Skip to main content
Log in

Parallelization of Algorithms and Codes of the Computational System “Potok-3”

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The paper discusses creation of modern computational technologies and methods of parallel programming aimed at improving efficiency of solving fundamental scientific and applied problems. Primary attention is focused on theoretical issues and practical implementation of technological decomposition and parallelization of algorithms and codes of the computational system “Potok-3,” which is designed for the numerical modeling of aerodynamics and physical gas dynamics problems. General problems of portability of methods and algorithms, as well as program packages implementing them, designed for single-processor machines to multiprocessor computational systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tarnavsky, G.A. and Shpak, S.I., Decomposition of Methods and Parallelization of Algorithms for Solving Aerodynamics and Physical Gas Dynamics Problems: Computational System“Potok-3”, Programmirovanie, 2000, no. 6, pp. 45–57.

    Google Scholar 

  2. Vshivkov, V.A., Kraeva, M.A., and Malyshkin, V.E., Parallel Realization of the Particle Method, Programmirovanie, 1997, no. 2, pp. 39–51.

    Google Scholar 

  3. Andrianov, A.N., Bazarov, S.B., Bugerya, A.B., and Efimkin, K.N., Solution of Three-dimensional Gas Dynamics Problems on Multiprocessor Computers, in Problemy matematicheskoi fiziki (Problems of Mathematical Physics), Moscow: Mosk. Gos. Univ., 1999, pp. 172–183.

    Google Scholar 

  4. Shil'nikov, E.V. and Shumkov, M.A., Modeling of Three-dimensional Nonstationary Gas Flows on Computers with Distributed Memory, Mat. Model., 2001, vol. 13, no. 4, pp. 35–46.

    Google Scholar 

  5. Jenssen, C. and Weinerfelt, P., Parallel Implicit Timeaccurate Navier—Stokes Computations Using Coarse Grid Correction, AIAA J., 1998, vol. 38, no. 6, pp. 946–951.

    Google Scholar 

  6. Byun, C., Farhangnia, M., and Guruswamy, G.P., Aerodynamic Influence Coefficient Computations Using Euler/Navier—Stokes Equations on Parallel Computers, AIAA J., 1999, vol. 37, no. 11, pp. 1393–1400.

    Google Scholar 

  7. Wissink, A.M., Lyrintzis, A.S., and Chronopoulos, A.T., Parallel Newton—Krylov Method for Rotaty-Wing Flow-field Calculation, AIAA J., 1999, vol. 37, no. 10, pp. 1213–1221.

    Google Scholar 

  8. Bergeziyarov, P.K. and Sultanov, V.G., Parallel Modeling of Rayleigh—Taylor Hydrodynamic Instabilities, Vestn. Mosk. Gos. Univ., Ser. 15: Vychisl. Mat. Kibernetika, 2001, no. 1, pp. 41–48.

    Google Scholar 

  9. Mel'nik, E.A., Parallel Algorithms for Two-dimensional Convolution, Avtometriya, 2000, no. 1, pp. 122–126.

    Google Scholar 

  10. Lazareva, S.A. and Yachmeneva, N.N., Automated Parallelizing of Loops with Two-dimensional Arrays for Supercomputers with Distributed Memory (Matrix Multiplication), Mat. Model., 2001, vol. 13, no. 2, pp. 103–109.

    Google Scholar 

  11. Tarnavsky, G.A. and Shpak, S.I., Operation Parallelization Scheme for Solving Systems of Algebraic Equations by the Method of Multidimensional Scalar Tridiagonal Inversion, Vychisl. Metody Programmirovanie, 2000, vol. 1, pp. 21–29; http://num-meth.srcc.msu.ru.

    Google Scholar 

  12. Kovenya, V.M., Tarnavsky, G.A., and Chernyi, S.G., Primenenie metoda rasshchepleniya v zadachakh aerodinamiki (The Use of the Splitting Method in Aerodynamics Problems), Novosibirsk: Nauka, 1990.

    Google Scholar 

  13. Alekseeva, L.A., Kovenya, V.M., Kupin, E.P., Lebedev, A.S., Malykhin, S.M., Tarnavsky, G.A., and Chernyi, S.G., The Application Package“ZAMER” for Solving External Aerodynamics Problems, Preprint of Inst. of Theoretical and Applied Mech., Sib. Div., Russ. Acad. Sci., Novosibirsk, 1986, no. 17.

  14. Lebedeva, M.K., Medvedev, A.E., and Tarnavsky, G.A., Database“ExtFlow2” for Information Support of Numeral Simulation of External Aerodynamics Problems, Avtometriya, 1994, no. 5, pp. 76–83.

    Google Scholar 

  15. Voevodin, V.V., A Course of Lectures at the International University, Dubna, www.parallel.ru.

  16. Komolkin, A.V. and Nemnyugin, S.A., Programming for High-Performance Computers, www.parallel.ru.

  17. Khoroshevskii,V.G. and Podakov, M.N., Search for Stochastically Optimal Partition of Large-scale Computational Systems into Subsystems, Avtometriya, 2000, no. 2, pp. 52–59.

    Google Scholar 

  18. Pavskii, K.V., Analysis of Parallel Problems Runtime on Computational Systems with Programmable Structure, Avtometriya, 2000, no. 2, pp. 60–69.

    Google Scholar 

  19. Yanenko, N.N., Konovalov, A.N., Bugrov, A.N., and Shustov, G.V., Organization of Parallel Calculation and Parallelization of the Tridiagonal Inversion, Chislennye Metody Mekh. Sploshnoi Sredy, 1978, vol. 9, no. 6, pp. 139–146.

    Google Scholar 

  20. Voevodin, Vl.V., Supercomputers: Yesterday, Today, Tomorrow, Nauka Zhizn', 2000, no. 5, pp. 76–83.

    Google Scholar 

  21. Belotserkovskii, O.M., Mathematical Simulation on Supercomputers (Experience and Tendency), Zh. Vychisl. Mat. Mat. Fiz., 2000, vol. 40, no. 8, pp. 1221–1236.

    Google Scholar 

  22. Zabrodin, A.V., Supercomputers MVS-100 and MVS-1000 and Experience of Using Them for Solving Problems of Mechanics and Physics, Mat. Model., 2000, vol. 12, no. 5, pp. 61–66.

    Google Scholar 

  23. Chronopoulos, A.T. and Swanson, C.D., Parallel Iterative S-step Methods for Unsymmetric Linear Systems, Parallel Computing, 1996, vol. 22, no. 5, pp. 623–641.

    Article  Google Scholar 

  24. Korneev, V.D., Parallel Programming in MPI, Novosibirsk: Izd. Sib. Otd. Ross. Acad. Nauk, 2000.

    Google Scholar 

  25. MPI: A Message-Passing Interface Standard, MPI Forum, Univ. of Tennessee, Knoxville, TN, 1994.

  26. Voevodin, V.V. and Evseev, I.B., MPI: An Introductory Course, www,parallel.ru.

  27. Andrianov, A.N. and Efimkin, K.N., The Use of System NORMA for Solving Computational Problems on Multiprocessor Systems with Distributed Memory, Vychisl. Metody Programmirovanie, 2000, vol. 1, pp. 121–129; http://num-meth.srcc.msu.ru.

    Google Scholar 

  28. Andrianov, A.N., Bugerya, A.B., Efimkin, K.N., and Zadykhailo, I.B., NORMA. Language Description. The Working Standard, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. of Sci., Moscow, 1995, no. 120.

  29. Brinch Hansen, P., SuperPascal—a Publication Language for Parallel Scientific Computing, Concurrency: Practical and Experience, 1994, vol. 66, no. 5, pp. 461–483.

    Google Scholar 

  30. Katkov, S.I., The System of Parallel Programming SuperPascal: Language, Translator, Debugger, Preprint of Ershov Inst. of Information Systems, Sib. Div., Russ. Acad. Sci., 2001, no. 81.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnavsky, G.A., Vshivkov, V.A. & Tarnavsky, A.G. Parallelization of Algorithms and Codes of the Computational System “Potok-3”. Programming and Computer Software 29, 13–27 (2003). https://doi.org/10.1023/A:1021963829439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021963829439

Keywords

Navigation