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1. Introduction

A number of implementations of interior point methods for the minimum cost network flow
(MCNF) problem have been proposed [16, 19, 20]. These procedures show that interior
point methods may be competitive with the classical algorithms in several classes of the
MCNF problem. The efficiency of these codes is heavily dependent on the method used to
compute the search directions within the interior point algorithm framework.

Finding a search direction in interior point methods for linear programming involves the
solution of a system of linear equations. In the most common variants, this results in a
system of normal equations:

A�A�x = b, (1)

∗Luis F. Portugal passed away on July 21, 1998.
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Figure 1. Sparsity patterns for A�A� and L + L�.

where A is the m × n matrix of the coefficients and � is a n × n diagonal matrix of
positive elements. Either a direct factorization or an iterative method can be applied to solve
(1). If we assume that A has full row rank, then A�A� is a symmetric positive definite
matrix. The most commonly used direct and iterative approaches to solve this system are,
respectively, the Cholesky factorization and the preconditioned conjugate gradient (PCG)
algorithm.

Even for some small scale MCNF problems, direct methods suffer from excessive mem-
ory requirements. This deficiency is illustrated in Figure 1 and Table 1 for a class of
transshipment problems on a grid. Let L denote the triangular factor of A�A�. Figure 1
displays the nonzero structures of the matrices A�A� and L + L� after minimum degree
ordering, illustrating the large amount of fill-in that occurs during the factorization.

Table 1. CPLEX & PDNET statistics for transshipment on a grid.

CPLEX PDNET

nodes nzlw dsw nz itrs time itrs cgitrs time

256 1705 62 8.7 × 103 27 0.54 26 145 0.26

512 3505 209 4.8 × 104 20 2.84 33 164 0.71

1024 7004 82 4.8 × 104 44 5.38 33 137 1.59

2048 14048 113 1.3 × 106 54 19.57 35 211 4.51

4096 28652 1654 2.2 × 106 29 674.61 38 237 11.40

8192 57151 165 7.5 × 105 61 210.21 43 246 26.62

16384 112645 220 1.7 × 107 67 514.08 41 254 61.38

32768 229872 15306 1.6 × 109 67 1697 501.10

65536 did not run

[
out of

memory

]
47 370 593.26
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In the particular case of the MCNF problem, direct factorization methods are not com-
petitive with the PCG algorithm. Efficient preconditioning strategies for A�A� have been
devised, making the PCG method a powerful approach in this context. Table 1 compares
CPLEX and BAROPT (a state-of-the-art primal-dual interior point algorithm based on
Cholesky factorization) and PDNET (a network flow conjugate gradient based primal-dual
interior point algorithm). In this table, the label nodes indicates the number of nodes (the
number of arcs is 8 × nodes), nzlw and nz denote the numbers of nonzero elements of
the lower triangular part of A�A� and factor L , respectively, dsw represents the size of
the dense window [1], itrs and time represent the number of interior-point iterations and the
CPU time in seconds taken by CPLEX and PDNET, respectively, and cgitrs represents the
total number of the conjugate gradient iterations required by PDNET. The experiment was
done on a Silicon Graphics Challenge (196 MHz MIPS R10000 processor).

Table 1 shows the rapidly increasing difficulty encountered by the direct factorization
method as the size of the network increases. Even for the small 4096 node instance, the
amount of fill-in is overwhelming. Standard techniques such as the use of a dense window
appear to be of little help. A conjugate gradient based method solves this same instance 60
times faster and is capable of solving much larger problems.

The key ingredients to construct an efficient conjugate gradient based interior point code
are the choice of stopping criterion and preconditioners for the PCG algorithm. The stopping
criterion should minimize the computational effort involved in computing search directions
that guarantee global convergence for the interior point algorithms. This is the idea behind
the truncated optimization methods [6, 7]. In [19], a truncated Newton interior point method
for linear programming is described. PDNET is an implementation of this algorithm for
the MCNF problem.

A preconditioning matrix M is used to indirectly solve (1) by a transformed system,

M−1 A�A�x = M−1b.

Without preconditioning, the efficiency and the convergence of the conjugate gradient
method depends on the distribution of the eigenvalues of A�A�. An appropriate start-
ing solution usually results in well conditioned system matrices for the initial iterations of
the interior point method. However, as the algorithm progresses, the values of the scaling
diagonal � spread and the conditioning of A�A� degrades rapidly. An effective precondi-
tioner must improve on the spectral properties of the original system matrix without adding
significant computational effort to the PCG algorithm.

Several families of preconditioners have been proposed for the PCG applied to network
interior point methods [16, 18, 21, 26]. In this paper, we review the diagonal [26], the
maximum spanning tree (MST) [21], and the diagonally compensated maximum spanning
tree (DCMST) [16] preconditioning procedures. We derive upper bounds for the condition
numbers of the preconditioned matrices obtained with these schemes. PDNET is used to
compare the behavior of these preconditioning techniques in the initial, intermediate and
final stages of the truncated Newton method.

Before concluding this introduction, we present some notation and outline the remainder
of the paper. We denote a vector of ones by e. For x ∈ Rn , we represent by X the n × n
diagonal matrix having the elements of x in the diagonal. The number of elements of the
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set H is denoted by |H|. For a square matrix B, λ(B), λ̄(B) and κ(B) represent the smallest
eigenvalue, the largest eigenvalue and the condition number, respectively. diag(B) denotes
the diagonal matrix having the diagonal elements of B in the diagonal.

In Section 2, we describe the truncated Newton algorithm for the linear optimization
problem. In Section 3, the conjugate gradient algorithm is presented. In Section 4, we
exploit the special structure of the node-arc incidence matrix to derive an upper-bound for
the condition number of the normal equations matrix A�k A�. The effect of preconditioning
is explored in Section 5. The computational experience and the concluding remarks are
reported in Sections 6 and 7, respectively.

2. The truncated Newton algorithm

The minimum cost network flow problem is a linear optimization problem of the form

min{c�x | Ax = b; x + s = u; x, s ≥ 0}, (2)

where A is an m ×n matrix obtained from the node-arc incidence matrix after the redundant
constraints are removed, and b, u, x and s are the vectors of supply/demand at the nodes, arc
capacities, flow variables and primal slacks, respectively. The dual of (2) can be written as:

max{b�y − u�w | A�y − w + z = c; z, w ≥ 0}, (3)

where y is the vector of dual variables and w and z are the vectors of dual slacks.
The Karush-Kuhn-Tucker conditions

Ax = b,

x + s = u,

A�y − w + z = c,
(4)

Xz = 0,

Sw = 0,

x, s, w, z ≥ 0,

are necessary and sufficient for (x, y, s, w, z) to be an optimal solution of the pair of
problems (2)–(3). Primal-dual variants of interior point methods solve (4) by following the
central trajectory [8, 15] defined as

Ax = b,

x + s = u,

A�y − w + z = c,
(5)

Xz = µe,

Sw = µe,

x, s, w, z ≥ 0,
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where µ > 0 is the trajectory parameter. At each iteration, the interior point algorithm sets
the value of the trajectory parameter and computes the Newton search direction used to
obtain the next iterate toward the central trajectory. Convergence to an optimal solution is
attained as µ → 0.

The truncated dual feasible, primal infeasible variant described in [19] stems from the
work of Dembo et al. [6], Dembo and Steihaug [7] and [13]. Customary with minimum
cost network flow problems, we assume the existence of strictly interior dual solutions. The
iterates generated by the algorithm are required to satisfy the dual constraints and strict
positivity of primal and dual variables, but not the primal equality constraints.

Following the derivation by Kojima, Megiddo and Mizuno [13], let β0, β1, β2, β3, γ and
γp be such that 0 < γ < 1, γp > 0 and 0 ≤ β0 < β1 < β2 < β3 < 1. Furthermore,
let εc and εp represent tolerances required for the optimal complementarity gap and primal
feasibility, respectively. The sequence of solutions produced by the interior point algorithm
belong to a given neighborhood of the central trajectory,

K = {(x, s, y, w, z) :

(x, s, y, w, z) > 0, x + s = u, A�y − w + z = c, (6a)

xi zi ≥ γµ(x, s, w, z) (i = 1, 2, . . . , n), (6b)

wi si ≥ γµ(x, s, w, z) (i = 1, 2, . . . , n), (6c)

µ(x, s, w, z) ≥ γp‖Ax − b‖ or ‖Ax − b‖ ≤ εp}, (6d)

where the central trajectory parameter is defined as

µ(x, s, w, z) = β1
x�z + w�s

2n
.

In the definition of K, relation (6a) states the feasibility requirements for the algorithm
iterates. The inequalities in (6b) prevent the generated sequence from reaching the feasible
boundary before convergence. Relations (6c)–(6d) exclude the possibility of convergence
to an infeasible complementary solution.

The algorithm starts with an interior, but possibly primal infeasible, solution in K. At
iteration k, it computes an approximate Newton direction with components �xk , �yk , �sk ,
�wk and �zk , by solving the linear system

A�xk = b − Axk + rk, (7a)

�xk + �sk = 0, (7b)

A��yk − �wk + �zk = 0, (7c)

Zk�xk + Xk�zk = µke − Xk Zke, (7d)

W k�sk + Sk�wk = µke − W k Ske. (7e)

As indicated by (7a), the primal equality constraints are not satisfied by the current iterate
and the residual vector rk reflects the inexact computation of the Newton direction, satisfying

‖rk‖ ≤ β0‖Axk − b‖. (8)
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Observe that setting β0 = 0 is equivalent to the replacement of (7a) by

A�xk = b − Axk,

resulting in the exact Newton method of Kojima, Megiddo and Mizuno [13].
The system of linear Eq. (7) can be rewritten in a more compact form. Let

�k = (Zk(Xk)−1 + W k(Sk)−1)−1 (9)

and

b̄ = −A�k(µk(Xk)−1e − µk(Sk)−1e − c + A�yk) + (b − Axk), (10)

allowing the original system to be solved in two stages. First, �yk is computed by solving
the linear system

A�k A��yk = b̄ + rk . (11)

Recovering �xk , �sk , �wk and �zk can be achieved by simple affine expressions,

�xk = �k A��yk + �k(µk(Xk)−1e − µk(Sk)−1e − c + A�yk),

�sk = −�xk,

�zk = −zk + µk(Xk)−1e − Zk(Xk)−1�xk,

�wk = −wk + µk(Sk)−1e − W k(Sk)−1�sk .

When applying an iterative method for solving (11), the computation of this search
direction amounts to solving inexactly the system of normal equations

A�k A��yk = b̄. (12)

The relation in (8) provides a stopping criterion for the iterative method, while assuring
global convergence of the interior point method,

‖A�k A��yk − b̄‖ ≤ β0‖Axk − b‖. (13)

After obtaining the search directions, the new iterate is computed as

xk+1 = xk + αp�xk,

sk+1 = sk + αp�sk,

yk+1 = yk + αd�yk,

wk+1 = wk + αd�wk,

zk+1 = zk + αd�zk,

where distinct step sizes αp, αd ∈ (0, 1] are chosen in the primal and dual spaces. Still
in accordance with the derivation of Kojima, Megiddo and Mizuno [13], the step sizes
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are computed in two stages. Initially, the algorithm computes a common step size which
guarantees a reduction of the trajectory parameter and complementary slackness for the
next iterate, satisfying the global convergence requirements,

ᾱ = max{0 < α ≤ 1 : (xk(α), sk(α), yk(α), wk(α), zk(α)) ∈ K,

µ(xk(α), sk(α), yk(α), wk(α), zk(α)) ≤ (1 − α(1 − β2))µk},

where

xk(α) = xk + α�xk,

sk(α) = sk + α�sk,

yk(α) = yk + α�yk,

wk(α) = wk + α�wk,

zk(α) = zk + α�zk .

Subsequently, more effective primal and dual step sizes can be selected, as long as the new
iterate satisfies

(xk+1, sk+1, yk+1, wk+1, zk+1) ∈ K,

µk+1 ≤ (1 − ᾱ(1 − β3)) µk .

Most practical implementations of this algorithm [14, 19] select large step sizes,

αp = ρp max{α > 0 : xk + α�xk ≥ 0, sk + α�sk ≥ 0},
αd = ρd max{α > 0 : wk + α�wk ≥ 0, zk + α�zk ≥ 0},

with ρp = ρd = 0.9995. However, the algorithm described in this section cannot ensure
global convergence for this choice of step sizes.

Infeasible exact Newton methods possess global, polynomial and even super linear con-
vergence. Kojima, Megiddo and Mizuno [13] have shown that when β0 = 0, the algorithm
described in this section produces, in a finite number of iterations, a solution that either
satisfies the given optimality and feasibility tolerances or exceeds a prescribed upper bound
for its norm. In [27], Zhang presented an exact Newton interior point algorithm which guar-
antees to return an approximate solution by assuming that the set of optimal solutions is
nonempty. This algorithm was also proved to have polynomial complexity. The convergence
theory of infeasible exact Newton methods is based on the fact that the generated sequence
of iterates satisfies the equality

Axk − b = νk(Ax0 − b), (14)

where νk is positive and converges to zero as k → ∞.
The inexact Newton method presented in this section was introduced by Portugal et al.

[19]. In this algorithm, the norm ‖A(xk + �xk) − b‖ measures the closeness between the
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exact and the approximated Newton directions. The sequence generated by the algorithm
does not satisfy equality (14). Instead, the weaker condition

‖Axk − b‖ = νk‖Ax0 − b‖ (15)

holds. A slight modification of the analysis presented in [13] establishes the following
convergence result for the truncated Newton method.

Theorem 1. There is an iteration k where (xk, sk, yk, wk, zk) is an approximate solution
satisfying

either µk < εc and ‖Axk − b‖ < εp,

or ‖(wk, zk)‖ → ∞ as k → ∞.

Proof: The proof differs from that presented in [13] for the exact Newton algorithm in
only one detail. Instead of satisfying equality (11a) of [13], the sequence generated by this
inexact Newton method satisfies

A(xk + α�xk) − b = (1 − α)(Axk − b) + αrk,

where rk is such that

‖rk‖ ≤ β0‖Axk − b‖.
By taking this into consideration, we obtain for every α ∈ [0, 1] that (see [13], p. 271)

gp(α) ≥ (β1 − β0)ε∗α − ηα2 if gp(0) ≥ 0,

(1 − α(1 − β0))‖Axk − b‖ ≤ εp if gp(0) < 0,

where

gp(α) = (xk + α�xk)�(zk + α�zk) + (wk + α�wk)�(sk + α�sk)

+ γp(1 − α)‖Axk − b‖.
Consequently, the primal and dual step sizes are bounded away from zero, that is, there
exists a α∗ > 0 such that ᾱ ≥ α∗ holds for every k.

It follows from this theorem that the algorithm converges to an approximate optimal
solution if the sequence of dual iterates is bounded. This assumption, commonly used in
the analysis of nonlinear programming algorithms, is reasonable when solving feasible
linear programs, especially in the case of network flows, where detection of infeasibility is
straightforward. Computational experience described in [18, 19] support this conjecture. We
have not been able to establish this result theoretically (see also [4]). Since dual feasibility
is assumed in our algorithm, the linear program has a finite optimal solution.

After the design of our algorithm, several attempts have been made to develop globally
convergent truncated interior-point methods for linear programs and other related problems
[4, 5, 9, 17]. We have no intention in this paper to comment on the benefits and drawbacks of
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these alternative techniques in practice. Instead, our main objective is to provide bounds for
the condition number of the matrices M−1(A�k A�) associated with the system of normal
Eq. (12), where �k is given by (9), M is a preconditioning matrix to be discussed later and
A is a full-row rank node-arc incidence matrix. We believe that the results included in this
paper may also have an important impact on the solution of linear network flow problems
by these alternative interior-point techniques.

Another important property of the interior point algorithms is concerned with the limit
points of the iteration sequence. Let S denote the set of pairs of primal and dual optimal
solutions. Classical linear programming theory guarantees the existence of a strictly com-
plementary pair [22], which induces the optimal partition of the primal variables index set
{1, 2, . . . , n} into

B = {i : zi = 0 and wi = 0 ∀ (x, y, s, w, z) ∈ S},
L = {i : xi = 0 and wi = 0 ∀ (x, y, s, w, z) ∈ S},
U = {i : si = 0 and zi = 0 ∀ (x, y, s, w, z) ∈ S},

where B indicates primal variables and corresponding slacks with strictly positive values,
L primal variables in the lower bound and U primal variables in the upper bound. Equality
(14) can be used to prove that there exists a constant τ such that the sequences of iterates
generated by infeasible exact Newton algorithms progressing inside neighborhoods of the
central path similar to set K satisfy, for all k sufficiently large [23, 25],

τ ≤ sk
i , xk

i ≤ 1

τ
and γ τµk ≤ wk

i , zk
i ≤ µk

τ
if i ∈ B,

τ ≤ sk
i , zk

i ≤ 1

τ
and γ τµk ≤ xk

i , wk
i ≤ µk

τ
if i ∈ L, (16)

τ ≤ xk
i , wk

i ≤ 1

τ
and γ τµk ≤ sk

i , zk
i ≤ µk

τ
if i ∈ U .

Therefore, in degenerate cases, the limiting behavior of these trajectories guarantees the
identification of optimal primal and dual facets.

We have not been able to establish a similar result for the truncated version of the algo-
rithm. Nevertheless, we observed that the generated iteration sequence satisfies conditions
(16) in practice. Our implementation of the truncated Newton method uses these conditions
for early detection of the optimal solution.

3. The preconditioned conjugate gradient algorithm

A fundamental feature of an interior point implementation is the method selected for solving
the linear system which determines the search direction at each iteration. As described in
Section 2, primal-dual interior point variants use the system of normal equations

A�k A��yk = b̄, (17)

where �k and b̄ are given by (9) and (10).
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Figure 2. The preconditioned conjugate gradient algorithm.

In PDNET, the preconditioned conjugate gradient algorithm is used to solve this linear
system, using a stopping criterion based on the convergence properties of the truncated
algorithm as stated in (13). Our implementation of the PCG algorithm follows the pseudo-
code presented in figure 2. This iterative solution method for linear systems attempts to
increase the rate of convergence of the standard conjugate gradient method [3, 10] by
transforming the original system in Eq. (17) as follows:

M−1 A�k A��yk = M−1b̄.

The preconditioning matrix M is symmetric and positive definite, sufficient conditions for
the PCG algorithm to inherit all convergence properties of the standard conjugate gradient
method. The aim of preconditioning is to produce a system matrix M−1 A�k A� with more
favorable spectral properties than those of A�k A�. The result is improved efficiency of the
conjugate gradient algorithm by reducing the total number of iterations.

The usual strategies for building preconditioners consist of computing approximations
of either the system matrix or its inverse. In the second case, the linear systems in steps 3
and 11 of the PCG algorithm are replaced by the matrix-vector products z0 := M−1r0 and
zi+1 := M−1ri+1, respectively. Effective preconditioners reduce the iteration count of the
conjugate gradient algorithm but incur in the additional computational cost of constructing
either M or M−1. In addition, at each iteration of the PCG algorithm either solves the linear
system Mzi+1 = ri+1 or computes zi+1 := M−1ri+1. The gain in the convergence speed
achieved with a preconditioning scheme must superior to the extra computational costs.

4. The condition number of the normal equations matrix

In this section, we exploit the special structure of the node-arc incidence matrix to derive an
upper-bound for the condition number of the normal equations matrix A�k A� that depends
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on the size of the diagonal elements of the diagonal matrix �k . By assuming property (16),
we further show that the condition numbers of the matrices A�k A� used by the truncated
interior-point methods are uniformly bounded in the last iterations provided this algorithm
converges to a primal nondegenerate solution. However, the boundedness of the condition
number is not guaranteed under a primal degenerate optimal solution.

We start by recalling some properties that will be useful to establish the main results of
this and next sections. We also omit the superscripts k for easier explanation.

Proposition 1. Let B be a m × m symmetric matrix. Then

min
1≤l≤m


bll −

m∑
h=1
h �=l

|bhl |


 ≤ λ(B) ≤ λ̄(B) ≤ max

1≤l≤m


bll +

m∑
h=1
h �=l

|bhl |


.

Proof: This is the well known Gerschgorin Theorem (see [3]).

Proposition 2. Let B and C be symmetric matrices,and letλi (B) denote the i th eigenvalue,
where we order the eigenvalues in an increasing order. Also, let λ(C) and λ̄(C) denote the
extreme eigenvalues of C. Then,

λi (B) + λ(C) ≤ λi (B + C) ≤ λi (B) + λ̄(C).

Proof: This is a corollary of the Courant-Fischer lemma (see [3]).

Proposition 3. Let B be a symmetric positive semi-definite matrix and C be a symmetric
positive definite matrix.
(i) If ρ1 is a number such that λ̄(ρ1C − B) ≤ 0, then λ(C−1 B) ≥ ρ1.

(ii) If ρ2 is a number such that λ(ρ2C − B) ≥ 0, then λ̄(C−1 B) ≤ ρ2.

Proof: See [3], p. 404.

Let G = (N ,A) denote the network associated to the MCNF problem, where N and
A represent the set of nodes and the set of directed arcs, respectively. Each element (i, j)
of A corresponds to one column of A and vice-versa. The same correspondence between
elements of A and diagonal elements of � exists. Suppose that H is a subset of A and
let AH and �H be the corresponding submatrices of A and �, respectively. The diagonal
element [AH�H A�

H]ll and the off-diagonal element [AH�H A�
H]lh of AH�H A�

H are given
by

[AH�H A�
H]ll =

∑
(i, j):(i, j)∈Hl

θi j

and

[AH�H A�
H]lh =

{∑
(i, j):(i, j)∈Hl∩Hh

− θi j if Hl ∩ Hh �= ∅
0 if Hl ∩ Hh = ∅
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respectively, where Hl represents the set of arcs in H incident to node l and θi j denotes the
diagonal element of �H associated to arc (i, j).

Theorem 2. λ̄(AH�H A�
H) ≤ 2λ̄(�H)|H|.

Proof: We note that

[AH�H A�
H]ll ≥

m∑
h=1
h �=l

|[AH�H A�
H]hl |, l = 1, . . . , m. (18)

So, from Proposition 1 we obtain

λ̄(AH�H A�
H) ≤ 2 max

1≤l≤m
{[AH�H A�

H]ll} = 2 max
1≤l≤m

{ ∑
(i, j):(i, j)∈Hl

θi j

}

≤ 2λ̄(�H) max
1≤l≤m

{|Hl |} ≤ 2λ̄(�H)|H|

as desired.

Since we assume that A is a full row rank matrix, A�A� is positive definite and there
exists at least one basis of A. However, AH�H A�

H is not positive definite for every subset H
of A. A necessary and sufficient condition for the positive semi-definite matrix AH�H A�

H
to be nonsingular is the existence of a set of arcs T ⊆ H such that Ḡ = (N , T ) is a spanning
tree.

Theorem 3. AH�H A�
H is positive definite and

λ(AH�H A�
H) ≥ λ(�T )

m2
,

if and only if there exists T ⊆ H such that Ḡ = (N , T ) is a spanning tree.

Proof: The rank of AH equals the cardinality of T , where T ⊆ H is the maximum
cardinality set such that Ḡ = (N , T ) does not contain any cycle [2]. If Ḡ = (N , T )
is not a spanning tree, then |T | < m, AH�H A�

H is singular and λ(AH�H A�
H) = 0. If

Ḡ = (N , T ) is a spanning tree, then |T | = m and AH�H A�
H is positive definite. In this

case, let T̄ = H− T . Since AT̄ �T̄ A�̄
T and AT (�T − λ(�T )I )A�

T are positive semi-definite
matrices and the latter is singular, then from Proposition 2 we have

λ(AH�H A�
H) ≥ λ(AT �T A�

T ) + λ(AT̄ �T̄ A�̄
T ) ≥ λ(AT �T A�

T )

≥ λ(AT (�T − λ(�T )I )A�
T ) + λ(�T )λ(AT A�

T )

= λ(�T )

λ̄
(

A−�
T A−1

T
) .
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Now, A−1
T is a matrix having nonzero elements equal to 1 or −1 [2]. So, according to

Proposition 1, λ̄(A−�
T A−1

T ) ≤ m2. This gives the above lower bound for λ(AH�H A�
H) when

AH�H A�
H is nonsingular.

The next result establishes an upper bound for the condition number of A�A�.

Corollary 1. Suppose that the elements of � represent weights associated to the arcs of
A and let Ḡ = (N , T ) be a maximum spanning tree of G = (N ,A) and T̄ = A− T . Then

κ(A�A�) ≤ 2m3 λ̄(�T )

λ(�T )
+ 2m2(n − m)

λ̄(�T̄ )

λ(�T )
. (19)

Proof: From Theorem 3 we have that

λ(A�A�) ≥ λ(�T )

m2
,

since A�A� is positive definite. On the other hand, Proposition 2 and Theorem 2 give

λ̄(A�A�) ≤ λ̄(AT �T A�
T ) + λ̄(AT̄ �T̄ A�̄

T )

≤ 2mλ̄(�T ) + 2(n − m)λ̄(�T̄ ).

Condition (19) is obtained by dividing the upper bound by the lower bound estimated for
the eigenvalues of A�A�.

At the first iterations of the truncated Newton algorithm, we can manage to obtain matrices
A�A� well conditioned by choosing an appropriate starting point for this method. As the
algorithm progresses, the values of the diagonal elements of � spread and the conditioning
of A�A� degrades. At the final stages, it may happen that A�A� is very ill conditioned.

As discussed in Section 2, we assume that there exists a constant τ such that the conditions
in (16) hold when µ becomes small.

Corollary 2. Suppose that conditions (16) hold with µ small. Then, at the later iterations
of the truncated Newton method

κ(A�A�) ≤




τ1 + τ2
1

1
2γµ2 + 1

2

if |B| = m

τ1 + τ2 if |B| > m

τ1

(
1

2γµ2
+ 1

2

)
+ τ2 if |B| < m,

(20)

where the constants τ1 and τ2 are given by

τ1 = 2m3 1

γ τ 4
and τ2 = 2m2(n − m)

1

γ τ 4
.
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Proof: Since

� = (ZX−1 + WS−1)−1,

where Z , X , W and S are diagonal matrices with diagonal elements zi j , xi j , wi j and si j

respectively, then it immediately follows from the conditions (16) that

τ 2

2µ
≤ λ(�B) ≤ λ̄(�B) ≤ 1

γ τ 22µ
and

1
1

γ τ 2µ
+ µ

τ 2

≤ λ(�L∪U ) ≤ λ̄(�L∪U ) ≤ 1
τ 2

µ
+ γ τ 2µ

.

Furthermore for small and positive µ we have

1
1

γ τ 2µ
+ µ

τ 2

= τ 2

2µ

[
2

1 + 1
µ2γ

]
<

τ 2

2µ
and

1
τ 2

µ
+ γ τ 2µ

= 1

2γ τ 2µ

[
2

1 + 1
γ 2

]
<

1

2γ τ 2µ
.

Now the conditions (20) follow from (19) by setting T = B, T ⊂ B and T ⊃ B, respec-
tively.

We note that |B| = m, |B| < m and |B| > m correspond to the cases of primal and
dual nondegeneracy, dual degeneracy and primal degeneracy respectively. It follows from
this theorem that under the assumption (16) the condition number of A�A� is uniformly
bounded at the last iterations of the algorithm provided the optimal solution is primal
nondegenerate, confirming in a more formal approach the analysis presented in [11]. The
upper bound found for κ(A�A�) when the primal and dual optimal solution are unique
is smaller than that obtained when dual degeneracy is present, since in the first case the
second term in (20) vanishes as µ → 0. If the problem is primal degenerate, then the right-
hand side of (20) converges to infinity as µ → 0. In this case, A�A� is usually poorly
conditioned when µ becomes small. In certain implementations of interior point methods for
linear programming where Cholesky factorization is used to compute the search directions
several schemes are used to overcome this problem, namely, procedures to handle negative
and zero pivots encountered during the factorization process [24]. In the conjugate gradient
based interior point algorithm we propose for the MCNF problem, preconditioning schemes
for the matrix A�A� are used. As we show in the next section, we can manage to reduce
to 1 the first term in (20) by using spanning tree based preconditioning techniques.

5. Condition number of the preconditioned matrix

As discussed in Section 3, the system of normal Eq. (12) is solved with the precondi-
tioned conjugate gradient method. Implementations of interior point methods [16, 19, 26]
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recommend a combination of diagonal, maximum spanning tree (MST) and diagonallly
compensated maximum spanning tree (DCMST) preconditioners. The success of these
strategies depends on the boundedness of the condition number of the preconditioned ma-
trix M−1(A�k A�). In this section, we derive condition number upper bounds for systems
using each one of the these preconditioners. The theoretical results support our precondi-
tioning strategy, as described in [19].

The diagonal preconditioner

M = diag(A�A�)

was first used by Yeh [26] in the context of interior point algorithms for network flows.
The cost of constructing M−1 is O(n) additions and O(m) divisions. The cost of comput-
ing zi+1 = M−1ri+1 is O(m) multiplications. The next result gives an upper bound for
κ(M−1 A�A�).

Theorem 4. Let Ḡ = (N , T ) be a maximum spanning tree of G = (N ,A), T̄ = A − T
and M = diag(A�A�). Then,

κ(M−1 A�A�) ≤ 2m3 λ̄(�T )

λ(�T )
+ 2m2(n − m)

λ̄(�T̄ )

λ(�T )
. (21)

Proof: Since 2M − A�A� is positive semi-definite, then

λ(2M − A�A�) ≥ 0

and, by Proposition 3,

λ̄(M−1 A�A�) ≤ 2.

Now, let

ρ1 = 1

m3 λ̄(�T )
λ(�T ) + m2(n − m) λ̄(�T̄ )

λ(�T )

.

From Propositions 1, 2 and Theorem 3 we have

λ̄(ρ1 M − A�A�) ≤ ρ1λ̄(M) − λ(A�A�)

≤ ρ1mλ̄(�T ) + ρ1(n − m)λ̄(�T̄ ) − λ(�T )

m2
= 0.

Thus, 2
ρ1

is an upper bound for the condition number of M−1 A�A�.

It is interesting to note that the upper-bound achieved for the preconditioned matrix
M−1(A�A�) coincides with that of the matrix A�A�. This result is not surprising. Compu-
tational experience described in [20] has shown that the diagonal preconditioner is effective
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at the first stages of the interior point algorithms when A�A� is itself well conditioned. How-
ever, as the algorithms progress, it performs similarly to the identity matrix preconditioner.

The lack of effectiveness of the diagonal preconditioner at the intermediate and final
iterations of the interior point methods motivated the search for other preconditioning
schemes. The maximum spanning tree (MST) preconditioner was introduced by Resende
and Veiga [21]. It has the form

M = AT �T A�
T ,

where Ḡ = (N , T ) is a maximum spanning tree of G = (N ,A) with edge weights �.
Contrary to the diagonal preconditioner, this preconditioning matrix takes advantage of
the structure of the optimal solution of the MCNF problem. Constructing M involves
computing Ḡ = (N , T ) and inverting �T (�−1

T ) is explicitly computed in order to perform
multiplications instead of divisions when the linear systems Mzi+1 = ri+1 are solved in the
PCG algorithm). In [21], the Kruskal algorithm is used to compute an approximate maximum
spanning tree, while in [19] an exact maximum spanning tree is obtained by employing an
implementation of Prim’s algorithm with a Fibonacci heap data structure. The running time
for this last method is O(n+m log(m)). The cost of solving Mzi+1 = ri+1 is O(m) additions
and multiplications.

In [16], Mehrotra and Wang proposed the diagonally compensated maximum spanning
tree (DCMST) preconditioner

M = AT �T A�
T + D, with D = φ diag(AT̄ �T̄ A�̄

T ),

where Ḡ = (N , T ) is a maximum spanning tree of Ḡ = (N ,A) T̄ = A − T , and φ is a
nonnegative parameter. We further notice that the MST preconditioner is a special case of
this last one when φ = 0. Next, we establish an upper-bound for the condition number of
the preconditioned matrix when M is the DCMST preconditioner.

Theorem 5. Let Ḡ = (N , T ) be a maximum spanning tree of G = (N ,A) and T̄ =
A− T . Define

M = AT �T A�
T + D,

where

D = φ diag(AT̄ �T̄ A�̄
T ) with 0 ≤ φ ≤ 2.

Then,

κ(M−1 A�A�) ≤ min




1 + m2 λ̄(D)
λ(�T )

1 + m2 λ(D)
λ(�T )

(
1 + 2m2(n − m)

λ̄(�T̄ )

λ(�T )

)
,

1 + m2 λ̄(D)
λ(�T )

1 + 1
2m

λ(D)
λ(�T )

(
1 + m(n − m)

λ̄(�T̄ )

λ(�T )

)
.

(22)
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Proof: Let

ρ1 = 1

1 + m2 λ̄(D)
λ(�T )

and

ρ̂2 =
1 + 2m2(n − m) λ̄(�T̄ )

λ(�T )

1 + m2 λ(D)
λ(�T )

, ρ̄2 =
1 + m(n − m) λ̄(�T̄ )

λ(�T )

1 + 1
2m

λ(D)
λ(�T )

.

We first note that 0 ≤ ρ1 ≤ 1. Furthermore, it follows from the definition of the matrix
D and 0 ≤ φ ≤ 2 that λ̄(D) ≤ 2(n − m)λ̄(�T̄ ) and this guarantees that ρ̂2, ρ̄2 ≥ 1. From
Proposition 2, Theorem 3 and the positive semi-definiteness of AT̄ �T̄ A�̄

T , we have

λ̄(ρ1 M − A�A�) = λ̄((ρ1 − 1)AT �T A�
T + ρ1 D − AT̄ �T̄ A�̄

T )

≤ (ρ1 − 1)λ(AT �T A�
T ) + ρ1λ̄(D)

≤ (ρ1 − 1)
λ(�T )

m2
+ ρ1λ̄(D)

=
(

λ(�T )

m2
+ λ̄(D)

)
ρ1 − λ(�T )

m2
= 0.

On the other hand, from Proposition 2 and Theorems 2 and 3 we obtain

λ(ρ̂2 M − A�A�) = λ((ρ̂2 − 1)AT �T A�
T + ρ̂2 D − AT̄ �T̄ A�̄

T )

≥ (ρ̂2 − 1)λ(AT �T A�
T ) + ρ̂2λ(D) − λ̄(AT̄ �T̄ A�̄

T )

≥ (ρ̂2 − 1)
λ(�T )

m2
+ ρ̂2λ(D) − 2(n − m)λ̄(�T̄ )

=
(

λ(�T )

m2
+ λ(D)

)
ρ̂2 −

(
λ(�T )

m2
+ 2(n − m)λ̄(�T̄ )

)
= 0.

Now, it is well known that each element of A−1
T AT̄ equals either 0, 1 or −1 [2]. This implies

that

(i) 0 ≤ [A−1
T AT̄ A�̄

T A−�
T ]ll ≤ n − m, l = 1, . . . , m,

(ii) −(n − m) ≤ [A−1
T AT̄ A�̄

T A−�
T ]lh ≤ n − m l, h = 1, . . . , m l �= h.

Consequently, λ̄(A−1
T AT̄ A�̄

T A−�
T ) ≤ m(n − m) according to Proposition 1. Furthermore,

λ
(
(ρ̄2 − 1)�T + ρ̄2 A−1

T D A−�
T − A−1

T AT̄ �T̄ A�̄
T A−�

T
)

≥ (ρ̄2 − 1)λ(�T ) + ρ̄2λ
(

A−1
T DA−�

T
) − λ̄

(
A−1
T AT̄ �T̄ A�̄

T A−�
T

)
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≥ (ρ̄2 − 1)λ(�T ) + ρ̄2
1

λ̄(AT D−1 A�
T )

− λ̄(�T̄ )λ̄
(

A−1
T AT̄ A�̄

T A−�
T

)
≥ (ρ̄2 − 1)λ(�T ) + ρ̄2

λ(D)

2m
− λ̄(�T̄ )m(n − m)

≥
(

λ(�T ) + λ(D)

2m

)
ρ̄2 − (λ(�T ) + λ̄(�T̄ )m(n − m)) = 0.

Thus, λ(ρ̄2 M − A�A�) ≥ 0. According to Proposition 3, ρ̂2

ρ1
and ρ̄2

ρ1
are upper bounds for

the condition number of M−1 A�A�.

Consider now the MST preconditioner. Since φ = 0 in this case, then λ(D) = λ̄(D) = 0.
Furthermore 2m2 > m for all m > 1 and this leads to

κ(M−1 A�A�) ≤ 1 + m(n − m)
λ̄(�T̄ )

λ(�T )
(23)

It is interesting to further note that this upper bound is smaller than the one for the
DCMST independently of the choice of φ > 0. In fact, as λ(D) < λ̄(D) for any φ > 0 and

1
2m < m2 for any m > 1, then

1 + m(n − m)
λ̄(�T̄ )

λ(�T )
< up

where up is the upper-bound provided by (22).
As before, if we assume that the conditions (16) hold, it is possible to show that the

condition number of M−1(A�A�) is uniformly bounded in the last stages of the algorithm
for both the MST and DCMST preconditioners. This is shown in the next theorem.

Corollary 3. Suppose that conditions (16) hold with µ small. Let Ḡ = (N , T ) be a
maximum spanning tree of G = (N ,A) and T̄ = A − T . Define

M = AT �T A�
T + D,

where

D = φ diag(AT̄ �T̄ A�̄
T ) with 0 ≤ φ ≤ 2.

Then, at the later iterations of the truncated Newton method

κ(M−1 A�A�) ≤




1 + τ1
1

1
2γµ2 + 1

2

+ τ2
1(

1
2γµ2 + 1

2

)2 if |B| = m

1 + τ1 + τ2 if |B| > m

1 + τ1 + τ2 if |B| < m,
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where

τ1 = (φm2 + m)
1

γ τ 4
and τ2 = φm3.

Proof: From Theorem 5 we have

κ(M−1 A�A�) ≤
(

1 + m(m − 1)
λ̄(D)

λ(�T )

)(
1 + m(n − m)

λ̄(�T̄ )

λ(�T )

)
.

By the definition of D and (18) it follows that λ̄(D) ≤ φ(n − m)λ̄(�T̄ ). Hence

κ(M−1 A�A�) ≤
(

1 + φm2(n − m)
λ̄(�T̄ )

λ(�T )

)(
1 + m(n − m)

λ̄(�T̄ )

λ(�T )

)

≤ 1 + (φm2 + m)(n − m)
λ̄(�T̄ )

λ(�T )
+ φm3(n − m)2

(
λ̄(�T̄ )

λ(�T )

)2

.

The upper bounds are obtained by using this inequality an the same arguments of Corollary 2.

This last result shows that, even in the presence of primal degeneracy, the condition
number of M−1 A�A� is uniformly bounded after µ becomes small. Furthermore, when
the problem is nondegenerate, κ(M−1 A�A�) → 1 as µ → 0. This nice property of the
MST and DCMST preconditioners at the later stages of the interior point methods has been
confirmed in practice.

6. Computational experience

In this section, we illustrate the theoretical results presented in this paper with examples
solving linear systems with five different preconditioners: diagonal, maximum spanning
tree (MST), and diagonally compensated maximum spanning tree (DCMST) using three
values for the parameter φ (.1, 1, and 10).

Each preconditioner was tested on six instances taken from the First DIMACS Im-
plementation Challenge [12] that were solved with PDNET in [19]: a 512-node instance
from the Grid-Density-8 class, a 512-node instance from the Grid-Density-16 class, a 514-
node instance from the Grid-Long class, a 514-node instance from the Grid-Wide class, a
1024-node instance from the Mesh-1 class, and a 512-node instance from the Netgen-Lo
class.

For each instance, the preconditioners were used to solve three linear systems. The first
system corresponds to an early interior point iteration (iteration 1). The second system
is that of an intermediate iteration (iteration 15). The third system is of a late iteration
(iteration 30). For each problem, a set of linear systems was generated by running PDNET
with the default settings in [19]. In this way, identical systems were solved with each of
the preconditioners. The conjugate gradient method stops when the norm of the residual
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Figure 3. Convergence of PCG on 512-node grid-8 instance on interior point iteration 1.

satisfies a predetermined tolerance (we use the tolerance 10−10). A limit of 1000 conjugate
gradient iterations was imposed, with the purpose of detecting numerical difficulties.

Figures 3–5 show the residual as a function of the conjugate gradient iteration for the
512-node instance from the Grid-Density-8 class and figures 6–8 show the residual as a
function of the conjugate gradient iteration for the 512-node instance from the Grid-Density-
16 class. On these six linear systems, the maximum spanning tree preconditioner is the only
preconditioner to lower the residual monotonically. Diagonal compensation of the maximum
spanning tree preconditioner degrades performance. Pure diagonal preconditioning can only
solve the instances from iteration 1.

Figures 9–11 show the residual as a function of the conjugate gradient iteration for the
514-node instance from the Grid-Long class. Figures 12–14 show the residual as a function
of the conjugate gradient iteration for the 514-node instance from the Grid-Wide class.
Figures 15–17 show the residual as a function of the conjugate gradient iteration for the
1024-node instance from the Mesh-1 class. On these instances, diagonal compensation ap-
pears to help more on the cases for which the diagonal preconditioner is able to solve the
system, i.e. the iteration 1 systems. When the diagonal preconditioner fails to solve the sys-
tem, diagonal compensation degrades performance. Again, on eight of these nine instances,
the only preconditioner able to decrease the residual monotonically is the maximum span-
ning tree. The only exception is on the iteration 30 Mesh-1 instance. The nonmonotone
convergence patterns of the diagonally compensated preconditioners mimic those of the
diagonal preconditioner.
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Figure 4. Convergence of PCG on 512-node grid-8 instance on interior point iteration 15.
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Figure 5. Convergence of PCG on 512-node grid-8 instance on interior point iteration 30.
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Figure 6. Convergence of PCG on 512-node grid-16 instance on interior point iteration 1.
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Figure 7. Convergence of PCG on 512-node grid-16 instance on interior point iteration 15.
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Figure 8. Convergence of PCG on 512-node grid-16 instance on interior point iteration 30.
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Figure 9. Convergence of PCG on 514-node grid-long instance on interior point iteration 1.
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Figure 10. Convergence of PCG on 514-node grid-long instance on interior point iteration 15.
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Figure 11. Convergence of PCG on 514-node grid-long instance on interior point iteration 30.
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Figure 12. Convergence of PCG on 514-node grid-wide instance on interior point iteration 1.
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Figure 13. Convergence of PCG on 514-node grid-wide instance on interior point iteration 15.
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Figure 14. Convergence of PCG on 514-node grid-wide instance on interior point iteration 30.
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Figure 15. Convergence of PCG on 1024-node mesh-1 instance on interior point iteration 1.
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Figure 16. Convergence of PCG on 1024-node mesh-1 instance on interior point iteration 15.
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Figure 17. Convergence of PCG on 1024-node mesh-1 instance on interior point iteration 30.
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Figure 18. Convergence of PCG on 512-node netgen-lo instance on interior point iteration 1.
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Figure 19. Convergence of PCG on 512-node netgen-lo instance on interior point iteration 15.
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Figure 20. Convergence of PCG on 512-node netgen-lo instance on interior point iteration 30.

Figures 18–20 show the residual as a function of the conjugate gradient iteration for the
512-node instance from the Netflo-Lo class. The behavior of the diagonally compensated
preconditioners when the diagonal preconditioner is able to solve the linear system is
similar to the previous cases. Again, on these three instances, the only preconditioner
able to monotonically decrease the residual is the maximum spanning tree. Oddly, even
when the diagonal preconditioner fails to solve the system (iteration 30 instance), diagonal
compensation appears to help.

7. Concluding remarks

As suggested by the theoretical bounds developed for the system matrix condition num-
ber, the MST preconditioner dominates the diagonal preconditioner in practice. However,
countering the theoretical relationships of the condition number upper bounds, the DCMST
preconditioner is sometimes slightly more effective than MST.

The computational experiments suggest that the effectiveness of the DCMST precon-
ditioner depends strongly on the behavior of the diagonal preconditioner applied to the
same linear system. In those cases where a PCG with a diagonal preconditioner is able
to solve the linear system, a diagonal compensation appears to improve the performance
of the maximum spanning tree preconditioner. For the instances considered, the diagonal
preconditioner was only effective during the early interior point iterations and only for some
instances.
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The MST preconditioner appears to be the most robust. It was the only preconditioner to
monotonically reduced the residual on all linear systems considered. This fact, along with
the strong dependence of the DCMST preconditioners on the suitability of the diagonal pre-
conditioner, leads us to conclude that the loss of robustness of the DCMST preconditioners
outweighs any gains that may be achieved with these preconditioners.
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