Skip to main content
Log in

Genetic algorithm for the design of molecules with desired properties

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The design of molecules with desired properties is still a challenge because of the largely unpredictable end results. Computational methods can be used to assist and speed up this process. In particular, genetic algorithms have proved to be powerful tools with a wide range of applications, e.g. in the field of drug development. Here, we propose a new genetic algorithm that has been tailored to meet the demands of de novo drug design, i.e. efficient optimization based on small training sets that are analyzed in only a small number of design cycles. The efficiency of the design algorithm was demonstrated in the context of several different applications. First, RNA molecules were optimized with respect to folding energy. Second, a spinglass was optimized as a model system for the optimization of multiletter alphabet biopolymers such as peptides. Finally, the feasibility of the computer-assisted molecular design approach was demonstrated for the de novo construction of peptidic thrombin inhibitors using an iterative process of 4 design cycles of computer-guided optimization. Synthesis and experimental fitness determination of only 600 different compounds from a virtual library of more than 1017 molecules was necessary to achieve this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maddalena, D. J., Exp. Opin. Ther. Patents, 8 (1998) 249-258.

    Google Scholar 

  2. Holland, J. H., Adaptation in natural and artificial systems, MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  3. Goldberg, D. E., Genetic Algorithms in Search, Optimization, andMachine Learning, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1989.

    Google Scholar 

  4. Terfloth, L. and Gasteiger, J., Drug Discovery Today, 6 (2001) S102-S108.

    Google Scholar 

  5. Glen, R. C. and Payne, A.W. R., J. Comp.-Aided Mol. Design, 9 (1995) 181-202.

    Google Scholar 

  6. Devillers, J. J., Chem. Inf. Comput. Sci., 36 (1996) 1061-1066.

    Google Scholar 

  7. So, S.-S. and Karplus, M. J., Med. Chem., 39 (1996) 1521-1530.

    Google Scholar 

  8. Tomandl, D., Schober, A. and Schwienhorst, A., J. Comp.-Aided Mol. Design, 11 (1997) 29-38.

    Google Scholar 

  9. Pohlheim, H. 1998, GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with MATLAB Version 1.92. [http://www.geatbx.com/docu/algindex.html]

  10. Illgen, K., Enderle, T., Broger, C. and Weber, L., Chem. Biol., 7 (2000) 433-441.

    Google Scholar 

  11. Weber, L., Wallbaum, S., Broger, C. and Gubernator, K., Angew. Chem., 107 (1995) 2452-2454.

    Google Scholar 

  12. Hofacker, I. L., Fontana, W. and Stadler, P. F., Monatshefte Chem., 125 (1994) 167-188.

    Google Scholar 

  13. Zuker, M., Nucl. Ac. Res., 9 (1981) 133-148.

    Google Scholar 

  14. Matthysse, S., Neurochem. Res., 16 (1991) 397-408.

    Google Scholar 

  15. Lin, C. Y., Hu, C. K. and Hansmann, U. H., Phys. Rev. E, 64 (2001) 052903.

    Google Scholar 

  16. Frank, R., Tetrahedron, 48 (1992) 9217-9232.

    Google Scholar 

  17. Bray, A. M., Maeji, N. J. and Geysen, H. M., Tetrahedron Lett., 31 (1990) 5811-5814.

    Google Scholar 

  18. Wirsching, F., Opitz, T., Dietrich, R. and Schwienhorst, A., Gene, 204 (1997) 177-184.

    Google Scholar 

  19. Berg, M. Methodenentwicklung und Etablierung von Fluoreszenzassays zur Wirkstoffsuche im 1536-Well Format, Universität Karlsruhe, Karlsruhe, 1998.

    Google Scholar 

  20. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J., Adv. Drug Delivery Rev., 23 (1997) 3-25.

    Google Scholar 

  21. Claeson, G., Blood Coag. Fibrinol., 5 (1994) 411-436.

    Google Scholar 

  22. Hauptmann, J. and Stürzebecher, J., Thrombosis Res., 93 (1999) 203-241.

    Google Scholar 

  23. Schneider, G. and Wrede, P., Biophys. J., 66 (1994) 335-344.

    Google Scholar 

  24. Eigen, M., Die Naturwissenschaften, 58 (1971) 465-523.

    Google Scholar 

  25. Eigen, M. and Schuster, P., Die Naturwissenschaften, 64 (1977) 541-565.

    Google Scholar 

  26. Barnett, L. J., Theor. Biol., subm. (2000).

  27. Ochoa, G. and Harvey, I., In Banzhaf, W. and Reeves, C. (eds),Foundations of Genetic Algorithms, vol. 5. Morgan Kaufmann, San Francisco, 1999, pp. 245-264.

    Google Scholar 

  28. Douget, D., Thoreau, E. and Grassy, G. J., Comp.-Aid. Mol. Design, 14 (2000) 449-466.

    Google Scholar 

  29. Westhead, D. R., Clark, D. E., Frenkel, D., Li, J., Murray, C. W., Robson, B. and Waszkowycz, B., J. Comp.-Aid. Mol. Design, 9 (1995) 139-148.

    Google Scholar 

  30. Schneider, G., Lee, M.-L., Stahl, M., Schneider, P. J., Comp.-Aid. Mol. Design, 14 (2000) 487-494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schwienhorst.

Additional information

These authors contributed equally to the results presented

These authors contributed equally to the results presented

These authors contributed equally to the results presented

These authors contributed equally to the results presented

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamphausen, S., Höltge, N., Wirsching, F. et al. Genetic algorithm for the design of molecules with desired properties. J Comput Aided Mol Des 16, 551–567 (2002). https://doi.org/10.1023/A:1021928016359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021928016359

Navigation