Skip to main content
Log in

The consequences of translational and rotational entropy lost by small molecules on binding to proteins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

When a small molecule binds to a protein, it loses a significant amount of rigid body translational and rotational entropy. Estimates of the associated energy barrier vary widely in the literature yet accurate estimates are important in the interpretation of results from fragment-based drug discovery techniques. This paper describes an analysis that allows the estimation of the rigid body entropy barrier from the increase in binding affinities that results when two fragments of known affinity and known binding mode are joined together. The paper reviews the relatively rare number of examples where good quality data is available. From the analysis of this data, we estimate that the barrier to binding, due to the loss of rigid-body entropy, is 15–20 kJ/mol, i.e. around 3 orders of magnitude in affinity at 298 K. This large barrier explains why it is comparatively rare to observe multiple fragments binding to non-overlapping adjacent sites in enzymes. The barrier is also consistent with medicinal chemistry experience where small changes in the critical binding regions of ligands are often poorly tolerated by enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hird, N., Drug Disc. Today, 5 (2000) 307.

    Google Scholar 

  2. Teague, S.J., Davis, A.M., Leeson, P.D. and Oprea, T., Angew. Chem. Int. Ed., 38 (1999) 3743.

    Google Scholar 

  3. Hann, M.M., Leach, A.R. and Harper, G., J. Chem. Inf. Comput. Sci. 41 (2001) 856.

    Google Scholar 

  4. Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W. Science, 274 (1996) 1531.

    Google Scholar 

  5. Fejzo, J., Lepre, C.A., Peng., J.W., Bemis, G.W., Ajay, Murcko, M.A. and Moore, J.M., Chem. Biol., 6 (1999) 755.

    Google Scholar 

  6. Boehm, H.-J., Boehringer, M., Bur, D., Gmuender, H., Huber, W., Klaus, W., Kostrewa, D., Kuehne, H., Luebbers, T., Meunier-Keller, N. and Mueller, F., J. Med. Chem., 43 (2000) 2664.

    Google Scholar 

  7. Nienaber, V.L., Richardson, P.L., Klighofer, V., Bouska, J.J., Giranda, V.L. and Greer, J., Nature Biotech., 18 (2000) 1105.

    Google Scholar 

  8. Maly, D.C., Choong, I.C. and Ellman, J.A. Proc. Natl. Acad. Sci. USA, 97 (2000) 2419.

    Google Scholar 

  9. Erlanson, D.A., Braisted, A.C., Raphael, D.R., Randal, M., Stroud, R.M., Gordon, E.M. and Wells, J.A., Proc. Natl. Acad. Sci. USA, 97 (2000) 9367.

    Google Scholar 

  10. Blundell, T.L., Jhoti, H. and Abell, C., Nature Rev., 11 (2002) 45.

    Google Scholar 

  11. Page, M.I. and Jencks, W.P. Proc. Natl. Acad. Sci. USA, 68 (1971) 1678.

    Google Scholar 

  12. Page, M.I. Chem. Soc. Rev 1973, 295

  13. Jencks, W.P. Proc. Natl. Acad. Sci. USA, 78 (1981) 4046.

    Google Scholar 

  14. Hajduk, P.J., Boyd, S., Nettesheim, D., Nienaber, V., Severin, J., Smith, R., Davidson, D., Rockway, T. and Fesik, S.W., J. Med. Chem., 43 (2000) 3862.

    Google Scholar 

  15. Hajduk, P.J., et al., J. Med. Chem., 40 (2000) 3144.

    Google Scholar 

  16. Hajduk, P.J., Zhou, M.-M. and Fesik, S.W., Bioorg. Med. Chem. Lett., 16 (2000) 2403.

    Google Scholar 

  17. Hajduk, P.J., Dinges, J., Schkeryantz, J.M., Janowick, D., Kaminski, M., Tufano, M., Augeri, D.J., Petros, A., Nienaber, V., Zhong, P., Hammond, R., Coen, M., Beutel, B., Katz, L. and Fesik, S.W., J. Med. Chem., 42 (1999) 3852.

    Google Scholar 

  18. Hajduk, P.J., Sheppard, G., Nettesheim, D.G., Olejniczak, E.T., Shuker, S.B., Meadows, R.P., Steinman, D.H., Carrera, G.M., Marcotte, P.A., Severin, J., Walter, K., Smith, H., Gubbins, E., Simmer, R., Holzman, T.F., Morgan, D.W., Davidsen, S.K. and Fesik, S.W. J. Am. Chem. Soc., 119 (1997) 5818.

    Google Scholar 

  19. Green, N.M., Adv. Protein Chem. 29 (1975) 85.

    Google Scholar 

  20. Schaschke, N., Matschiner, G., Zettl, F., Marquardt, U., Bergner, A., Bode, W., Sommerhoff, C.P. and Moroder, L. Chem. Biol., 8 (2001) 313.

    Google Scholar 

  21. Rao, J. and Whitesides, G.M., J. Am. Chem. Soc. 119 (1997) 10286.

    Google Scholar 

  22. Rao, J., Lahiri, J., Isaacs, L., Weis, R.M. and Whitesides, G.M., Science 280 (1998) 708.

    Google Scholar 

  23. Pugliese, L., Coda, A., Malcovati, M. and Bolnesi, M., J. Mol. Biol., 231 (1993) 698.

    Google Scholar 

  24. Puius, Y.A., et al., Proc., Natl., Acad. Sci. USA, 94 (1997) 13420.

    Google Scholar 

  25. Stout, T.J., Sage, C.R. and Stroud R.M., Structure, 6 (1998) 839.

    Google Scholar 

  26. Mao, C. et al., Biochemistry, 37 (1998) 7135.

    Google Scholar 

  27. Rice, K.D., Gangloff, A.R., Kuo, E.Y.-L., Dener, J.M., Wang, V.R., Lum, R., Newcomb, W.S., Havel, C., Putnam, D., Cregar, L., Wong, M. and Warne, R.L., Bioorg. Med. Chem. Lett., 10 (2000) 2357.

    Google Scholar 

  28. Mammen, M., Choi, S.-K. and Whitesides, G.W. Angew. Chem. Int. Ed., 37 (1998) 2754.

    Google Scholar 

  29. Rao, J., Lahiri, J., Weis, R.M., Whitesides, G.M., J. Am. Chem. Soc. 122 (2000) 2698.

    Google Scholar 

  30. McQuarrie, D.A. Statistical Mechanics, D.A., Harper and Row, New York, 1976.

  31. Finkelstein, A.V. and Janin, J., Protein Engineering 3 (19898), 1–3.

  32. Wertz, D.H., J. Am. Chem. Soc. 102 (1980) 5316.

    Google Scholar 

  33. Mammen, M., Shakhnovich, E.I., Deutch, J.M. and Whitesides G.M., J. Org. Chem. 63 (1998) 3821.

    Google Scholar 

  34. Murphy, K.P., Xie, D., Thompson, K.S., Amzel, M. and Freire, E., Proteins: Struc. Func. Gen. 18 (1994) 63.

    Google Scholar 

  35. Sadowski, J. and Gasteiger, J., Chem. Rev. 93 (1993) 2567.

    Google Scholar 

  36. Page, M.I. Angew Chemie Int. Ed. 16 (1977) 449.

    Google Scholar 

  37. Kirby, A.J., Adv. Phys. Org. Chem. 1980, 17, 225.

    Google Scholar 

  38. Searle, M.S. and Williams, D.H., J. Am. Chem. Soc. 114 (1992) 10690.

    Google Scholar 

  39. Gilson, M.K., Given, J.A., Bush, B.L., McCammon, A., Biophysical Journal 72 (1997), 1047–1069.

    Google Scholar 

  40. Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  41. Böhm, H.-J., J. Comput.-Aided Mol. Design 12 (1998) 309.

    Google Scholar 

  42. Jain, A.J., J. Comput.-Aided Mol. Design 10 (1996) 10, 427.

    Google Scholar 

  43. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.

    Google Scholar 

  44. Andrews, P.R., Craik, D.J. and Martin, J.L., J. Med. Chem. 27 (1984) 1648.

    Google Scholar 

  45. Mammen, M., Shakhnovich, E.I. and Whitesides G.M., J. Org. Chem. 63 (1998) 3168.

    Google Scholar 

  46. Rejto, P.A. and Verkhiver, G.M., Proc. Natl. Acad. Sci. 93 (1996) 8945.

    Google Scholar 

  47. Kuntz, I.D., Chen, K., Sharp, K.A. and Kollman, P.A., Proc. Natl. Acad. Sci. 96 (1999) 9997.

    Google Scholar 

  48. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.

    Google Scholar 

  49. Wang, R., Liu, L., Lai, L. and Tang, Y., J. Mol. Model. 4 (1998) 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, C.W., Verdonk, M.L. The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J Comput Aided Mol Des 16, 741–753 (2002). https://doi.org/10.1023/A:1022446720849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022446720849

Navigation