calculated via a domain-specific similarity measure. The nominal-valued
temporal input sequence is mapped to a continuous-valued temporal sequence on which
classification is performed via a similarity threshold test. In the second approach, the user
model is a hidden Markov model (HMM) (Rabiner, 1989), which encodes a probability
distribution over the space of discrete-valued temporal sequences. The likelihood of the
input sequence is evaluated with respect to this model via the forward-backward algorithm,
and classification is performed via a likelihood threshold test.

In this section we describe the training and operation of each approach. We discuss other
methods for learning on temporal sequence data, and examine how the anomaly detection
domain differs from other sequence learning domains.

3.1. Alternate approaches to sequence learning

In the anomaly detection domain the raw data consists of discrete, unordered (i.e., nominal-
valued) elements such as command strings. For time series of numeric values, techniques
such as spectral analysis (Oppenheim & Schafer, 1989), principle component analysis
(Fukunaga, 1990), linear regression (Casella & Berger, 1990), linear predictive coding
(Rabiner & Juang, 1993), nearest neighbor matching, (y, €)-similarity (Bollobds et al.,
1997; Das, Gunopulos, & Mannila, 1997), and neural networks (Chenoweth & Obradovic,
1996) have proven fruitful. Such techniques typically employ a Euclidean distance or a
related distance measure defined for real-valued vectors.

There are a number of learning algorithms that are amenable to learning on spaces with
nominal-valued attributes. For example, decision trees (Quinlan, 1993) are well suited to
representing decision boundaries on discrete spaces. The bias used to search for such struc-
tures generally (in axis-orthogonal decision trees) employs a greedy search that examines
each feature independently of all others. This bias does not exploit internal relations arising
from causal structures in the data generating process.

One method of circumventing this limitation is to convert the data to an atemporal
representation in which the causal structures are represented explicitly. Norton (1994) and
Salzberg (1995) each independently used such a technique for the domain of learning
to recognize coding regions in DNA fragments. DNA coding, while not temporal, does
exhibit interrelations between positions that are difficult for conventional learning systems
to acquire directly. The features extracted from the DNA sequences were selected by domain
experts, and cannot be generalized to other sequential domains. Although such an approach
could be applied to the anomaly detection domain, it would require considerable effort on
the part of a domain expert, and the developed features would apply only to that data source.
We are interested in developing techniques that can be applied across different data sources
and tasks.

There also exist learning methods explicitly developed to model sequence data. Methods
for learning the structure of deterministic finite-state automata (DFA), for example, have
been widely studied (Angulin, 1987; Rivest & Schapire, 1989; Aslam & Rivest, 1990).
DFAs, however, are not well suited to modeling highly noisy domains such as human-
generated computer interface data. If the data can be observed below the user interface level
(i.e., after interpretation by the UNIX command shell), then many syntactic and semantic

78 T. LANE AND C.E. BRODLEY

errors will have been removed and the data will be cleaner. Yoshida and Motoda (1996)
employ I/O relations at this level to develop finite-state graph models of user behaviors. The
simplest extension of DFA models to noisy domains are Markov chain models (Davison
& Hirsh, 1998), which allow stochastic state transitions. These models have the advantage
that, unlike HMMs, the Maximum-Likelihood estimate for transition probabilities has a
closed form. Markov chain models typically emit symbols deterministically (each state or
arc emitting only a single symbol), requiring a state for each symbol of the alphabet, or | X |?
total transition probabilities to be learned for an alphabet of size | X|. When the alphabet is
large (in our empirical analyses, we have observed alphabets of over 2500 unique symbols),
the dimensionality of the parameter space is high and the amount of training data required
to accurately estimate low-probability transitions is very large. Finally, deterministic output
Markov models with unique states (i.e., each symbol is emitted by only one state) can only
represent a single context for any given symbol. In the anomaly detection domain symbols
can have multiple contexts. The command vi, for example, can be employed for editing
both source code and journal articles. An alternative formulation that represents multiple
contexts with deterministic outputs are Markov trees (Laird & Saul, 1994). We intend to
investigate such models in future work.

3.2. An IBL representation of anomaly detection

Although most instance-based methods do not explicitly model temporality or sequentiality,
it is relatively straightforward to represent some classes of sequential relations within an
IBL framework. In this section, we describe the use of an instance-based learner to model
users’ temporal-sequence behavioral data. We give a brief overview of the system’s flow of
information (shown schematically in figure 1) here and describe the individual components
in more detail below. Data enters the system, in the upper left, as an undifferentiated sequence
of discrete symbols (UNIX shell command lines in this work) and is passed through a parser

1s -laF cd foo/ cat bar.c baz.c ...

A 1110100210121 ...
Tokenize() i

1s -laF cd <1> cat <2> ...

Figure 1. Information flow in the instance-based anomaly detection system.

SEQUENCE LEARNING FOR ANOMALY DETECTION 79

(Tokenize ()), which reduces the data stream to an internal format and does preliminary
feature selection. The resulting data stream is compared to the user’s historical profile
via a similarity measure (Sim()), yielding a temporal sequence of real-valued similarity
measures (indicating instantaneous similarity of observed data to the profile). Because the
instantaneous similarity measure stream is highly noisy, classification based on this signal is
difficult. To solve this problem, we introduce a noise-suppression filter (F ()). Classification
of the smoothed data stream is via a threshold decision module (Class ()) whose decision
boundaries are set through examination of an independent, parameter-selection set of the
user’s historical data. The final, binary class stream (upper right) is the detector’s estimation
of the current state of the input data (1 being “normal” and 0 “abnormal”).

The components described above suffice to operate the detection system in a batch
mode. In this mode, the detector accumulates a single, fixed profile and employs it for
all further classifications. In an operational setting we face the additional difficulty that
human behaviors are dynamic and what is considered “normal” behavior is likely to change
over time. To respond to the presence of concept drift, an online learning method is required
in which the detector employs the feedback loop shown in figure 1 to update the profile and
classification thresholds. In the work described in this article, we are interested in examining
the effects of profile data reduction techniques in isolation. To prevent interactions with the
additional complexities of the online mode feedback loop, we perform all experiments in
batch mode. Elsewhere, we have examined some of the online learning issues involved with
adapting user models to changing behaviors (Lane & Brodley, 1998).

3.2.1. Feature extraction. In our environment we have been examining UNIX shell com-
mand data, captured via the (t) csh history file mechanism. The history data are parsed by
a recognizer for the (t) csh command language, and are emitted as a sequence of tokens
in an internal format. Each “word” of the history data (e.g., a command name, group of
command flags, or shell meta-character) is considered to be a single token. The resulting
alphabet is very large—over 35,000 distinct symbols in just the smaller of our two groups
of users. Because the frequencies of some of these tokens are quite low, gathering adequate
statistics over an alphabet this large is difficult. We have investigated different methods of
reducing the alphabet size and have found that omitting file names in favor of a filename
count (e.g., cat foo.c bar.c gux.c is converted to cat <3>) greatly constrains the
alphabet size (to just over 2,500 distinct tokens) and improves accuracy. We have also ex-
amined the use of additional features such as file name, file extension, activity time-of-day,
token class (e.g., command name, directory name, shell metacharacter), and working direc-
tory. Preliminary findings with these features are not promising, and it appears that more
complex methods will be required to extract their utility.

3.2.2. The similarity measure. We have examined several measures for computing the
similarity between two discrete-valued temporal instances (Lane & Brodley, 1997c). We
describe here the measure that we have found, in empirical investigation, to perform best
on average across users.

The similarity measure operates on token sequences of equal, fixed length. For a length,
[, the similarity between sequences X = (xg, X1, ... ,x—1) and ¥ = (yo, ¥1, ..., Yi—1) 18

80 T. LANE AND C.E. BRODLEY

cd <1> 1ls -laF tar <2> less

cd <1> cat <1> tar <2> less

Final Similarity Score: 9

Figure 2. Example of sequence similarity calculation. Two sequences are compared, element by element. The
bottom curve represents the weight contributed by each match, and the final similarity is the area under this curve.

defined by the pair of functions:

) 0 ifi <Oorx; #y;
w(X,Y,i)= . .
1+wlX,Y,i—1) ifx; =y

(where w(X, Y,i) = 0 fori < 0 so that w(X, Y, 0) is well defined when x¢o = yo) and

-1
Sim(X, Y) = Zw(X, Y, i).
i=0

The converse measure, distance, is defined to be:
Dist(X, Y) = Sim,;x — Sim(X, Y)

where Simy,, is the maximum attainable similarity value for a given sequence length:
Simp,, = Sim(X, X).

An example similarity calculation is depicted in figure 2. The function w(X, Y, i) ac-
cumulates weight linearly along matching subsequences (bottom curve), and Sim(X, Y) is
the integral of total weight over time (area under the weight curve). In the limiting case of
identical sequences, this measure reduces to Simp,x = Z§:1 i = l(l+l> Thus, a run of con-
tiguous matching tokens will accumulate a large similarity, while changing a single token,
especially in the middle of the run, can greatly reduce the overall similarity. This measure
depends strongly on the interactions between adjacent tokens as well as comparisons be-
tween corresponding tokens in the two sequences (i.e., tokens at the same offset, i, within
each sequence). The sequence length, /, is a user-dependent parameter and was explored in
Lane and Brodley (1997a) where the best value was found to be dependent on the profile and
the opponent being detected. Plausible values for / are small integers in the range [§. .. 15]
and the setting / = 10 was found to be an acceptable compromise across users.

A user profile is a collection of sequences, D, selected from a user’s observed actions.

The similarity between the profile and a newly observed sequence, X, is defined to be:

Simp(X) = max{Sim(Y, X)}.
YeD

SEQUENCE LEARNING FOR ANOMALY DETECTION 81

This rule is related to the 1-nearest-neighbor classification rule (Fukunaga, 1990), although
we are not performing classification at this stage but, rather, are defining similarity to known
patterns. We have examined the possibility of using an average similarity to the entire profile,
but found that such a measure had much lower accuracy than the measure given here. An
average across the entire profile decreases the ability of the classifier to resolve local patterns
in the classification space.

3.2.3. Segmenting the event stream. Because the similarity measure is defined only for
fixed length sequences, it is necessary to partition the raw event stream into component sub-
sequences. This raises the question of optimal sequence alignments: where should each se-
quence be defined to start? Our approach is based on the model scaling techniques presented
in Section 5.1. The system initially segments the data stream into all possible overlapping
sequences of length / (thereby replicating each token / times). Thus, every position, #, of the
event stream is considered to be the starting point for a sequence of length / referred to as
the ith sequence or the sequence at time step i. For example, under sequence length / = 6,
the tokenized data stream “cat <3> > <1> 1s -1 | more” would be converted to the
three sequences “cat <3> > <1> 1s -17,“<3> > <1> 1s -1 |”,and “> <1> 1s
-1 | more”.

3.2.4. Noise-suppression. In practice, we have found that the instantaneous similarity
stream, produced by comparing an input data stream to a user profile, is far too noisy for
effective classification. We attribute the high degree of noise to natural variations in the
user’s actions and patterns. For example, the user may temporarily suspend writing a paper
to deal with urgent incoming email, thus disrupting his or her standard paper writing routine.
Such a disruption will appear as a spuriously low similarity spike within an overall high
similarity period. We therefore employ a noise reduction filter before selecting decision
thresholds or performing classification. We employ a trailing window mean value filter
defined as:

1 J
Up) = — Sim]) i
D=1 ,-:,;m (@)

where Simp(7) is the similarity of the ith token sequence to the user profile D, W is the
window length, and vp(j) is the final value of sequence j with respect to D. In a comparison
of the mean-value filter with a median-value filter, we found that, while the median filter
is generally more effective at short window lengths (W < 80), performance for the two
methods is approximately equivalent at longer window lengths (Lane & Brodley, 1997c¢).
We use the mean-value filter here because we are employing W = 100 in this work and
the mean filter can more easily be made to run quickly. While a great deal of damage can
be inflicted in fewer tokens than than the window length, such short term attacks can be
more readily handled by matching known attack signatures (Kumar & Spafford, 1994; Cis,
1999; 1SS, 2000; Gordon, 1996). We are primarily concerned here with the class of long-
term, low-profile attacks such as resource theft or industrial data theft. The time required to
produce 100 tokens varies with user and task, but it can be as short as a few minutes during
periods of intense work.

82 T. LANE AND C.E. BRODLEY

3.2.5. Classification and threshold selection. The similarity-to-profile measure defines
a transformation from the original, /-ary nominal space to a one-dimensional, real-valued
space in which a point set (command trace), T, appears as a probability distribution, Py, over
possible similarity values,v € 1... @ When multiple classes are observable their prob-
ability distributions can be used to construct Bayes-optimal decision boundaries (Fukunaga,
1990). In the anomaly detection domain, however, we possess data only from the profiled
user; the Bayes-optimal boundary is unobservable to us. Furthermore, for most of the data
sets we have examined, the unweighted Bayes-optimal threshold is overly critical of the
profiled user. In figure 3, normal (U0O) and anomalous (U1) similarity distributions are dis-
played together with the Bayes-optimal classification threshold and an alternative possible
classification threshold (the acceptable false alarm threshold, described below). Sequences
whose similarity to the profile falls to the right of the classification threshold are labeled
normal while points falling to the left are labeled abnormal. The area under distribution U0
and to the left of the threshold is then the false alarm probability (the probability of the
valid user being falsely accused of being anomalous) while the area under distribution Ul
and to the right of the threshold is the probability of falsely accepting an anomalous user. In
this example, employing the unweighted Bayes-optimal threshold for classification would
yield an unacceptably high false alarm rate.

In light of the above, we must seek another method for selecting a decision boundary.
Conveniently, the constraints of our domain provide us with a practical heuristic: constrain

0.25 T T T T T T T T T T
- — — Bayes-optimal threshold
------- Acceptable False Alarm threshold
02F B
U1 = Anomalous User (Unobservable distribution}
015 4
=
)
c
Q
=1
o
@
w
o1 4
0.05F U0 = Profiled User 4
0 N 1 1 1
0 S 10 15 20 25 30 35 40 a5 50 S5

Similarity to profile

Figure3. Comparison of unweighted Bayes-optimal decision boundary and acceptable false alarm rate boundary.
The rightmost curve (user UQ) represents the profiled user.

SEQUENCE LEARNING FOR ANOMALY DETECTION 83

the false alarm rate. This yields a Neyman-Pearson hypothesis test (Casella & Berger, 1990),
for a non-parametric distribution of the form:

1 if Pr(v)>r

class(v) = { .
0 if Pr(v) <r
where v is the similarity of a sequence to be classified to a particular profile, D, 1 denotes
“normal”, 0 denotes “anomalous”, and r is the specified false alarm rate. The test, as
given above, does not uniquely determine decision thresholds. We implement this test
by selecting two decision thresholds, #.x and tyin, based on the upper and lower r/2
quantiles of the similarity distribution observed on a “parameter-selection” data set that is
independent of both training and testing data. Similarity values falling between the decision
thresholds are labeled normal and those falling outside are labeled abnormal. The lower
threshold, iy, detects sequences that are too different from known behaviors, while the
upper threshold, #,.x, detects sequences that are improbably similar to historical behaviors,
perhaps indicating a replay attack.'

The parameter r selects the width of the acceptance region on the similarity-to-profile
axis. Thus, it encodes the tradeoff between false alarm and false accept error rates. A smaller
value of r yields a wider acceptance region and corresponds to a lower false alarm rate.
Simultaneously, however, anomalous values have a greater chance of falling into the broader
acceptance region, so false accept rates rise. The choice of a particular point on the error rate
tradeoff curve will depend on site-specific factors such as security policy and the estimated
cost of each error class.

3.3. The hidden Markov model representation of anomaly detection

In this section, we describe the use of hidden Markov models as anomaly detection sensors.
HMMs are general statistical time-series models that encompass as special cases time-
independent multinomial models, fully observable Markov chains, dynamic time warping-
based models (Juang, 1984), and edit distance-based models. A HMM is a stochastic finite-
state model with separate distributions over output (observable) symbols for each (‘“hidden”)
state (Rabiner, 1989). A fixed HMM establishes a distribution over strings from its output
alphabet, and the likelihood of a single string can be evaluated via the “forward-backward”
algorithm—a dynamic programming procedure that successively evaluates state occupa-
tion probabilities for each symbol in the string.> The parameters of a fixed-structure HMM
are learned from data via the Baum-Welch algorithm, an expectation-maximization pro-
cedure that interleaves estimating state occupation probabilities with maximum likelihood
parameter estimation based on state occupation estimates.

The general flow of information for the HMM based detector is the same as that given for
the IBL sensor in figure 1, but the profile is now an HMM constructed to model the user’s
historical behaviors via the Baum-Welch algorithm and the similarity measure is now se-
quence likelihood, evaluated by the forward-backward algorithm.? Unlike the IBL model,
temporal relations are explicitly represented in the HMM by the state transition matrix,
though they are limited to a fixed history depth by the Markov property. The smoothing

84 T. LANE AND C.E. BRODLEY

function (F()) is subsumed by the sequence likelihood evaluation process, but the classifi-
cation model is still a threshold test (albeit on the log-likelihood space, rather than on the
similarity space employed by the IBL classifier). We describe the method in detail below.

3.3.1. Notation. We employ a variant of Rabiner’s HMM notation (Rabiner, 1989) in
which ¢; and O, are variables denoting the HMM state and observed output at time 7,
respectively, G and O denote the complete sequence of states and outputs for the whole period
of observation, 7r; is the prior probability of state i, a;; is the probability of transitioning from
state i to state j, and b; (o) is the probability of generating output symbol v, when the HMM
is in state 7. The matrix forms of the probabilities are I, A, and B, respectively, and the set
of all HMM parameters, {I1, A, B} is denoted 8. The number of hidden states in the model
is K and the size of the alphabet of observable symbols is | X|. While the particular state
that the model is in at time ¢ is denoted g, the states themselves are labeled Si, S> ... Sk.
Similarly, the output symbols are labeled vy, v, . .. vz and the particular symbol observed
at time ¢ is O,.

3.3.2. HMM:s as sequence data classifiers. The task of employing hidden Markov models
as temporal classification systems can be framed in at least three different ways. One popular
method for multiclass problems is to identify the class labels with the hidden states of a single
model. The state sequence inferred from observed data via the Viterbi algorithm (Rabiner,
1989) then constitutes the classification of the temporal sequence data. Such an approach
has been employed in, for example, speech recognition (Rabiner & Juang, 1993), positional
tracking and prediction in user modeling (Orwant, 1995), and fault monitoring (Smyth,
1994a, 1994b). Smyth describes this approach as discriminative, viewing the classification
problem as one of estimating the probability of class labels given the data and model
parameters, p(7 | O, 6) (Smyth, 1994b). This approach makes the assumptions that the
class labels (states) are mutually exclusive and exhaustive. While the first condition certainly
holds for the anomaly detection domain—any given input token can be generated by only a
single user—the latter poses a considerable difficulty. In the anomaly detection domain we
clearly have examples of the valid user’s behavioral characteristics, but we lack examples
of the behaviors of hostile users or intruders. Even given examples of hostile behaviors,
however, the problem of demonstrating that our training set is exhaustive may be difficult
at best.

In the fault detection domain, Smyth addresses the question of unobserved classes by
adding an extra “catch-all” state to the model and augmenting the discriminative model with
a generative model. A generative model views the HMM as a data generator and estimates
observation likelihoods, p(O |), via the forward step of the forward-backward algorithm
(Rabiner, 1989). Class probabilities can be derived from instantaneous observation proba-
bilities, p(O; | g;), via Bayes’ rule. The hybrid of discriminative and generative approaches
allows estimation of class probabilities for an auxiliary state modeling unobserved data.
The combination of the two classes of models involves prior distribution assumptions about
the likelihood of the data under the unknown class.

In this work, we take a different approach to the classification problem. We will first
describe a general classification framework for an N + 1 class domain (one of which is an
“other” or “unknown” class), and then will restrict it to our binary classification domain.

SEQUENCE LEARNING FOR ANOMALY DETECTION 85

Similar to the generative approach, we employ estimations of data probabilities via the
forward-backward algorithm, but rather than associating class labels with model states, we
associate class labels with individual models. Model probabilities can be evaluated from
posterior observation probabilities via Bayes’ rule:

o816y = PO 10O

p(0)
where p(0) is a normalizing factor that is identical for all classes. The model prior probabil-
ity, p(0), can be selected by domain knowledge, but we take it here to be a non-informative
prior (i.e., a uniform probability distribution for a finite set of models). For an N class prob-
lem, an observational sequence is assigned the class label corresponding to the maximum
likelihood model,

class(0) = argmax{p(4; | 0)}.
iel..N

Effectively, we are assessing the likelihood that each model generated the sequence in
question and selecting the model with the highest likelihood. This framework allows us
to assign only a single label to an entire observational sequence, but gives us the freedom
to assign “unknown” class labels. Any sequence judged insufficiently likely with respect
to all known models can be labeled “unknown”. Similar “model-class” approaches have
been widely applied in the speech recognition community (Rabiner, 1989). Orwant used a
related framework to determine a user’s current behavioral state (e.g. “idle”, “writing”, or
“hacking”) but employed manually constructed models for each class and interconnected
the class models into a “meta-HMM” from which classes were predicted via the Viterbi
algorithm (Orwant, 1995). In our binary domain, we construct a single model of the user
and data not fitting that model well are assigned the “anomaly” label. The model prior
probability expresses our knowledge about the incidence rate of impostors, and we take
it to be 0.5 in this work (i.e., data from an impostor is as likely to occur as is data from
the valid user). This is (hopefully) an unrealistic assumption, but we have not been able to
locate solid figures on real incident rates with which to select a prior.

The choice of K is important, as it affects the potential descriptiveness of the HMM.
In the discriminative and generative forms of HMM classification, the domain provides us
with an appropriate value of K (the number of classes present in the data, and possibly
one or more ‘“unknown” states). In the model-class framework, however, the classes are not
directly associated with model states so we must seek either domain-specific knowledge
to help choose K (e.g., some estimate of the natural number of distinct behavioral classes
present in the data) or employ an empirical search. We examine the latter method in the
experimental section of this article.

3.3.3. Sequence labeling. Under the model-class framework outlined above, we construct
a single HMM, 6,, to model the observed behavioral patterns of the valid user. The like-
lihoods of incoming data sequences are evaluated with respect to 6, and those judged
insufficiently likely via a threshold test are labeled as anomalous. The value of this “mini-
mum acceptable likelihood” is denoted #,;,. As in the IBL sensor, to thwart replay attacks

86 T. LANE AND C.E. BRODLEY

we introduce an upper threshold, #,,x, which is used to flag data that are too similar to
historical behaviors. The thresholds, #.,;, and 7,,x are chosen from the upper and lower r/2
quantiles of the non-parametric distribution of observation likelihoods on an independent,
parameter-selection, subset of the training data. Again, the parameter » corresponds to the
acceptable false-alarm rate.

3.3.4. Sequence alignment. As noted above, the model-class framework assigns class
labels only to entire sequences, yet we wish to be able to label arbitrary subsequences of the
observed data stream. We can, of course, run the forward-backward likelihood estimation
algorithm between every possible pair of subsequence start, s, and termination, ¢, time steps.
This turns out to be computationally expensive, as the complexity of the F-B algorithm is
O(K?W) for atime sequence of length W.* Merely to consider all fixed-length subsequences
(t —s = W for some fixed W for all r) within a total data sequence of length T requires
O(K?>W(T — W)) time. This becomes prohibitive for the subsequence lengths of interest
in this domain (W > 50).

Instead we employ the approximation algorithm obtained by considering the endpoint
state transitions (those at time steps s and t) to be statistically uncoupled from their adjacent
states (those at time steps s — 1 and ¢ — 1). That is,

p(Ol NN OT)
p(O1...0s 1)p(Oi41...07)

for 1 < s <t < T. Because of the exponential decay of state influence in the Markov
formulation, this approximation is reasonably good for large W. For example, a comparison
of the approximated sequence log-likelihood to the exact value for one of our tested users at
W = 100 (the value used in our empirical investigations, Sections 4.5 and 5.2 revealed that
the approximated value had a mean deviation of only 0.8% and a median deviation of only
0.46% from the true value (indicating that the deviations are skewed towards 0). Thus, this
approximation allows us to consider all fixed-length subsequences from a global temporal
sequence of length T in time O(K>T + (T — W)), with only a marginal loss in precision.

P(Os 01 ... O ~

4. Empirical analysis: Base-line systems

In this section we describe the performance criteria we use to evaluate models and the ex-
perimental design under which measurements are performed. We examine the performance
of one class of IBL and HMM user models, which we shall denote the base-line models.
The base-line models will be used as standards for comparison when we investigate model
scaling issues in Section 5.

For the IBL sensor, the interpretation of “base-line model” is straightforward: the model
containing all available training data. For the HMM models “base-line” is less well defined.
HMMs subsume, as boundary-cases, both fully-observable Markov chain models and “atem-
poral” models that characterize sequence data as independent observations drawn from a
multinomial distribution (i.e., K = 1), as well as a wide spectrum of “standard” HMMs in
between. Among these, it is unclear which can be considered most nearly comparable to the
IBL base-line model. We have, therefore, examined a range of such models (described in

SEQUENCE LEARNING FOR ANOMALY DETECTION 87

detail in Section 5.2). For the sake of comparison, we wish to select an HMM base-line that
bears some similarity to the IBL base-line model. Thus, we select as our HMM base-line
that model with a parameter cardinality closest (among those tested) to our base-line IBL
models. Under the experimental design that we employ here, the base-line IBL models con-
tain 990 vectors of 10 symbols each and the base-line HMMs contain 30 hidden states and
an average alphabet size of 250 yielding a total space of 8430 parameters (K> + K ||+ K).

4.1. Performance criteria

We apply three criteria to evaluate the performance of anomaly detection systems. In addition
to the traditional accuracy measurements, we argue that the mean time to generation of an
alarm is a useful quantity to consider and that when considered as a focus of attention
component, the degree of data reduction achieved by the sensor is important.

The ultimate goal in the anomaly detection task is to identify potentially malicious
occurrences while falsely flagging innocuous actions as rarely as possible. We shall denote
the rate of incorrectly flagging normal behaviors as the false alarm rate and the rate of
failing to identify abnormal or malicious behaviors as the false acceptance rate. Under
the null hypothesis that all behavior is normal, these correspond to Type I and Type II
errors, respectively. The converse accuracy rates are referred to as the true accept (ability
to correctly accept the profiled user as normal) rate and the true detect (ability to correctly
detect an anomalous user) rate. Although it is necessary that the false alarm rate of an entire
anomaly detection system be low, that is not the primary goal of our sensor, which functions
as a focus of attention mechanism. A FOA sensor may be able to accept high numbers of
false alarms, which can be removed by higher-level decision processes in the classification
hierarchy, but any “notable events” (i.e., anomalies) that it misses will never be available to
higher-level components.

Aspointed out by Fawcett and Provost (1999), detection accuracy alone does not reveal the
complete story in domains of this type. A second issue of importance is time to alarm (TTA).
We wish the time to alarm to be short for anomalies so that potentially hazardous events can
be dealt with quickly and before doing much harm, but long for the valid user so that normal
work is interrupted by false alarms as seldom as possible. We define the TTA to be the mean
run-length of “normal” classifications (i.e., the mean time between alarms), as a measure of
the maximum time an impostor can escape detection. We report TTA values in token counts
because this value is more nearly correlated with work accomplished (or damage inflicted)
than is wall clock time. TTA is an average figure and can achieve fractional values.

4.2. Data source and collection

In this work we examine user behaviors as displayed in UNIX command shell data. We
demonstrate the behavior of the detection system on the task of differentiating different
authorized users of UNIX hosts.’ In this framework, an anomalous situation is simulated by
testing one legitimate user’s command data against another legitimate user’s profile. This
framework simulates a subset of the possible misuse scenarios—that of a naive intruder
gaining access to an unauthorized account. Though this scenario doesn’t address skillful

88 T. LANE AND C.E. BRODLEY

attackers who are fully aware of the capabilities of the anomaly detector and are deliberately
attempting to defeat it, it does address an important class of real attack scenarios. In recent
years, a proliferation of automated attack and intrusion scripts (so-called “kiddie scripts”)
have allowed a growing number of unsophisticated would-be system crackers to penetrate
systems far beyond their own native capabilities. Real incidence numbers are difficult to
come by, but security experts informally estimate that a majority of system penetrations on
the Internet today may be perpetrated by such naive attackers. Thus, progress on even the
naive attacker scenario is valuable to the security community.

We examine system performance on UNIX shell data collected from two different user
populations. The first group consists of eight different UNIX users at Purdue University,
monitored over the course of more than two years. The amount of data available varied
among the users from just over 15,000 tokens to well over 100,000 tokens, depending on
their work rates and when each user entered and left the study. Because of computational
constraints and for testing uniformity, we employed a subset of 10,000 tokens from each
user, representing approximately four months of computer usage.

The second user population is a subset of the 168 users monitored by Greenberg at the
University of Calgary (Greenberg, 1988). Our experimental method requires 2,000 tokens
per test fold per user and 98 of the Calgary users are represented by this amount of data. The
Calgary users were drawn from four populations: 33 computer scientists, 25 experienced
programmers, nine non-programmers, and 31 novice programmers. The Calgary data are
independent of the Purdue data and were not examined during the development of the system
described here. Because of differences in shell and data collection technique, the Purdue
and Calgary user populations are not directly comparable to each other, but members of
each population can be compared to other members within that population.

4.3. Experiment structure

Because user behaviors change over time, the effective lifetime of a static user profile, as
is employed in the work described here, is limited. Thus, we have constructed experiments
to evaluate the detector’s performance over a limited range of future activities. Within the
Purdue data, each user’s 10,000 tokens were divided into five independent subsets (or folds)
which were, in turn, split into independent train (1,000 tokens), parameter selection (500
tokens), and test (500 tokens) data sets. For each fold, the user profile was constructed
from the training data and the classification thresholds (f,x and #,,;,; see Section 3.2) were
selected with respect to the parameter selection data. The Calgary data were treated similarly
except that only a single fold was constructed from the 2,000 tokens available from each
user. Because the Baum-Welch training algorithm for HMMs is subject to becoming trapped
in poor local maxima of the parameter likelihood space, we employed multiple restarts for
the HMM experiments. Each HMM experiment was repeated from five randomly drawn
starting locations, and results were averaged across the five restarts. The same data splits
were used for the IBL and HMM experiments.

From each training set, a profile was constructed with/ = 10 (the fixed sequence length for
the similarity measure) and W = 100 (the window length for the noise-suppression filter).
These values were chosen based on prior empirical work in this domain (Lane, 1998; Lane

SEQUENCE LEARNING FOR ANOMALY DETECTION 89

& Brodley, 1997b). The resulting profile was tested against the corresponding test set for
each user (a total of 82 test pairings per fold for the Purdue data and 987 test pairings for
the Calgary data). A “SELF” test pairing—testing the profiled user’s data against his or
her own profile—allows us to examine false alarm rates while a “non-self” or “OTHER”
pairing allows us to examine false accept rates.

The acceptable false alarm rate, r, determines how the classification thresholds, #,,x and
tmin, are set and has a substantial impact on the tradeoff between false alarm and false accept
errors. Because the notion of “acceptable” false alarm rate is a site-dependent parameter,
we wish to characterize the performance of the system across a spectrum of rates. We
took r € {0.5,1, 2,5, 10}%, which yields a performance curve for each profile/test set
pair. This curve, which expresses the tradeoff between false alarm and false accept errors
with respect to r, is known as a Receiver Operating Characteristic (ROC) curve (Provost
& Fawcett, 1998). An ROC curve allows the user to evaluate the performance of a system
under different operating conditions or to select the optimal operating point for a given cost
tradeoff in classification errors.

All statistical results reported in this article were calculated with a Wilcoxon signed-ranks
test at a significance level of « = 0.01 (Sheskin, 1997).

4.4. IBL base-line results

We will begin by examining the performance of the IBL sensor on a single individual’s
profile. This will allow us to examine some of the features of the domain and data in detail.
We will then present full results for all profiles.

4.4.1. Single profile results. Example results for a test fold of a single profile (that
of USER3) are shown in figure 4. Accuracies for USER3’s profile are given in (a) and

Accuracies for USER3 TTAs for USER3
1 + 10°F :
: e
M B
t + + - . N
3 s _ +
. @
§0.6 X é N ; :
5 . + C 10 . e
3 < :
04f E :
I B
b 3
0.2F " ooy
. .4'
O 07—
Uo Ul U2 U3 U4 Us Us U7 Uuo Ul U2 U3 U4 Us U U7
Tested User Tested User
(a) (b)

Figure 4. (a) Accuracy and (b) time-to-alarm results for the IBL base-line system, single fold, for USER3’s
profile. Each column shows results for one test set against the profiled user. “+” symbols denote adversaries,
while “0” symbols denote the profiled user. Opponent U6, with accuracy 1, has mean TTA 0, which is not
representable on a logarithmic axis.

90 T. LANE AND C.E. BRODLEY

time-to-alarm (TTA) values are shown in (b). While the accuracies are linearly scaled on
the range [0. . . 1], the TTAs are logarithmically scaled. Each column in these plots displays
the accuracy results for a single test set when tested against the profile. When the test set
originates with the profiled user (i.e., USER3 tested against Profile 3), the results indicate
the ability to correctly identify the valid user (true accept rate, in (a), or mean time between
false alarms in (b)). This condition is denoted with an “0” symbol in the plot. When the
test set originates with a different user (e.g., USERS tested against Profile 3), the results
indicate the ability to correctly flag an anomalous condition (true detect rate, in (a), or mean
time between true alarms in (b)). This condition is denoted with a “4” symbol on the plot.
In all cases, accuracy and mean time to alarm is increasing in the positive direction on the
Y axis (while high accuracy is uniformly desirable, a long TTA is desired for the profiled
user but a short TTA is desired for the impostor). The spectrum of results in each column
is generated by testing at different values of », the acceptable false accept rate, as described
in Sections 3.2.5 and 4.3. Because r encodes the size of the acceptance region, it yields
a tradeoff in detect versus accept accuracies. The smallest value of r tested (r = 0.5%)
yields the widest acceptance region and corresponds to the highest (most accurate) point on
the true accept column (USER3) in (a). But because the acceptance region is wide, more
anomalous points fall into it and are accepted falsely. Thus, this value of 7 corresponds to
the lowest accuracy in each of the true detect columns (USER{0-2, 4-7}).

Profile 3 was selected to highlight a number of points. First is that accuracy and TTA
are highly sensitive to the particular opponent. USER1 and USERA4, for example, display
quite different detection accuracies and their TTAs differ by almost an order of magnitude.
Second, although the acceptable false alarm rate parameter, r, was tested across the range
0.5%-10%, all of the observed false alarm rates are higher than these settings (16.3%—
23.0%). This is a result of the training and parameterization data failing to fully reflect the
behavioral distribution present in the testing data. Because the user has changed behaviors
or tasks over the interval between the generation of training and testing data, the profile does
not include all of the behaviors present in the test data. This phenomenon is exacerbated
by the batch-mode experimental setup used here. In tests of the online version of this
system we have found that continuously adapting to the user’s behaviors (thus shortening
the delay between training and testing) improves true accept accuracy (Lane & Brodley,
1998).

An example of another source of false accept error is demonstrated in figure 5 (drawn
from a different part of the experiment). Here, the profiled user (USER6) and USERS have
many behaviors in common—mostly “generic” account maintenance such as directory
creation and file copy and remove operations. This high degree of similarity is reflected
in the substantial overlaps in the similarity distributions, making differentiation impossible
within this space. By contrast, USER3 was engaged mainly in programming and writing
during this time. There are two possible sources for the degree of overlap between USERS
and USERG. First, the underlying observations do not encode sufficient information to
distinguish the two users. Many other data sources are available for user profiling and could
be used in conjunction with the techniques presented here in an operational security system.
The second, and more fundamental, source of error is in the similarity measure itself. The
measure presented in this article is fairly coarse (having only O(I?) possible values for

SEQUENCE LEARNING FOR ANOMALY DETECTION 91

0.3 T T T T T T T T 4 T
025 .

02r

USERS

01} V | \\]

USERS

Frequency
o
e
v
T

1 1 I 1 1 1 1
4] 5 10 15 20 25 30 35 40 45 50 55
Similarity to profile 6

Figure 5. False accept errors: USERS’s data bears high resemblance to the profiled user’s (USER®6).

a sequence length of /), and models only a single type of temporal interaction. We are
currently investigating more sophisticated similarity measures.

Figure 4 also demonstrates that accuracy and TTA are measuring slightly different quanti-
ties. In particular, observe that while USER2 and USER4 demonstrate quite different TTAs,
their accuracies fall in approximately the same range. Clearly, if the alarms were uniformly
distributed within the classification stream, the two performance measures would be equiv-
alent. We have observed, however, that false alarms tend to occur in runs while true alarms
are more sporadically distributed. This is desirable because when false alarms occur in a
run they can be examined and dismissed as a group, while when true alarms occur only a
single alarm may be needed to catch the attacker.

4.4.2. Results for all profiles. A visual representation of performance results for the base-
line system tested on all Calgary profiles at a false alarm rate of »r = 0.01% is given in
figure 6. The histogram displays for the Purdue users are similar, though coarser. These
histograms display the overall accuracy ((a) and (c)) and mean time-to-alarm ((b) and (d))
performance of the sensor when profiling the Calgary users. Statistically, the median true
acceptance accuracy on the Purdue data is 78.3% and the median true detection accuracy
is 85.2%. The corresponding median TTAs are 71.0 tokens (valid user) and 2.9 tokens
(impostors).

The net result is that the sensor is performing well both at detecting impostors and
recognizing the profiled user, though performance is clearly better on the former task.

92

Accuracy: Calgary, VALID

20

T. LANE AND C.E. BRODLEY

TTA: Calgary, VALID

20
15 15
E =
210
3 § 10
5
0
0 0.2 0.4 0.6 0.8 50 100 150 200
mean accuracy mean TTA (tokens)
(a) (b)
Accuracy: Calgary, IMPOSTOR TTA: Calgary, IMPOSTOR
6000 7000, '
5000/ 6000
4000/
- = 4000
[=4
23000 3
° © 3000
2000/
2000/
1000 1000
Dl V) 'l
0.2 0.4 0.6 0.8 1 o 50 150 200

100
mean TTA (tokens)

(c) (d)

mean accuracy

Figure 6. Histograms of the base-line system ((a) and (c)) accuracies and ((b) and (d)) TTAs on the Calgary
data. The horizontal axes give the value achieved on that measure and the vertical give the number of test sets
displaying that level of the measure. Values for the profiled user are shown in (a) and (b) while those for impostors
are given in (c) and (d).

While this balance might be undesirable in a standalone detection system, it is promising in
the context of a focus of attention sensor (see Section 2). In a FOA context, the sensor has
achieved approximately a 70% level of data reduction on non-anomalous data in exchange
for detecting almost 80% of the anomalous events. If we relax the acceptable false alarm
rate to r = 10%, we improve mean impostor detection to 83% at a cost of dropping to about
63% data reduction on non-anomalous events.

4.5. Hidden Markov model base-line results

A comparison of aggregate HMM results for a sensor with £ = 30 hidden states to base-
line IBL sensor results is given in Table 1. It appears that the two classes of sensors are
very close in ability to recognize the profiled user (SELF) and, in fact, they are statistically

SEQUENCE LEARNING FOR ANOMALY DETECTION

Table 1.

93

HMM sensor accuracies and mean time-to-alarm values compared to the corresponding IBL sensor

values at an acceptable false alarm rate of r = 0.5%. Statistically superior results are highlighted.

IBL HMM
SELF OTHER SELF OTHER
Calgary
ACC 69.2% 80.0% 69.5% 84.3%
TTA 79.8 20.5 82.3 16.5
Purdue
ACC 72.4% 72.7% 71.1% 73.4%
TTA 85.0 24.8 83.8 25.7

indistinguishable both in true accept accuracy and in mean time-to-false-alarm. In ability
to distinguish impostors, however, the HMM sensor is statistically significantly better in
both accuracy and TTA for the Calgary data. These results are balanced by two factors.
The first is run time: classification time for the IBL model is linear in size of the model and
training time is constant while classification time for the HMM sensor is quadratic in model
size and training time is even greater.® Runtime may be a precious resource for a security
system—especially if the anomaly detection sensor is only one component at the bottom
tier of a hierarchical classifier.

The second mitigating factor is displayed in figure 7. These scatter plots show the relative
performance of the two systems—each mark corresponds to the HMM (x-axis) and IBL (y-
axis) accuracies for a particular Calgary test set. The diagonal line is the iso-performance line
and points to the right of it indicate superior performance by the HMM sensor while points
above it indicate superior IBL performance. The detection superiority of the HMM sensor
is visible as a higher density of points to the right of the iso-performance line than above it

L x x ™
0.8 % x

g
[}
M
x

1BL, full profile
1BL, full profite

I
'S
x

02 . *
0 = : : :
0 0.2 0.4 0.6 0.8 1
HMM, k=30 HMM, k=30
(a) (b)

Figure 7. Scatter plots of IBL versus HMM (a) true accept/SELF and (b) true detect/OTHER accuracies (corre-
sponding to the aggregate figures for the Calgary data given in Table 1).

94 T. LANE AND C.E. BRODLEY

in (b). The tendency is slight, however, and there are a great many points well distributed on
the other side of the iso-performance line. Indeed, there are a number of cases in which one
system falls to zero accuracy while the other attains large non-zero values (along the left
and bottom edges). Similarly, though aggregate true accept performance is not statistically
distinguishable for the two systems, the variance is high on a per-user basis. Thus, neither
system dominates the other in all cases. The ideal classification strategy, therefore, is to
either locate an a priori method for choosing the model class appropriate to a given user
or to combine the two methods in a single classifier system (e.g., via voting or as different
focus-of-attention sensors in a multi-tier classifier).

5. Model scaling

In this section we examine the impacts of manipulating the number of trainable parameters
present in the user models. For the IBL models, this amounts to reducing the number of
instance vectors stored in the user profile, while for the HMMs it entails changing the number
of hidden states in the model. We examine two classes of methods for selecting appropriate
instances to preserve in the IBL profiles and we investigate a range of values of K for the
HMM user models. We give empirical analyses for all models and tie the performance of
the scaled models back to those of the base-line models examined in Section 4.

5.1. IBL model scaling: Clustering

A widely acknowledged weakness of instance-based learning algorithms is the large data
storage requirement for accurate classification. In an operational setting, data reduction
is critical as the size of the profile directly impacts the time required for classification.
A number of techniques have been examined for reducing this memory overhead, but
most of these require independent binary- or multi-class data to evaluate the utility of
each instance (Dasarathy, 1991; Wilson & Martinez, 2000). We have previously examined
instance selection methods of data reduction for this domain, in which the utilities of
instances within the profile are evaluated with respect to independent data drawn only
from the profiled user and low utility instances are discarded (Lane & Brodley, 1999). We
found that the instance selection techniques examined there all suffered from a form of
misgeneralization as more data were removed from the profile. Specifically, the models
formed by instance selection generated more alarms (both false and true) than did the base-
line models. Effectively, the instance selection techniques were learning the concept that
“nobody is the valid user”.

An alternate method of reducing data storage is to modify the representation of sets of
points within the data space. For example, Salzberg (1991) represented sets of points as
hyper-rectangles, while Domingos (1995) induced rules that cover subsets of the instance
base. In this section, we examine the use of clustering methods to locate correlations within
the user profile (i.e., without respect to any independent data) and to remove redundant
points from the profile.

A cluster can be represented by a single exemplar instance, or center point, which is the
instance having the smallest distance to all other instances in the cluster. By discarding all

SEQUENCE LEARNING FOR ANOMALY DETECTION 95

other elements of the cluster, substantial space and time savings can be realized. Although
the practical effect of this process is the same as that of the instance selection methods
described above, the clustering process employs knowledge about the relationships among
elements within the profile while the pruning methods employ only knowledge about the
relationship between individual profile elements and the “external” parameter selection data.

One popular class of clustering algorithms is based on the Expectation-Maximization
(EM) procedure (Moon, 1996). These methods attempt to simultaneously maximize an
optimality criterion across all clusters through gradient descent on the cluster likelihood
space. The basic process is to assign all points to clusters and evaluate the optimality criterion
under that labeling. The evaluation yields a parameter set that is used to reassign points to
clusters. This basic loop is repeated until the optimality criterion converges to a stable point.
A common implementation of this process is the K -means algorithm, or its discrete analog,
K -centers. In these algorithms, clusters are parameterized by their centroid (continuous) or
center (discrete) points and radii, and the search locates K clusters.

Clustering methods based on EM are popular because they are general and often highly
effective. However, when many local optima are present in the likelihood space, the quality
of the solution produced can be very sensitive to the initial assignment of points to clusters.
A larger difficulty for the anomaly detection domain is that K, the number of clusters to be
sought, must be known a priori yet it is not clear how to determine the number of “natural”
clusters in the user behavioral data. Furthermore, the convergence rate of these methods
is not guaranteed and is often related to the number of clusters sought. For a large K, the
search time for a stable solution can be prohibitive.

As a response to these difficulties, we propose a greedy clustering algorithm that builds
individual clusters consecutively, attempting to minimize the criterion:

ZXEC ZyEC DiSt(x’ y)

val(C) = CP

for each cluster C. This measure is a generalization of the mean inter-cluster distance
often employed for clustering (Fukunaga, 1990) in continuous domains. From an initial
seed point, the cluster is grown incrementally by including the point that increases val(C)
the least, until the halting criterion is satisfied. Growth is halted when the value of the
cluster’s criterion function reaches a local maximum. Because, in some cases, the cluster
value monotonically approaches Simy,,y, the halting criterion we actually use is that the
first derivative of val(C) be within € of 0 for some (empirically selected) value of €. As each
sequence is added to a cluster, it is removed from the set of available sequences. When the
cluster is complete, we define the center of the cluster, Ccep, to be the point possessing the
minimum total distance to all other points in C. The similarity between a sequence, X, and
a cluster is then Sim(X, Ceene)-

In practice, we have found that this cluster selection algorithm is too lenient—it accepts
points that decrease the cluster’s effectiveness in classification. We solve this in a manner
analogous to the pruning process employed in decision tree learning (Quinlan, 1993). After
growing a single cluster to completion according to the halting criterion, the clustering
algorithm removes outlying points and returns them to the pool of available sequences (so
that they have the possibility of contributing to different clusters). Our pruning function

96 T. LANE AND C.E. BRODLEY

removes points from the cluster that fall outside the cluster mean radius—i.e., points whose
distance to the center is greater than the mean distance to the center of all points in the cluster.
Points falling within the mean radius are discarded and the final cluster is represented only
by its center and mean radius. We realize substantial space savings by replacing the set of
all cluster elements with the single center point.

The complete clustering algorithm is structurally similar to the single cluster construction
algorithm. We sequentially select individual clusters by their ability to maximize the analog
of mean intra-cluster distance:

_ Z?:l Z?‘:l DiSt(Ci,cent’ Cj,cent)

val{C{, Cs, ..., C,} 2
n

In this case, we found the single cluster halting criterion to be ineffective because, typically,
all of a data set’s points were exhausted before the derivative of the intra-cluster distance
approached 0. When we allowed the clustering process to absorb all available points, many
of the clusters were found to either not contribute to classification accuracy or to be actively
harmful.” Instead, we halt the clustering process when the minimum inter-cluster value of
all current clusters falls below a threshold, C. C determines when the clustering process
will be halted and how many clusters will be constructed. A small value of C produces
many clusters, while a large one allows many of the original profile points to remain. We
examine the effects on performance of the choice of the parameter C below.

5.1.1. Comparison of clustering techniques. We examined the performance of the K-
centers and greedy clustering methods for storage reduction under the experimental condi-
tions described in Section 4.3. The additional parameters examined were K, the number of
clusters formed by the K-centers method, and C, the global halting criterion for the greedy
clustering method. For the greedy clustering method, we examined C € {0.25, 0.5, 0.75}
and used a fixed € = 0.005.8 For K-centers, we ran the search to 10,000 cycles or conver-
gence, and examined K € {50, 75, 100, 125, 150} instances. Additionally, for the Purdue
data we examined K € {324, 640} and for the Calgary data we examined K € {429, 652}.
These last were chosen to correspond to the average data retention rate (number of clus-
ters plus outliers) achieved by the greedy clustering algorithm at C = 0.25 and C = 0.5
for the two user populations. Typically, the K-centers procedure expired its 10,000 search
cycles before converging at these values of K. We did not attempt to match a value of
K to the greedy system at C =0.75 because the latter achieves a very low degree of data
compression—retaining on average 979 of the original 991 instances.

Table 2 displays the model compression ratios achieved by the two clustering methods.
This value is the ratio of the number of instances removed from the profile by the clustering
process to the original number of instances. The ratios given for the greedy method include
both the retained cluster centers and retained outlier points. The compression level produced
by the K-centers method is constant for a given K. It is clear from this table that the K-
centers method can achieve an arbitrarily high compression level simply by selecting a
smaller value of K (up to K = 1). The greedy method, however, is bounded in the degree
of model compression it can achieve. The value of C controls the amount of search and,
because of the greedy nature of cluster formation, the number of clusters located is strictly

SEQUENCE LEARNING FOR ANOMALY DETECTION 97

Table 2. Model compression ratios for the evaluated parameter settings of the greedy and K-centers clustering
algorithms. The compression rates for K = 25-150 are the same for both the Purdue and the Calgary data.

Purdue Calgary

Greedy
C =0.25 67.3% 56.7%
C =0.50 35.4% 34.4%
C =0.75 1.1% 1.0%
K-centers
K =125 97.5%
K =50 95.0%
K =175 92.4%
K =100 89.9%
K =125 87.4%
K =150 84.9%
K =324 67.3% -
K =429 - 56.7%
K =640 35.4% -
K =652 - 34.4%

non-decreasing as C is lowered until the pool of outliers is completely exhausted. Thus,
the compression level of the greedy clustering method is limited by the maximum number
of clusters that it forms as C is decreased. In this data, greedy is limited to roughly 75%
compression. Thus, if a very high degree of model compression is desired, K-centers is
preferred. Over the compression levels that the two methods have in common, however,
other criteria must be used to choose between them.

An important alternative criterion is accuracy, as displayed in Table 3. Here we give
the mean accuracies for the base-line system (no model compression) and the greedy and
K-centers clustering methods for both user populations. The “SELF” column reports true
accept accuracies, the “OTHER” column reports true detect accuracies, and the “TOTAL”
column reports total mean accuracy (both true detect and true accept). The values appearing
in the table are averaged across r (the acceptable false alarm rate; Section 3.2) as well as
across fold and user. The statistical results reported below are invariant across values of .

The accuracies of the greedy clustering method are very close to those of the base-line
system. In fact, for the Purdue data all the results are statistically indistinguishable and
for the Calgary data the SELF results are statistically indistinguishable from the base-line.
While the OTHER and TOTAL columns for the Calgary data are very close to those for the
base-line, the accuracy distributions actually differ at higher-order moments and the base-
line system is statistically stronger. We conclude from these results that using the greedy
clustering method costs no significant true accept accuracy and in some cases costs no true
detect accuracy.

The second important point in Table 3 is that the true detect accuracies (“OTHER”
column) for the K-centers algorithm are lower than those for base-line and greedy. It is

98 T. LANE AND C.E. BRODLEY

Table 3. Mean accuracy values for the base-line system and the tested parameter values of the two clustering
methods on both user populations. Values are accuracy percentages.

Purdue Calgary

SELF OTHER TOTAL SELF OTHER TOTAL

Base
69.7 74.6 74.0 66.9 81.1 80.9
Greedy
C =0.25 69.8 74.7 74.1 67.3 81.0 80.8
C =0.50 70.1 74.3 73.8 67.0 81.4 81.2
C =0.75 69.6 74.6 74.0 66.9 81.1 80.9
K-centers
K =25 70.8 60.6 61.9 66.4 65.0 65.0
K =50 66.9 65.0 65.2 66.5 70.3 70.3
K =175 69.3 67.7 67.9 65.5 73.6 73.5
K =100 68.4 68.4 68.4 66.5 75.4 75.3
K =125 66.2 70.4 69.9 66.4 75.5 75.4
K =150 68.0 69.5 69.3 66.9 76.7 76.6
K =324 70.3 72.8 72.5 - - -
K =429 - - - 66.7 78.1 78.0
K =640 69.5 72.1 71.8 - - -
K =652 - - - 67.5 78.1 78.0

unsurprising that accuracy should suffer at the most extreme compression levels. What is
more important is that at the more modest levels, K-centers does not achieve the same true
detect accuracy as does greedy. At directly comparable levels of compression (K = 324 vs.
C = 0.25and K = 640 vs. C = 0.5 for the Purdue data and K = 429 vs. C = 0.25 and
K =562 vs. C = 0.5 for the Calgary data), K-centers has statistically significantly worse
performance on true detect accuracies than does greedy. On true accept accuracy, however,
K-centers is statistically indistinguishable from base-line or greedy across the board.

The question of how true accept rates can remain unchanged while true detect rates
degrade bears some examination. Recall from Section 3.2.5 that the decision thresholds, #,x
and #yy, are selected from the self-similarity distribution of the valid user’s behaviors. This
distribution is estimated from similarity measurements between out of sample “parameter
selection” data (Section 4.3) and the clustered profile. If the profile is no longer representative
of the scope of the user’s behaviors, the self-similarity distribution will be skewed and the
decision thresholds will be chosen poorly. The resulting thresholds may still identify the
valid user well (if the parameter selection data reflects the test data well) but will also be
more likely to accept impostor data.

Table 4 displays the mean time-to-alarm values for the same evaluation points as are
given in Table 3. The “SELF” column reports mean time to generation of a false alarm
while the “OTHER” column reports mean time to generation of a true alarm. There is no
“TOTAL” column in this table because SELF and OTHER are interpreted differently and

SEQUENCE LEARNING FOR ANOMALY DETECTION 99

Table 4. Mean TTA values for the base-line system and the tested parameter values of the two clustering methods
on both user populations. Values are mean times in token counts.

Purdue Calgary

SELF OTHER SELF OTHER

Base
76.8 22.5 74.7 18.9
Greedy
C =0.25 79.3 21.5 74.4 18.8
C =0.50 79.7 22.6 74.0 18.5
C =0.75 75.6 224 74.8 18.9
K-centers
K =125 82.4 39.7 77.9 44.7
K =50 74.7 33.1 78.5 35.2
K =175 79.3 30.7 72.6 30.0
K =100 73.1 30.1 76.0 26.9
K =125 73.0 24.9 72.9 26.7
K =150 73.4 25.5 76.6 25.0
K =324 71.3 234 - -
K =429 - - 75.5 22.9
K =640 73.8 24.0 - -
K =652 - - 78.2 22.9

cannot be combined—SELF values should be large (disturb the valid user rarely) while
the OTHER values should be small (detect an impostor quickly). It appears here that the
time-to-false-alarm (SELF) values for clustering methods are occasionally better than those
produced by the base-line system, but the results turn out not to be significantly different.
Significant differences do, however, occur in the time-to-true-alarm (OTHER) values. Here
the base-line is better than the greedy system for the Calgary users and both base-line and
greedy are better than the K-centers method on both user populations. Conveniently, these
results are in agreement with the accuracy results given above, though TTA is arguably the
more practically useful measurement.

We note, in passing, that the clusters constructed by the greedy clustering algorithm make
intuitive sense, in terms of the actions being performed by the underlying sequences. For
example, we have identified clusters that correspond to “programming”, “paper writing”,
“reading email”, and “navigating directories”. An example of such an “intuitive” cluster is
shown in figure 8.

5.2. HMM model scaling: Number of hidden states

We turn now to an examination of scaling issues for the HMM based sensor systems. An
open question in the use of HMMs for modeling is the choice of K, the number of hidden

100 T. LANE AND C.E. BRODLEY

EQF **S0F** elm findall finger <1> elm cd <1> 1s

cd <1> cat <1> finger <1> cd cd <1> 1s

<1> elm nn findall finger <1> elm cd <1> 1s

EQF **S0F** elm findall finger <1> finger <1> chfn finger
#*EQF** **S0F** elm findall finger <1> exit **EQF#** #*30F** *xEQF**
fg cd elm findall finger <1> talk <2> findall **xEQF**

Figure 8. An example cluster produced by the greedy clustering algorithm from Purdue User 7’s data. Each line
is a single subsequence of commands and flags. The first line shown is the center point of the cluster. The symbols
*xS0F** and **EOF** denote the start and end of shell sessions, respectively.

states. When the domain suggests physical interpretations for hidden states—as in fault
monitoring where hidden states correspond to failure modes—it may be possible to select
K apriori. When K is not so conveniently available, however, we can employ an empirical
analysis to discover an appropriate value. To examine the impact of K on sensor perfor-
mance, we constructed models with K € {1, 2, 5, 10, 15, 50, 100} and tested them under
the same conditions used for K = 30. The case K = 1 is a degenerate form of an HMM
equivalent to frequency estimation of the alphabet symbols assuming temporal indepen-
dence. Effectively, the data are considered to have been generated by a multinomial process
with |X| elements drawn according to the distribution B (the output symbol generation
distribution).

Statistical summaries of HMM performance at different values of K are given in Tables
5 and 6. It is apparent from these results that the number of hidden states present in the
user profile has little impact on recognition of the profiled user. In fact, the values given
in the SELF columns are statistically indistinguishable. Model complexity seems to have
effect only on true detection (OTHER columns), where we find a curve that peaks between
K = 2 and K = 15. The absolute optimum for the Calgary data, at K = 5, turns out
to be statistically significant but the variance in optimal model complexity per user is
high, so it would be unwarranted to claim a single best value of K for all users. We
have even found cases in which the single-state HMM is the best model of particular,

Table 5. Mean accuracy values for the HMM sensor across settings of K at an acceptable false alarm rate of
r = 0.5%. The setting K = 30 corresponds to the “base-line system performance” discussed in Section 4.5.

Purdue Calgary

SELF OTHER TOTAL SELF OTHER TOTAL

K =1 72.1 68.2 68.6 69.6 78.0 71.9
K =2 68.6 74.5 73.7 70.2 85.3 85.1
K =5 68.5 74.2 73.5 70.0 85.8 85.7
K =10 69.3 74.5 73.9 69.4 85.3 85.1
K =15 69.7 73.7 732 69.0 85.3 85.1
K =30 71.1 73.4 73.1 69.5 84.2 84.1
K =50 72.7 72.7 72.7 68.9 82.9 82.7
K =100 723 71.4 71.5 70.9 81.8 81.7

SEQUENCE LEARNING FOR ANOMALY DETECTION 101

Table 6. Mean TTA values for the HMM sensor across settings of K at an acceptable false alarm rate of r = 0.5%.
Values are reported in mean token counts. The setting K = 30 corresponds to the “base-line system performance”
discussed in Section 4.5.

Purdue Calgary

SELF OTHER SELF OTHER

K =1 79.4 28.2 84.6 25.1
K =2 79.9 27.4 84.2 15.8
K =5 82.5 26.8 85.2 15.3
K =10 83.8 26.1 83.0 16.0
K =15 87.2 26.4 81.5 15.7
K =30 83.8 25.7 82.3 16.5
K =50 82.2 25.9 78.5 16.9
K =100 85.0 26.1 83.0 19.0

low-behavioral-complexity users (Lane, 1999). A better strategy would be to adaptively
seek K on a per-user basis—a tack that we are pursuing in current research.

At first glance, these results are somewhat disheartening. If even a simple multinomial
model is capable of representing the profiled user as well as a complex, 100-state model, why
should we bother to strive for a time-series model at all? Note, however, that the K = 1
model achieves its true accept performance at a significant cost in ability to distinguish
impostors. Effectively, the single-state HMM has achieved coverage of the profiled user
only through overgeneralization. The very large models also yield poorer performance than
the midrange models. This is possibly unsurprising because the 100-state model contains
far more free parameters to train than there are instances in the training data.

The most promising result of the HMM model scaling investigation is that relatively
small HMMs can be very effective user models—more so than either of the “base” user
models examined in Sections 4.4 and 4.5. We attribute this to a successful tradeoff between
complexity of the model necessary to capture user behaviors in a discriminating fashion
and simplicity of the model, which constrains the parameter space.

5.3. Summary of model scaling issues

Bringing together the results that we have explored in this section, we can make the following
remarks about model scaling issues for the techniques we have examined within the anomaly
detection domain:

e The two clustering methods employed with the instance-based learner exhibit different
strengths in this domain. The K-centers method is capable of achieving much higher levels
of model compression than is the greedy clustering method, but the former yields poorer
impostor detection performance over the compression range that the two techniques have
in common. The two methods are equivalent to each other and to the base-line system on
this data with respect to true acceptance performance.

102 T. LANE AND C.E. BRODLEY

e The hidden Markov user models are also insensitive to scaling with respect to true ac-
ceptance abilities. Only when examining ability to differentiate impostors does it be-
come clear that both very small models (single hidden state) and very large (50 or
100 hidden states) are inferior to more moderate models. There is a large variance of
appropriate model size with respect to user, but it appears that a substantial scaling
down of model size from the “base-line” model can be achieved with no performance
penalties.

The common thread in these observations is that recognition of the profiled user is not
significantly penalized by model scaling in either class of learning system; effects of model
scaling only become apparent when detecting the presence of impostors. We conceive of
two hypotheses to explain this phenomenon. The first notes that the decision rule employed
is the same in both methods (see Section 3.2.5) and allows us to control only the false alarm
rate. Coverage of the profiled user is maximized, even in ill-fitting models. Variation in the
false accept rate is a side-effect of forcing poor models to fit the profiled user.

The second hypothesis notes that not only are true acceptance rates independent of
model scale, they are also indistinguishable for the two model classes examined here. It
is possible that the true acceptance rates seen here are the best achievable under a general
class of models that subsume those discussed in this article—perhaps the general class of
Markovian or finite-state models. In this case, all of these models are capable of representing
only a subset of the profiled user’s behaviors, so complete accuracy cannot be achieved.
All model scales can reach that accuracy plateau but not exceed it, though there is some
variability in detection rates related to the degree of overgeneralization necessary to achieve
the true acceptance plateau. Perhaps another model class could achieve a higher accuracy
plateau, or perhaps there is an underlying stochasticity in the data which would frustrate all
possible model classes. There is some support for the hypothesis that the user identification
problem is uniformly difficult for a large class of algorithms. A number of other researchers
have examined this problem or close variants and found comparable results under a wide
variety of methods including neural networks (Ryan, Lin, & Miikkulainen, 1997), Markov
chains (Davison & Hirsh, 1998; DuMouchel & Schonlau, 1998), multi-step Markov chains,
Lempel-Ziv compression, and command “unexpectedness” (Theus & Schonlau, 1998). An
unpublished comprehensive study, which examined many of these in a unified framework,
found them all to be competitive and none to be strictly dominant in this domain (Schonlau,
2000). We think it likely, therefore, that substantial further progress in this domain will
require an entirely different class of user models.

6. Conclusions and future work

This work has demonstrated two classes of methods for approaching the human modeling
aspect of anomaly detection. Both models are statistically indistinguishable on the task of
identifying the true user, though HMMs hold a small but significant advantage on the task of
discriminating impostors. This advantage, which is especially important when employing
such a learner as a focus of attention sensor in a multi-tier decision system, may be offset
in the same context by the higher computational burden of HMMs.

SEQUENCE LEARNING FOR ANOMALY DETECTION 103

We examined methods for scaling the user model by removing instances from the IBL
profile or by changing the number of hidden states in the HMM profile. We found that for
both model classes, scaling has no significant effect on acceptance of the profiled user. It
does, however, have a substantial impact on the ability to recognize impostors. Taken with the
previous result, that the two model classes are indistinguishable with respect to the profiled
user, we have the most important single result of this article: profiling accuracy on the valid
user is invariant under all experimental conditions we have examined. We hypothesize
two possible explanations for this result: that some common property of the two learning
methods we employ (perhaps the decision rule) limits them to similar performances on
this task, or that performance is limited for an entire general category of learning methods
(perhaps all Markovian models). Examination of these hypotheses is one of the primary
directions of future work. Furthermore, since there are variations in ability to distinguish
impostors, we intend to investigate methods for automatically selecting appropriate model
classes, scales, and parameter settings with respect to that task.

We also found that the two clustering methods investigated for IBL model scaling had
different strengths: the K-centers method is capable of achieving much higher compression
levels than the greedy clustering method, but the latter has better performance over the
compression ranges in which it does operate. We demonstrated that in many cases the HMM
models can operate with substantially fewer hidden states than in the “base-line” model and
realize performance improvements when doing so. This is particularly promising in light
of the quadratic runtime of HMMs.

We are in the process of examining other classes of user models based on different notions
of similarity (such as compressibility) or other types of temporal sequence models (such
as probabilistic CFGs). Another improvement over the results given here can be realized
through the application of online training. We have explored this issue, in part, in Lane
and Brodley (1998) wherein we achieved promising results for online IBL methods. We
are currently examining extensions of HMMs to single-step recursive updates and non-
stationary domains.

The methods employed here used a fairly small proportion of the available data (command
line data only, with no file names or file extensions). Employing additional data sources
such as timestamps, resource consumption, and GUI events would likely improve accuracy
although a feature subset search (possibly on a per-user basis) would be required to locate
the appropriate feature set from the many available. Additionally, the methods presented
here employ very little domain knowledge. Extending the anomaly detection sensors to
employ knowledge about command semantics, for example, would also be likely to improve
accuracy.

While the data used here allows us to analyze the “naive intruder scenario”, we acknowl-
edge that it is far from representative of real attack data. Examining data drawn from real
attacks would improve the generality of our results and would likely point the way toward
further developments of user profiling techniques. Unfortunately, such data is often not
preserved, is proprietary, or is otherwise hard to come by, but a focus for future work will
be to locate publicly available intrusion data.

We believe that, in general, both the computer security and machine learning commu-
nities can benefit from further interactions. The ML community has studied many pattern

104 T. LANE AND C.E. BRODLEY

recognition techniques which could be valuable to a variety of security problems, while
computer security tasks present a number of challenging issues that can motivate new
research directions for the machine learning community.

Acknowledgments

We would like to thank all of the users who donated data to this project. In addition, we
would like to thank the reviewers of this article and of the conference version of this article
for their valuable insights and feedback. This work was carried out under NSF grant number
9733573.

Notes

1. A replay attack is one in which an attacker monitors a system and records information such as user commands.
These commands can then later be “replayed” back to the system literally, possibly with the inclusion of a
small number of hostile actions. Because the vast majority of the data was, in fact, originally generated by the
valid user, it will appear perfectly normal to the detection sensors unless some check is made for occurrences
which are foo similar to past behavior.

2. For string evaluation alone, it suffices to use only the “forward” step, which evaluates likelihoods based on
string prefixes. In combination with the “backward” step, which works with suffixes, we can extract state
occupation likelihoods for individual tokens—a statistic used in learning the HMM parameters.

3. Actually, for efficiency reasons, we use an approximation to the true sequence likelihood. See Section 3.3.4.

4. The parameter W used here plays an analogous role to that of the noise-suppression filter window length
employed with the IBL models, as described in Section 3.2.4.

5. Examples (usually simulated) of machine-level attack logs (such as network packet logs or system call traces)
are available, but traces of real attacks at the human command level are considerably rarer. A recent call for
examples of such data by the CERIAS security research center has, to date, yielded no instances of such data.
Currently such data are often not stored, not because of the non-existence of such threats, but because of the
lack of adequate automated analysis tools.

6. Because the Baum-Welch training algorithm for HMMs performs an iterative gradient descent, no guarantees
on the convergence rate of training are available. Each iteration of the search, however, requires at least quadratic
time to re-estimate model parameters.

7. Most of the clusters constructed late in the clustering process consist of instances bearing very low similarity
to one another and which are visually recognizable as being quite different. Such points are clustered only by
virtue of having one or two tokens in common—often by chance. These clusters may actually detract from
classification accuracy by making rare exemplar instances unavailable for comparison.

8. In empirical tests, we found clustering performance to be insensitive to the choice of €.

References

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6:1, 37-66.

Anderson, J. P. (1980). Computer security threat monitoring and surveillance. Technical Report (unnumbered),
Fort Washington, PA: James P. Anderson Co.

Angulin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation, 75,
87-106.

Aslam, J. A., & Rivest, R. L. (1990). Inferring graphs from walks. In Proceedings of the Third Annual Workshop
on Computational Learning Theory (pp. 359-370). Rochester, NY: ACM Press.

Balasubramaniyan, J. S., Garcia-Fernandez, J. O., Isacoff, D., Spafford, E., & Zamboni, D. (1998). An architecture
for intrusion detection using autonomous agents. Technical Report COAST TR 98/05, Wes Lafayette, IN:
Purdue University, COAST Laboratory.

SEQUENCE LEARNING FOR ANOMALY DETECTION 105

Bollobis, B., Das, G., Gunopulos, D., & Mannila, H. (1997). Time-series similarity problems and well-separated
geometric sets. In Thirteenth Annual ACM Symposium on Computational Geometry. Rochester, NY: ACM
Press.

Burl, M. C., Fayyad, U. M., Perona, P., Smyth, P., & Burl, M. P. (1994). Automating the hunt for volcanoes on
Venus. In Proceedings of the 1994 Computer Vision and Pattern Recognition Conference (pp. 302-309). Los
Alamitos, CA: IEEE Computer Society Press.

Casella, G., & Berger, R. L. (1990). Statistical inference. Pacific Grove, CA: Brooks/Cole.

Chenoweth, T., & Obradovic, Z. (1996). A multi-component nonlinear prediction system for the S&P 500 index
Neurocomputing, 10:3, 275-290.

Cis (1999). NetRanger 2.2.1 user guide. Available on Cisco Documentation CD-ROM or at http://wuw.
cisco.com/univercd/cc/td/doc/product/iaabu/netrangr/nr221/nr221ug/index.htm. SanJose,
CA: Cisco Systems Inc.

Das, G., Gunopulos, D., & Mannila, H. (1997). Finding similar time series. In Proceedings of The Fourth Inter-
national Conference on Knowledge Discovery and Data Mining.

Dasarathy, B. V. (1991). Nearest neighbor (NN) norms: NN pattern classification techniques. Los Alamitos, CA:
IEEE Computer Society Press.

Davison, B. D., & Hirsh, H. (1998). Predicting sequences of user actions. In Proceedings of the AAAI-98/ICML-98
Joint Workshop on Al Approaches to Time-Series Analysis (pp. 5-12).

Denning, D. E. (1987). An intrusion-detection model. I[EEE Transactions on Software Engineering, 13:2,222-232.

Domingos, P. (1995). Rule induction and instance-based learning: A unified approach. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, Montreal, Canada (pp. 1226-1232). San
Mateo, CA: Morgan Kaufmann.

DuMouchel, W., & Schonlau, M. (1998). A fast computer intrusion detection algorithm based on hypothesis testing
of command transition probabilities. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (pp. 189-193). AAAI Press.

Fawcett, T. & Provost, F. (1999). Activity monitoring: Noticing interesting changes in behavior. In Proceedings
of the Fifth International Conference on Knowledge Discovery and Data Mining.

Fayyad, U. M., Weir, N., & Djorgovski, S. (1993). SKICAT: A machine learning system for automated cataloging
of large scale sky surveys. In Proceedings of the Tenth International Conference on Machine Learning
(pp. 112-119).

Forrest, S., Hofmeyr, S. A., Somayaji, A., & Longstaff, T. A. (1996). A sense of self for UNIX processes. In
Proceedings of 1996 IEEE Symposium on Security and Privacy. Los Alamitos, CA: IEEE Computer Society
Press.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences, 55:1, 119-139.

Fukunaga, K. (1990). Statistical pattern recognition (2nd edn.). San Diego, CA: Academic Press.

Gordon, S. (1996). Current computer virus threats, countermeasures, and strategic solutions. White paper, McAfee
Associates.

Greenberg, S. (1988). Using UNIX: Collected traces of 168 users. Technical Report 88/333/45, Alberta, Canada:
University of Calgary, Department of Computer Science. Includes tar-format cartridge tape.

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., & Wolber, D. (1990). A network security
monitor. In Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy (pp. 296-304).

ISS (2000). RealSecure product datasheet. Available at http://www.iss.net/customer_care/
resource_center/product_lit/. Atlanta, GA: Internet Security Systems.

Juang, B.-H. (1984). On the hidden Markov model and dynamic time warping for speech recognition—A unified
view. AT&T Bell Laboratories Technical Journal, 63:7, 1213—-1243.

Kumar, S., & Spafford, E. (1994). An application of pattern matching in intrusion detection. Technical Report
CSD-TR-94-013, West Lafayette, IN: Purdue University, Computer Science.

Laird, P, & Saul, R. (1994). Discrete sequence prediction and its applications. Machine Learning, 15:1, 43-68.

Lane, T. (1998). Filtering techniques for rapid user classification. WS-98-07, Menlo Park, CA: AAAI Press.

Lane, T. (1999). Hidden markov models for human/computer interface modeling. In Proceedings of the 1JCAI-
99 Workshop on Learning About Users (Sixteenth International Joint Conference on Artificial Intelligence)
(pp. 35-44).

106 T. LANE AND C.E. BRODLEY

Lane, T. (2000). Machine Learning Techniques for the Computer Security Domain of Anomaly Detection. Ph.D.
thesis, W. Lafayette, IN: Purdue University, Electrical and Computer Engineering.

Lane, T., & Brodley, C. E. (1997a). An application of machine learning to anomaly detection. In Proceedings of
the Twentieth National Information Systems Security Conference (Vol 1, pp. 366-380). Gaithersburg, MD:
The National Institute of Standards and Technology and the National Computer Security Center, National
Institute of Standards and Technology.

Lane, T., & Brodley, C. E. (1997b). Detecting the abnormal: Machine learning in computer security. Technical
Report TR-ECE 97-1, W. Lafayette, IN: Purdue University, Electrical and Computer Engineering.

Lane, T., & Brodley, C. E. (1997¢). Sequence matching and learning in anomaly detection for computer security. In
Proceedings of AAAI-97 Workshop on Al Approaches to Fraud Detection and Risk Management (Fourteenth
National Conference on Artificial Intelligence) (pp. 43—49).

Lane, T., & Brodley, C. E. (1998). Approaches to online learning and concept drift for user identification in
computer security. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining (pp. 259-263). Menlo Park, CA: AAAI Press.

Lane, T., & Brodley, C. E. (1999). Temporal sequence learning and data reduction for anomaly detection. ACM
Transactions on Information and System Security, 2:3,295-331.

Lee, W., Stolfo, S., & Chan, P. (1997). Learning patterns from UNIX process execution traces for intrusion
detection. In Proceedings of AAAI-97 Workshop on Al Approaches to Fraud Detection and Risk Management
(Fourteenth National Conference on Artificial Intelligence) (pp. 50-56).

Lee, W, Stolfo, S. J., & Mok, K. W. (1998). Mining audit data to build intrusion detection models. In Proceedings
of the Fourth International Conference on Knowledge Discovery and Data Mining (pp. 66—72). Menlo Park,
CA: AAAI Press.

Lunt, T. F. (1990). IDES: An intelligent system for detecting intruders. In Proceedings of the Symposium: Computer
Security, Threat and Countermeasures, Rome, Italy.

Moon, T. K. (1996, November). The expectation-maximization algorithm. IEEE Signal Processing Magazine,
47-59.

Norton, S. W. (1994). Learning to recognize promoter sequences in E. coli by modelling uncertainty in the
training data. In Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle, WA
(pp. 657-663).

Oppenheim, A., & Schafer, R. (1989). Discrete-time signal processing. Signal processing. Englewood Cliffs, NJ:
Prentice Hall.

Orwant, J. (1995). Heterogeneous learning in the Doppelgénger user modeling system. User Modeling and User-
Adapted Interaction, 4:2, 107-130.

Pfleeger, C. P. (1997). Security in computing (2nd edn.). Upper Saddle River, NJ: Prentice Hall PTR.

Porras, P., & Neumann, P. (1997). EMERALD: Event monitoring enabling responses to anomalous live distur-
bances. In Proceedings of the Twentieth National Information Systems Security Conference (pp. 353-365).
Gaithersburg, MD: The National Institute of Standards and Technology and the National Computer Security
Center, National Institute of Standards and Technology.

Power, R. (1998). Current and future danger: A CSI primer on computer crime & information warfare. San
Francisco, CA: Computer Security Institute.

Provost, F., & Fawcett, T. (1998). Robust classification systems for imprecise environments. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77:2.

Rabiner, L., & Juang, B. H. (1993). Fundamentals of speech recognition. Englewood Cliffs, NJ: Prentice Hall.

Rivest, R. L., & Schapire, R. E. (1989). Inference of finite automata using homing sequences. In Proceedings of
the Twenty First Annual ACM Symposium on Theoretical Computing (pp. 411-420).

Ryan, J., Lin, M.-J., & Miikkulainen, R. (1997). Intrusion detection with neural networks. In Proceedings of
AAAI-97 Workshop on Al Approaches to Fraud Detection and Risk Management (pp. 72—77). AAAI Press.

Salzberg, S. (1991). A nearest hyperrectangular learning method. Machine Learning, 6:3, 251-276.

Salzberg, S. (1995). Locating protein coding regions in human DNA using a decision tree algorithm. Journal of
Computational Biology, 2:3, 473-485.

SEQUENCE LEARNING FOR ANOMALY DETECTION 107

Schaffer, C. (1994). Cross-validation, stacking, and bi-level methods for stacking: Meta-methods for classification
learning. In P. Cheeseman, & W. Oldford (Eds.), Selecting models from data: Artificial intelligence and
Statistics IV. New York: Springer-Verlag.

Schonlau, M. (2000). Personal communication.

Sheskin, D. J. (1997). Handbook of parametric and nonparametric statistical procedures. Boca Raton, FL: CRC
Press.

Shyu, C. R., Kak, A. C., Brodley, C. E., & Broderick, L. S. (1999). Testing for human perceptual categories in a
physician-in-the-loop CBIR system for medical imagery. In Proc. IEEE Workshop of Content-Based Access
of Image and Video Databases, Fort Collins, CO.

Smabha, S. E. (1988). Haystack: An intrusion detection system. In Proceedings of the Fourth Aerospace Computer
Security Applications Conference (pp. 37-44).

Smyth, P. (1994a). Hidden Markov monitoring for fault detection in dynamic systems. Pattern Recognition, 27:1,
149-164.

Smyth, P. (1994b). Markov monitoring with unknown states. [EEE Journal on Selected Areas in Communications,
special issue on Intelligent Signal Processing for Communications, 12:9, 1600-1612.

Stoll, C. (1989). The Cuckoo’s egg. Pocket Books.

Stough, T., & Brodley, C. E. (1997). Image feature reduction through spoiling: Its application to multiple matched
filters for focus of attention. In Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining.

Theus, M., & Schonlau, M. (1998). Intrusion detection based on structural zeroes. Statistical Computing &
Graphics Newsletter, 9:1, 12-17.

Wespi, A., Darcier, M., & Debar, H. (1999). Intrusion detection using variable-length audit trail patterns. Technical
Report RZ 3164 (# 93210), Zurich, Switzerland: IBM Research.

Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for exemplar-based learning algorithms. Machine
Learning, 38:3,257-268.

Yoshida, K., & Motoda, H. (1996). Automated user modeling for intelligent interface. International Journal of
Human-Computer Interaction, 8:3, 237-258.

Received July 11, 2001
Accepted March 14, 2002
Final manuscript November 4, 2002

