Skip to main content
Log in

A Cooperation and Competition Based Simple Cell Receptive Field Model and Study of Feed-Forward Linear and Nonlinear Contributions to Orientation Selectivity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58° when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8° in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albus K, Wolf W (1984) Early postnatal development of neuronal functions in the kitten’s visual cortex: A laminar analysis. J. Physiol. 348: 153-185.

    Google Scholar 

  • Alonso JM, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21: 4002-4015.

    Google Scholar 

  • Arnett DW (1978) Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp. Brain Res. 32: 49-53.

    Google Scholar 

  • Arnett DW, Spraker TE (1981) Cross-correlation analysis of the maintained discharge of rabbit retinal ganglion cells. J. Physiol. 317: 329-347.

    Google Scholar 

  • Benevento LA, Creutzfeldt OD, Kuhunt U (1972) Significance of intracortical inhibition in the visual cortex. Nature 238: 124-126.

    Google Scholar 

  • Blackmore C, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp. Brain Res. 15: 439-440.

    Google Scholar 

  • Blochl A, Thöenen H (1995) Characterization of nerve growth factor (NGF) release from hippocampal neurons. Evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. 7: 1120-1228.

    Google Scholar 

  • Bonds AB (1989) Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2: 41-55.

    Google Scholar 

  • Bonhoeffer T (1996) Neurotrophins and activity dependent development of the neocortex. Curr. Opin. Neurobiol. 6: 119-126.

    Google Scholar 

  • Buzas P, Eysel UT, Adorjan P, Kisvarday ZF (2001) Axonal topography of cortical basket cells in relation to orientation, direction and ocular dominance maps. J. Comp. Neurol 437: 259-285.

    Google Scholar 

  • Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20(1): 470-484.

    Google Scholar 

  • Cellerino A, Maffei L (1996) The action of neurotrophins in the development and plasticity of the visual cortex. Progress in Neurobiol. 49: 53-71.

    Google Scholar 

  • Chapman B, Zahs KR, Stryker MP (1991) Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J. Neurosci. 11: 1347-1358.

    Google Scholar 

  • Cheng H, Chino Y, Smith E, Hamamoto J, Yoshida K (1995)Transfer characteristics of lateral geniculate nucleus X neurons in the cat: Effects of spatial frequency and contrast. J. Neurophysiol. 74: 2548-2557.

    Google Scholar 

  • Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20: 1177-1189.

    Google Scholar 

  • Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex. Science 279: 566-570.

    Google Scholar 

  • Creutzfeldt OD, Kuhunt U, Benevento LA (1974) An intracellular analysis of visual cortical neurons to moving stimuli: Responses in a cooperative neuronal network. Exp. Brain Res. 21: 251-274.

    Google Scholar 

  • Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. America A 2: 1160-1169.

    Google Scholar 

  • DeAngelis GC, Anzai A, Ohzawa I, Freeman RD (1992) Spatiotemporal receptive field structure and phase relationships between adjacent simple cells in the cats striate cortex. Soc. Neurosci. Abstr. 18: 10.

    Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple cell receptive fields in the cat’s striate cortex-I. General Characteristics and postnatal development. J. Neurophysiol. 69(4): 1091-1117.

    Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive field dynamics in central visual pathways. TINS. 18: 451-458.

    Google Scholar 

  • Douglas RJ, Martin KA, Whitteridge D (1991) An intracellular analysis of the visual responses of neurons in cat visual cortex. J. Physiol. 440: 659-696.

    Google Scholar 

  • Elliott T, Howarth CI, Shadbolt NR (1996) Axonal processes and neural plasticity. I: Ocular dominance columns. Cerebral Cortex. 6: 781-788.

    Google Scholar 

  • Elliott T, Shadbolt NR (1998) Competition for Neurotrophic factors: Ocular dominance Columns. J. Neurosci. 18(15): 5850-5858.

    Google Scholar 

  • Elliott T, Shadbolt NR (2002) Multiplicative synaptic normalization and a nonlinear hebb rule underlie a neurotrophic model of competitive synaptic plasticity. Neural Computation. 14: 1311-1322.

    Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187: 517-552.

    Google Scholar 

  • Erwin E, Miller KD (1998) Correlation based development of ocularly matched orientation and ocular dominance maps: Determination of required input activity structures. J. Neurosci. 18: 9870-9895.

    Google Scholar 

  • Eysel UT, Crook JM, Machemer HF (1990) GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Exp. Brain Res. 80: 626-630.

    Google Scholar 

  • Ferster D (1986) Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J. Neurosci. 6(5): 1284-1301.

    Google Scholar 

  • Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380: 249-252.

    Google Scholar 

  • Gardner JL, Anzai A, Ohzawa I, Freeman RD (1999) Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex. Vis. Neurosci. 16: 1115-1121.

    Google Scholar 

  • Gerstner W (1999) Spiking neurons. In: W Mass, CM Bishop, eds. Pulsed Neural Networks. MIT Press, Cambridge, pp. 3-54.

    Google Scholar 

  • Goodhill GJ (1993) Topography and ocular dominance: A model exploring positive correlations. Biol. Cybern. 69: 109-118.

    Google Scholar 

  • Goodhill GJ, Barrow HG (1994) The role of weight normalization in competitive learning. Neural Comp. 6: 109-118.

    Google Scholar 

  • Griesbeck O, Paradanian AS, Sendrner M, Thoenen H (1995) Expression of neurotrophins in skeletal-muscle-quantitative comparison and significance for motoneuron survival and maintenance of function. J. Neurosci. Res. 42(1): 21-33.

    Google Scholar 

  • Guillery RW (1988) Competition in the development of visual pathways. In: JG Parnavelas, CD Stern, RV Stirling, eds. The Making of Nervous System. Oxford University Press, Oxford. pp. 356-379.

    Google Scholar 

  • Harris AE, Ermentrout GB, Small SL (1997) A model of ocular dominance column development by competition for trophic factor. Proc. Natl. Acad. Sci. USA 94: 9944-9949.

    Google Scholar 

  • Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H (1988) Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335: 815-817.

    Google Scholar 

  • Hayes WP, Meyer RL (1988) Optic synapse number but not density is constrained during regeneration onto surgically halved tectum in goldfish: HRP-EM evidence that optic fibers compete for fixed number of exuberant optic fibers is activity dependent. J. Neurosci. 9: 1414-1423.

    Google Scholar 

  • Hochstein S, Shapley RM (1976) Quantitative analysis of retinal ganglion cell classifications. J. Physiol. 262: 237-264.

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106-154.

    Google Scholar 

  • Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58: 1187-1211.

    Google Scholar 

  • Kisvarday ZF, Toth E, Rausch M, Eysel UT (1997) Orientation specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of cat. Cerebral Cortex 7: 605-618.

    Google Scholar 

  • Lampl I, Anderson JS, Gillespie DC, Ferster D (2001) Prediction of orientation selectivity from receptive field architecture in simple cells of the cat visual cortex. Neuron. 30: 263-274.

    Google Scholar 

  • Lissen DV, Comperts SN, Carroll RC, Christine CW, Kalman D, Kitamura M, Hardy S, Nicoll RA, Malenka RC, Von Zastrow M (1998) Activity differentially regulates the surface expression of synapticAMPAandNMDAglutamate receptors. Proc. Nat. Acad. Sci. 95: 7097-7102

    Google Scholar 

  • Mastronarde DN (1983a) Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X and Y cells. J. Neurophysiol. 49: 303-324.

    Google Scholar 

  • Mastronarde DN (1983b) Correlated firing of cat retinal ganglion cells. II. Responses of X and Y cells to single quantal events. J. Neurophysiol. 49: 335-349.

    Google Scholar 

  • Miller KD (1990) Derivation of linear hebbian equations from a non-linear hebbian model of synaptic plasticity. Neural Comp. 2: 321-333.

    Google Scholar 

  • Miller KD (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON and OFF center inputs. J. Neurosci. 14: 409-441.

    Google Scholar 

  • Miller KD (1996) Synaptic economics: Competition and cooperation in a correlation based synaptic competition. Neuron. 17: 371-374.

    Google Scholar 

  • Miller KD (1998) Equivalence of a sprouting-and-retraction model and correlation-based plasticity models of neural development. Neural Comp. 10: 529-547.

    Google Scholar 

  • Miller KD, Keller JB, Stryker MP (1989) Ocular dominance column development: Analysis and simulation. Science 245: 605-615.

    Google Scholar 

  • Miller KD, MacKay DJC (1994) The role of constraints in hebbian learning. Neural Comp. 6: 100-126.

    Google Scholar 

  • Mooney R, Penn AA, Gallego R, Shatz CJ (1996) Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17: 863-874.

    Google Scholar 

  • Movhson JA, Thompson ID, Tolhurst DJ (1978) Spatial summation in receptive fields of simple cells in the cat striate cortex. J. Physiol. 283: 53-77.

    Google Scholar 

  • Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD (1994) Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J. Neurosci. 14(11): 7130-7140.

    Google Scholar 

  • Piepenbrock C, Ritter H, Obermayer K (1997) The joint development of orientation and ocular dominance: Role of constraints. Neural Computation 9(5): 959-970.

    Google Scholar 

  • Pockett S, Slack JR (1982) Pruning of axonal trees results in increased efficacy of surviving nerve terminals. Brain Res. 243: 350-353.

    Google Scholar 

  • Purves D (1994) Neural activity and the growth of the brain. Cambridge University Press, Cambridge.

    Google Scholar 

  • Purves D, Lichtman JW (1985) Principles of Neural Development. Sunderland, MA: Sinauer.

    Google Scholar 

  • Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378: 281-264.

    Google Scholar 

  • Roerig B, Chen B (2002) Relationship of local inhibitory and excitatory circuitry to orientation preference maps in ferret visual cortex. Cereb. Cortex. 12: 187-198.

    Google Scholar 

  • Sabel BA, Schneider GE (1988) The principle of ‘conservation of total axonal arborization’ massive compensatory sprouting in the hamster subcortical visual system after early tectal lesions. Exp. Brain Res. 73: 505-518.

    Google Scholar 

  • Schumann EM, Madison DV (1994) Locally distributed synaptic potentiation in the hippocampus. Science 263: 532-536.

    Google Scholar 

  • Schummers JM, Mario J, Sur M (2001) Orientation tuning of intracellular potentials and spike responses at pinwheel centers and iso-orientation domains in primary visual cortex. Soc. Neurosci. Abst. 27: 619.19.

    Google Scholar 

  • Sherk H, Stryker MP (1976) Quantitative study of orientation selectivity in visually inexperienced kittens. J. Neurophysiol. 39: 63-70.

    Google Scholar 

  • Sillito AM, Kemp JA, Milson JA, Berardi N (1980) A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res. 194: 517-520.

    Google Scholar 

  • Skottun BC, DeValois RL, Grosof DH, Movhson JA, Albrecht DG, Bonds AB (1991) Classifying simple and complex cells on the basis of response modulation. Vis. Res. 31: 1079-1086.

    Google Scholar 

  • Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15: 5448-5465.

    Google Scholar 

  • Sur M (2002) Private communications.

  • Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nature Reviews Neuroscience 2: 251-262.

    Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex:Areviewof models. Network: Computation in Neural Systems 7: 161-247.

    Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends Neurosci. 22: 221-227.

    Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity dependent scaling of quantal amplitude in neocortical neurons. Nature 391(26): 892-896.

    Google Scholar 

  • Van Ooyen A (2001) Competition in the development of nerve connections: A review of models. Network: Comput. in Neural Syst. 12: R1-R47.

    Google Scholar 

  • Volgushev M, Pemberg J, Eysel UT (2000) Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex. Eur. J. Neurosci. 12: 257-263.

    Google Scholar 

  • Von der Malsburg C (1973) Self organization of orientation selective cells in the striate cortex. Kybernetik 14: 85-100.

    Google Scholar 

  • Weliky M, Kandler K, Fitzpatrick D, Katz LC (1995) Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron 15: 541-552.

    Google Scholar 

  • Weliky M, Katz LC (1999) Correlational structure of spontaneous neuronal activity in developing lateral geniculate nucleus in vivo. Science 285: 599-604.

    Google Scholar 

  • Wiesel TN, Hubel DH (1974) Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158: 307-318.

    Google Scholar 

  • Willshaw DJ (1981) The establishment and the subsequent elimination of polyneural innervation of developing muscle: Theoretical considerations. Proc. R. Soc. B. 212: 233-252.

    Google Scholar 

  • Wörgötter F, Koch C (1991) A detailed model of the primary visual pathway in the cat: Comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. J. Neurosci. 11(7): 1959-1979.

    Google Scholar 

  • Xiong M, Pallas SL, Lim S, Finlay BL (1994) Regulation of retinal ganglion cell axon arbor size by target availability: Mechanism of compression and expansion of the retinotectal projection. J. Comp. Neurol. 344: 581-597.

    Google Scholar 

  • Yousef T, Toth E, Rausch M, Eysel UT, Kisvarday ZF (2001) Topography of orientation center connections in the primary visual cortex of the cat. Neuro Report 12(8): 1693-1699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaumik, B., Mathur, M. A Cooperation and Competition Based Simple Cell Receptive Field Model and Study of Feed-Forward Linear and Nonlinear Contributions to Orientation Selectivity. J Comput Neurosci 14, 211–227 (2003). https://doi.org/10.1023/A:1021911019241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021911019241

Navigation