
Machine Learning, 14, 139-168 (1994)
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Hypothesis-Driven Constructive Induction in
AQ17-HCI: A Method and Experiments

JANUSZ WNEK (WNEK@AIC.GMU.EDU)
RYSZARD S. MICHALSKI (MICHALSKI@AIC.GMU.EDU)
Center for Artificial Intelligence, George Mason University, Fairfax, VA 22030

Abstract. The proposed method for constructive induction searches for concept descriptions in a representation
space that is being iteratively improved. In each iteration, the system learns concept description from training
examples projected into a newly constructed representation space, using an Aq algorithm-based inductive learning
system (AQ15). The learned description is analyzed to determine desirable problem-oriented modifications of
the representation space. These modifications include generating new attributes, removing redundant or insignifi-
cant ones, and/or agglomerating attribute values into larger units. New attributes are constructed by assigning
names to groups of the best-performing characteristic rules for each decision class, and then are used to define
the representation space for the next iteration. This iterative process repeats until the created hypotheses satisfy
a stopping criterion. In several experiments on learning discrete functions, the developed AQ17-HCI system
consistently outperformed, in terms of the prediction accuracy on new examples, all systems that it was compared
to, including the AQ15 rule learning system, GREEDY3 and GROVE decision-list learning systems, and RED-
WOOD and FRINGE decision-tree learning systems. Although the proposed method was developed for the Aq-
based rule learning system, it can potentially be adapted to any other inductive learning system. In this sense,
it represents a universal new approach to constructive induction.

Keywords. Concept learning, constructive induction, decision rules, decision trees, decision lists, diagrammatic
visualization

1. Introduction

Most research on inductive learning from examples has been concerned with learning con-
cept descriptions from examples in a fixed, a priori defined representation space. This
means that attributes relevant to describing the examples have to be provided beforehand,
and the learned descriptions are expressed in terms of attributes selected from among them.
For this reason, such inductive learning systems are called selective (Michalski, 1983;
Rendell, 1985). Among such well-known systems are AQVAL/1 (Michalski, 1973), AQ11
(Michalski & Larson, 1978), CART (Breiman et al., 1984), ID3 (Quinlan, 1986a), ASSIS-
TANT (Cestnik et al., 1987), C4.5 (Quinlan, 1989), CN2 (Clark & Niblett, 1989),
GREEDY3 & GROVE (Pagallo & Haussler, 1990).

A fundamental limitation of these systems is that they can learn successfully only if the
original attributes, or generally descriptors, are directly relevant to characterizing the con-
cepts to be learned. These descriptors can be attributes, predicates, functions, relations,
transformations, etc. To overcome this limitation, constructive inductive learning systems
include mechanisms for generating new, more relevant descriptors, as well as for modifying
or removing the less relevant descriptors initially provided. Thus, constructive induction



140 J. WNEK AND R.S. MICHALSKI

performs a problem-oriented transformation of the knowledge representation space during
the process of inductive learning.

The primary goal of constructive induction may be to improve the overall prediction ac-
curacy of the generated concept descriptions, to decrease the overall complexity of learned
descriptions, or to improve the descriptions according to a combination of both criteria.
The prediction accuracy is measured by applying the generated hypothesis to testing exam-
ples and determining the correctness of the predictions. It is often expressed as a percent-
age of the testing examples that are correctly classified (a reciprocal measure is an error
rate, defined as 100% - prediction accuracy). The overall complexity of a concept descrip-
tion is a function of the complexity of determining the values of attributes (descriptors)
used in the description, as well as the complexity of operators involved in it.

The primary goal of the method proposed here is to learn concept descriptions with the
highest prediction accuracy on new concept examples. The search for such descriptions
is done by iteratively changing representation space and then measuring the prediction ac-
curacy of the descriptions generated in this space. The prediction accuracy is estimated
by applying the descriptions to a randomly determined subset of training examples that
were not used in the learning process. The changes of the space are based on the analysis
of the hypotheses generated in each iteration and the detection of patterns in them. For
that reason, this is a "hypothesis-driven" constructive induction method (HCI), as opposed
to data-driven methods that are based on the analysis of data (concept examples), and
knowledge-driven methods that explore background knowledge.

The analysis of the hypothesis (in the form of a set of rules) involves determining an
admissible ruleset, determining various patterns in it, and identifying attributes that can
be removed from the original representation space. The admissible ruleset consists of the
best-performing rules in a given iteration. This ruleset is used to determine new attributes
that can stand for groups of rules ("rule-patterns"), groups of conditions in a rule ("condition-
patterns"), or groups of attribute values in a condition ("value-patterns"). New attributes
are employed to expand the representation space. Removed attributes contract the represen-
tation space. After determining the new representation space, training examples are pro-
jected into it, and an inductive learning process is repeated in the new space. This iterative
process stops when a generated hypothesis achieves a desired performance level, or some
other conditions are satisfied (see "Stopping condition" in section 3.3).

In order to place the proposed method in the family of existing constructive induction
methods, section 2 provides a brief summary and classification of such methods. Section 3
gives a description of the proposed method, and section 4 discusses details of constructing
new attributes from admissible rulesets. Section 5 explains the method using an example
problem and illustrates representation space transformations using a diagrammatic visuali-
zation method. Section 6 describes the application of the rule learning system AQ17-HCI,
implementing the proposed method, to four problems of learning discrete functions. For
comparison, an earlier rule learning system AQ15, two decision list learning systems,
GREEDY3 & GROVE, and two decision tree learning systems, REDWOOD & FRINGE,
are applied to the same problems. Finally, section 7 summarizes the main features of the
method, and suggests topics for future research.



CONSTRUCTIVE INDUCTION IN AQ17-HCI 141

2. A classification of constructive induction systems

The idea and the name constructive induction were first proposed by Michalski (1978) and
implemented in the INDUCE-1 system for learning structural descriptions from examples
(Larson & Michalski, 1977). INDUCE-1, and subsequent versions, e.g., INDUCE-4
(Bentrup, Mehler, & Riedesel, 1987), used various constructive generalization rules and
procedures to generate new problem-oriented descriptors (Michalski, 1983). These descrip-
tors were then employed together with the original ones in the process of induction. A
number of other systems that exhibit constructive induction capabilities have been subse-
quently developed (e.g., Rendell, 1985; Matheus, 1989; Drastal, Czako, & Raatz, 1989;
Wnek & Michalski, 1991).

Systems for constructive induction may employ different strategies for generating new
descriptors, or generally, for changing the representation space. Based on the primary strat-
egy employed, existing systems can be divided into four categories: data-driven, hypothesis-
driven, knowledge-driven, and multistrategy. Below is a brief characterization of these cate-
gories and of selected representative systems in each category.

• Data-Driven Constructive Induction Systems (DCI)
These systems analyze and explore the input data (examples), particularly the interrela-
tionships among descriptors used in the examples, and on that basis suggest changes in
the representation space.

BACON creates new attributes (variables) that represent simple numerical functions
of the original variables. The process of generating new attributes employs heuristics
based on the interdependencies between original attributes in the data (Langley, Bradshaw,
& Simon, 1983; Langley et al., 1987).

ABACUS employs methods for splitting data into subgroups, determining equations
for each subgroup (in a fashion similar to BACON), and applying methods of symbolic
induction for defining the applicability conditions for the equations (Falkenhainer &
Michalski, 1990; Greene, 1988; Michael, 1991).

PLSO (Probabilistic Learning System) creates new attributes from initial attributes using
a form of conceptual clustering performed at three levels of abstraction: object, struc-
ture, and group relationships (Rendell, 1985).

Wyl, IOE (Induction-Over-Explanations) learns structural descriptions of selected
concepts in chess and checkers games by first mapping the training examples from a
performance-level representation (a chess or checkers board) into a learning-level represen-
tation (concepts characterizing game states), generalizing them in this representation,
and converting the learned concept back into the performance-level representation for
efficient recognition (Flann & Dietterich, 1986; Flann, 1990).

STAGGER enhances the representation space by generating various Boolean combina-
tions of description elements (attribute-value pairs), and discretizing continuous attributes
using a statistical utility function (Schlimmer, 1987).

AQ17-DCI applies many different logical and mathematical operators to the original
attributes to create new "candidate" attributes. The candidate attributes that score high
on an attribute quality function are added to the original attribute set, and the whole
set is employed in the process of inductive generalization (Bloedorn & Michalski, 1991).



142 J. WNEK AND R.S. MICHALSKI

FCE (factored Candidate Elimination)—algorithm—starts with a set of initial representa-
tion spaces. After detecting inconsistency in hypotheses formulated in these representa-
tion spaces, the algorithm creates a Cartesian product of these spaces (Carpineto, 1992).

• Hypothesis-Driven Constructive Induction Systems (HCI)
These systems incrementally transform the representation space by analyzing inductive
hypotheses generated in one iteration and then using detected patterns as attributes for
the next iteration.

BLIP proposes new "meta-facts" on the basis of rule exceptions that cannot be defined
in terms in the given representation (Emde, Habel, & Rollinger, 1983; Morik, 1989;
Wrobel, 1989).

CITRE (Constructive Induction on decision TREes) determines a decision tree, and
by analyzing it constructs new attributes. Simple facts are combined by constructive oper-
ators (Matheus, 1989).

FRINGE improves decision trees by avoiding the duplication of tests in them. New
attributes are constructed from "fringes" of the tree, and stand for conjunctions of Boolean
attributes (Pagallo & Haussler, 1990).

KLUSTER introduces new relations or concepts if another concept cannot be character-
ized without it. A definition of the requested concept or relation is learned using initial
examples (Kietz & Morik, 1991).

• Knowledge-Driven Constructive Induction Systems (KCI)
These systems apply expert-provided domain knowledge to construct and/or verify new
representation space.

AM (Automated Mathematician) changes its representation space by employing prede-
fined heuristics for (1) defining new concepts represented as frames, (2) creating new
slots and their values, and (3) adapting concept frames developed in one domain to another
domain (Lenat, 1977, 1983).

COPER creates new function arguments by applying rules of dimensional analysis for
combining arguments into dimensionless monomials (Kokar, 1985).

AQ15 applies arithmetic transformations (a-rules) and/or logical rules (l-rules) for con-
structing new attributes (Michalski et al., 1986).

MIRO applies expert-defined rules ("domain theory") to construct an abstraction space
and then to perform induction in this space (Drastal, Czako, & Raatz, 1989).

• Multistrategy Constructive Induction Systems (MCI)
These systems combine different approaches and methods for constructing new represen-
tation space. (The strategies combined are specified in the parentheses.)

INDUCE-1 (KCI & DCI) uses rules (selected by a user from a predefined repertoire)
and/or built-in procedures for generating new attributes ("meta-attributes"), based on
the analysis of structural descriptions of training examples (KCI), and/or of the qualitative
dependencies between numerical attributes in the input descriptions (DCI) (Larson &
Michalski, 1977; Michalski, 1978, 1983).

STABB (DCI & HCI) uses two procedures to Shift 76 A Better Bias. The least disjunc-
tion procedure changes the representation by examining only the training examples and



CONSTRUCTIVE INDUCTION IN AQ17-HCI 143

the current description language (DCI). The constraint back-propagation procedure builds
new representation based on hypotheses (operator sequences) verified by LEX's critic
(HCI). STABB was incorporated into the existing LEX program (Mitchell, Utgoff, &
Banerji, 1983) to provide LEX with constructive abilities (Utgoff, 1984, 1986).

Duce (HCI & KCI) suggests domain features to a user (or oracle) on the basis of a
set of example object descriptions (given in the input or hypothesized), and six transfor-
mation operators (HCI). Such inductive transformations are tested against an oracle, which
ensures the validity of any transformation (KCI) (Muggleton, 1987).

CIGOL (HCI & KCI) (LOGIC backwards) employs "inverted resolution" using Horn
clause knowledge representation. New predicates that play the role of subconcepts (or
missing premises) are generated from input or hypothesized examples of a high-level
predicate by applying the intra-construction operator (a form of HCI). A user may name
the concept (predicate) or reject the proposed definition (which can be viewed as KCI)
(Muggleton & Buntine, 1988).

ALPINE constructs a hierarchy of monotonic, i.e., structure-preserving, abstraction
spaces from the operators of a domain (DCI). It uses domain axioms and knowledge
about the primary effects of operators to avoid adding unnecessary constraints (KCI)
(Knoblock, 1990). The method was integrated with other types of learning in the PROD-
IGY problem solver (Knoblock, Minton, & Etzioni, 1991).

NeoDisciple (HCI & KCI) introduces new concepts in the form of example explana-
tions provided by an expert (KCI) (DISCIPLE, Tecuci & Kodratoff, 1990), and creates
new features based on the similar definitions in the knowledge base to reduce the incon-
sistency in the learned rules (HCI) (Tecuci, 1992; Tecuci & Hieb, 1992).

CLINT (HCI & KCI) (Concept-Learning in an INTerative way) learns concepts using
an inductive and/or abductive method. If the learned rules match a predefined schemata,
then a user is presented with the partially instantiated schema (concept or predicate) (HCI).
The user may name the schema or reject it (KCI) (De Raedt & Bruynooghe, 1989).

AQ17(DCI, HCI & KCI) integrates in a synergistic way constructive induction capabil-
ities of AQ15, INDUCE, AQ17-DCI, and AQ17-HCI (Bloedorn, Michalski, & Wnek, 1993).

3. Hypothesis-driven constructive induction (HCI)

The proposed method is based on repetitively detecting strong "patterns" in the hypotheses
generated in one iteration, and then treating them as new attributes in the next iteration. To
explain details of the method, we will start by describing the measure of the pattern strength.

3.1. Determining the pattern strength

A pattern can be a group of rules in the learned description, a part of a rule (a conjunction
of conditions), or a group of attribute values in a condition of a rule. The strength of a
pattern can be determined in many different ways. Below is the measure implemented in
the program AQ17-HCI.

In this measure, the strength (a) of a pattern is a function of the number of positive ex-
amples, PCov, and the negative examples, NCov, that are "covered" by the pattern:



144 J. WNEK AND R.S. MICHALSKI

To determine a specific form of the function f, let us observe that the strength of a pattern
should be positively related to the number of positive examples covered by it, and negatively
related to the number of negative examples covered by it. The way the strength is calculated
should also depend on the pattern type—is it a ruleset, a subrule, or a group of attribute
values? In addition, the measure of strength may distinguish between types of coverage
of concept instances by a given pattern. For example, a concept instance can be covered
only by a given pattern (a unique coverage), or can be multiply covered. To reflect this
difference, PCov and NCov are expressed not just by single numbers, but by multiple num-
bers. Here is a simple measure of pattern strength that reflects the above considerations:

where

t+(pattern), called the total positive weight, and t-(pattern), called the total negative
weight, are the numbers of positive and negative examples covered by the pattern,
respectively;

u+(pattern), called the unique weight, is the number of positive examples uniquely covered
by the pattern, i.e., not covered by any other comparable pattern; and

X is a parameter that controls the relative importance given to these two types of coverage.

When X = 0, i.e., when the unique weight is ignored, the above measure of pattern strength
(a) is similar to the logical sufficiency (LS) used in the Prospector expert system (Duda,
Gasching, & Hart, 1979), and in the STAGGER concept learning system (Schlimmer, 1987).

3.2. Determining an admissible ruleset

The HCI method works iteratively. Each iteration generates a complete and consistent set
of rules, i.e., a ruleset that covers all positive examples and none of the negative examples.
In order to speed up the process of determining strong patterns, and to avoid searching
through rules that are weak and/or of low validity, the method selects rules that have suffi-
cient strength in the generated ruleset. These rules constitute an admissible ruleset. The
method searches for strong patterns in the admissible ruleset, uses patterns for transforming
the representation space, and then moves to the next iteration (the complete method is de-
scribed in the next section).

When determining the strength of rules in the ruleset representing a concept, expression
(2) can be simplified; specifically, the denominator in expression (2) can be ignored. This
is so because such a ruleset is consistent with regard to negative examples (no negative
examples covered), and therefore t~ (the negative weight) is zero.

Thus, we have



CONSTRUCTIVE INDUCTION IN AQ17-HCI 145

where t is the total (positive) weight of a rule in a ruleset (the total number of training
examples covered by this rule) and u is the unique weight of a rule in a ruleset (the number
of training examples covered only by this rule, and not by any other rule in the ruleset
(Michalski et al., 1986). The program's default value for parameter X is 2, which gives
a relatively strong preference to rules with higher unique weights, i.e., rules that have smaller
overlap with other rules in a ruleset for a given concept.

To determine an admissible ruleset, rules in the ruleset for a given concept are ordered
from the strongest to the weakest. An admissible ruleset contains the minimal number of
rules from-the ruleset whose total relative strength exceeds a predefined threshold:

where ai is the strength of rule i defined by equation (3), n is the total number of rules
in the current hypothesis, and m (m < n) is the number of strongest rules (recall that the
rules are ordered, and thus ai > ai+1). In the program, the TH parameter has the default
value 0.67, which means that the admissible ruleset will cover at least two thirds of the
training examples of a given concept. Since noisy examples and exceptions are normally
covered by low-strength rules, therefore the admissible ruleset can be expected to cover the
most "central" portion of the learned concept. This method could be improved by setting
the TH parameter on the basis of knowledge of the noise level and of the confidence in
the learned hypothesis.

3.3, The AQ-HCI method

The proposed hypothesis-driven constructive induction (AQ-HCI) method combines an in-
ductive rule learning algorithm (Aq) with a procedure for iteratively transforming represen-
tation space. In each iteration, the method changes the representation space by adding new
attributes, removing insufficiently relevant attributes, and/or agglomerating values of some
attributes into larger units. The quality of the hypothesis generated in each iteration is eval-
uated by applying the hypothesis to a subset of training examples. The set of training exam-
ples prepared for a given iteration is split into the primary set (the P set), which is used
for generating hypotheses, and the secondary set (the S set), which is used for evaluating
the prediction accuracy of the generated hypotheses. Figure 1 presents a diagram illustrating
the AQ-HCI method.

In the implemented system, AQ17-HCI, the input consists of training examples of one
or more concepts, as well as background knowledge about the attributes used in the exam-
ples (which specifies their types and legal value sets). For the sake of simplicity, let us
assume that the input consists of positive examples, E+ and negative examples, E-, of
only one concept. If there are several concepts to learn, examples of each concept are taken
as positive examples of that concept, and the set-theoretical union of examples of other
concepts is taken as negative examples of that concept.



146 J. WNEK AND R.S. MICHALSKI

Figure 1. The AQ-HCI method for hypothesis-driven constructive induction.

The method consists of two phases. Phase 1 determines the representation space by a
process of iterative refinement. In each iteration, the method prepares training examples,
creates rules, evaluates their performance, modifies the representation space, and then pro-
jects the training examples into the new space. This phase is executed until the Stopping
Condition is satisfied. This condition requires that the prediction accuracy of the learned
concept descriptions exceeds a predefined threshold or that there is no improvement of
the accuracy over the previous iteration. Phase 2 determines final concept descriptions in
the acquired representation space from the complete set of training examples. The output
consists of concept descriptions and definitions of attributes constructed in Phase 1. Below
is a detailed description of both phases, and the basic modules of the method.

Phase 1 consists of six modules. The first, "Split of Examples" module, divides positive
and negative training examples into the primary set, P, and the secondary set, S (in the
experiments the split was according to the ratios 2/3 and 1/3, respectively). The set of primary
positive (negative) examples is denoted P+ (P-), and the set of secondary positive (nega-
tive) examples is denoted S+ (S-) . Thus P = P+ U P-, and S = S+ U S-. The primary
training set, P, is used for initial rule learning, the secondary set, S, for an evaluation of
intermediate rules, and the total set, P U S, for the final rule learning (in Phase 2).

The "Rule Learning" module induces a set of decision rules for discriminating P+ from
P-, i.e., a cover COV (P+/P-) of positive primary examples against negative primary ex-
amples. This is done by employing the AQ15 inductive learning program (Michalski et al.,
1986). The program is based on the algorithm Aq for solving general covering problem,



CONSTRUCTIVE INDUCTION IN AQ17-HCI 147

which was described in various sources (e.g., Michalski & McCormick, 1971; Michalski,
1973). For completeness, section 3.4 gives a brief description of the algorithm.

The "Rule Evaluation" module estimates the prediction accuracy of the rules by applying
them to the secondary training set, S. The accuracy of the rules in classifying the examples
from S is determined by the ATEST procedure implemented in the AQ15 program (Reinke,
1984). If the Stopping Condition criterion is not satisfied, the control passes to the "Rule
Analysis" module; otherwise, it passes to Phase 2.

The "Rule Analysis" module determines an admissible ruleset. The "Representation Space
Transformation" module analyzes the rules in this ruleset to determine desirable changes
in the representation space. It removes redundant or insignificant attributes, modifies exist-
ing attributes (by attribute value agglomeration), and generates new attributes (see section
3.5). The "Example Reformulation" module projects all training examples into the new
representation space, and the whole inductive process is repeated.

Phase 2 determines the final ruleset by applying the "Rule Learning" module to all training
examples projected into the final representation space determined in Phase 1. For each
concept, a set of the most specific (ms) rules is induced from all positive examples against
all negative examples, i.e., a cover COVms (E+/E-), and the most general (mg) rules of
negative examples against positive examples, that is, COVmg (E-/E+). The final concept
description is built by generalizing the most specific rules for positive examples against
the most general rules for negative examples, i.e., determining a cover, COVmg [COVms

(E+/E-)/COVmg (E-/E+)] (notice that the arguments for the covering algorithm are here
not sets of examples, but sets of rules). The description so generated represents an interme-
diate degree of generalization between the most specific positive rules and the most general
negative rules. For details on generating such concept descriptions, see Wnek (1993).

3.4. Rule learning module

As mentioned earlier, initial and consecutive hypotheses, in the form of rulesets, are gener-
ated by the inductive rule learning program AQ15 (Michalski et al., 1986). The program
learns rules from examples represented as sequences of attribute-value pairs. Attributes
can be multiple-valued and can be of different types, such as symbolic, numerical, or struc-
tured (in the latter case, the value set is a hierarchy). The teacher presents the learner a
set of examples of each concept to be learned. The program generates a set of general
rules (a ruleset) characterizing each class.

A ruleset is equivalent to a disjunctive normal form (DNF) expression with internal dis-
junction (each rule corresponds to one disjunct). In the standard mode, the program generates
rulesets that are consistent and complete concept descriptions, i.e., cover all positive exam-
ples and no negative examples. Generated rules optimize a problem-dependent "criterion
of preference." In the case of noisy data, the program may generate only partially consis-
tent and/or complete rules.

The AQ15 program is based on the Aq algorithm, which iteratively evokes a star genera-
tion procedure. A star of an example is the set of the most general alternative rules that
cover that example, but do not cover any negative examples. In the first step, a star is
generated for a randomly chosen example (a seed), and the "best" rule in the star, as defined



148 J. WNEK AND R.S. MICHALSKI

by the preference criterion, is selected. All examples covered by that rule are removed from
further consideration. A new seed is then selected from the yet-uncovered examples, and
the process is repeated. The algorithm ends when all positive examples are covered. If
there exists a single rule that covers all the examples (that is, if there exists a conjunctive
characterization of the concept), the algorithm terminates after the first step of star gen-
eration. An efficient procedure for star generation is described in, e.g., Michalski and
McCormick (1971).

The AQ15 program has various parameters whose default values can be changed accord-
ingly to learning goals. One parameter, trim, controls generality of the learned descriptions
without increasing their complexity. Based on this parameter setting, the program can learn
either maximal characteristic descriptions or minimal discriminant descriptions (Michalski,
1983). The maximal characteristic descriptions are the most specific conjunctions charac-
terizing all objects in the given class using descriptors of the given representation. Such
descriptions are intended to discriminate the given class from all other possible classes.
The minimal discriminant descriptions are the most general logical products characterizing
all objects in the given class using descriptors of the given representation. Such descrip-
tions are intended to discriminate the given class from other classes currently represented
in the space.

Another AQ15 parameter, mode, controls cover bounds of the learned descriptions. The
intersecting covers mode produces descriptions that may intersect over areas with no train-
ing examples. The disjoint covers mode produces descriptions that do not intersect at all.

There are two learning goals in the AQ-HCI method. They are related to the two phases
of the method: the iterative determination of the representation space, and learning the
final concept description. The first learning goal is to obtain concept descriptions that can
serve as an intermediate knowledge for selecting useful patterns for constructing new attri-
butes. Such descriptions should reveal all necessary conditions needed for best classifica-
tion of available data, and thus help to detect useful value-patterns and condition-patterns.
To this end, maximal characteristic descriptions are most desirable.

An additional assumption is made for the purpose of finding proper rule-patterns. Such
patterns, if endorsed as new attributes, should not cause ambiguity in the representation
space. The ambiguity could have been easily introduced if two or more new attributes created
from rulesets of different concept descriptions had overlapping definitions, and at the same
time some of existing attributes relevant in describing the overlap were removed. To prevent
ambiguity in such explicit cases, the method assumes generating disjoint covers.

The second goal is to obtain final concept descriptions that give the highest performance
accuracy. Therefore, Phase 2 generates concept descriptions at an intermediate level of gen-
eralization between the most specific and the most general levels. The descriptions of differ-
ent classes may overlap over areas occupied by unseen examples (therefore, the "Intersecting
Covers" mode is used). Instances from overlapping areas are recognized through a flexible
matching procedure (Reinke, 1984; Michalski et al, 1986).

In sum, in the AQ-HCI method, the AQ15 program for searching the problem space is
combined with processes that change the representation space. The hypotheses generated
in Phase 1 are characteristic generalizations of examples (most specific), and used for pro-
posing problem-oriented changes in the representation space. Phase 2 utilizes the resulting
space to generate final hypotheses that are at an intermediate level of generalization that
is desirable for achieving the highest possible prediction accuracy.



CONSTRUCTIVE INDUCTION IN AQ17-HCI 149

3.5. Representation space transformations

In the proposed method, transformations of the representation space may involve both con-
traction and expansion operations. Contraction decreases the number of possible instances
that can be represented in the space, and expansion increases that number. Contraction
can be done by removing attributes, or combining attribute values into larger units. Expan-
sion can be done by adding new attributes or by adding new attribute values to the value
sets of the attributes.

3.5.1. Contraction

From the viewpoint of algorithmic efficiency, it is desirable to maximally decrease the rep-
resentation space while preserving the ability to precisely describe concepts to be learned.
The proposed method removes from the space those attributes that can be considered redun-
dant or insignificant. The first of these are defined as those that do not occur in the hypoth-
eses generated by a selective inductive algorithm, and the second of these as those that
occur only in rules of low strength. The importance of such a contraction has been con-
firmed by experiments showing that descriptions generated in properly contracted represen-
tation spaces tend to have higher predictive accuracy than descriptions generated in spaces
that have not been contracted (Quinlan, 1986b; Subramanian, 1990; Thrun, 1991; Vafaie
& De Jong, 1991). The method also agglomerates values of an attribute into larger units.
This is done by quantizing continuous attributes, or by creating more abstract values of
discrete attributes. These are useful operations, because overly precise attributes can cause
overfitting of the hypotheses.

3.5.2. Expansion

When originally given attributes are not directly or sufficiently useful for creating concepts
descriptions, it is important to expand the description space by adding to it new attributes.
One method for generating new attributes is to invent some new physical processes that
allow the measurement of previously unknown or undetectable object properties. This is
often very difficult. Another, much simpler method is to search for various, even very com-
plex combinations of the existing attributes that are much more directly useful for describ-
ing concepts to be learned. Such combinations are given names and are treated as new
attributes. Adding attributes so generated to the representation space is a space-expansion
operation. The AQ-HCI algorithm uses different methods for generating such synthesized
new attributes (see below). Another space expansion operation used by the algorithm in-
volves detecting subsets of attribute values, called value-patterns, that often co-occur in
a given class description. The algorithm combines these values into larger units and treats
these units as additional values.

New attributes are constructed by detecting strong condition-patterns or rule-patterns.
A strong condition-pattern represents a conjunction of two or more elementary conditions
that frequently occur in a ruleset for a given concept, and has high strength. A condition-



150 J. WNEK AND R.S. MICHALSKI

Table 1. Examples of various descriptors constructed from different patterns.

A domain

x= 1..100
y = small, medium, large
z = white, red, blue, green, black

(Numeric attribute x has integer values from 1 to 100)
(Symbolic attribute y)
(Symbolic attribute z)

Examples of constructed descriptors

cv <:: (z = blue v red v white)
cal <:: (x = 20) & (y = large)
ca2 <:: ((x = 75..100) & (y = small)) or (x = 7)

(Value-pattern)
(Condition-pattern)
(Rule-pattern)

pattern can be viewed as a useful generalization of rules in which the pattern occurs. A
strong rule-pattern is a rule or a subset of rules from a ruleset that has high strength. Such
a pattern can be viewed as a useful specialization of the ruleset.

Table 1 shows examples of possible attribute values and attributes constructed in a sim-
ple, three-attribute domain. Each new descriptor is based on a different pattern-type found
in the hypotheses.

The system searches for patterns in all learned concept descriptions. In each description,
only the admissible rules are considered. Each rule depicts certain patterns generalized
from examples that reflect an interrelation between attributes, relevance to the learning
task, and the representational capabilities of the learning program (representational bias).

The aim of the Pattern Strength (a) function, as defined in equation (2), is to determine
which patterns are admissible as new attributes. The function represents a degree to which
the presence of an attribute, constructed from the pattern, in the training example indicates
the membership of the example to the given concept. Assuming that (X = 0), i.e., that
the unique weights are not calculated, values of the a function range from zero to the number
of positive examples. When a pattern is not matched by any positive example, the numerator
is 0, and then c(pattern) is equal to 0. Such a pattern is worst for describing the learned
concept. When the pattern is not matched by any negative examples, the denominator is
1, and then f(pattern) is equal to the number of matched positive examples. If the pattern
matches more positive than negative examples, then ^(pattern) is greater or equal to 1.
Patterns that match more positive than negative examples may be considered useful for
constructing new attributes. In the HCI method, pattern selection is more restricted by
additional conditions. A pattern is selected if its strength is greater than the strengths of
all conditions involved in the description of the pattern.

After patterns are selected, new attributes can be defined. A new attribute definition
consists of a name, a defining expression, and a similarity measure for assigning values.
The attribute is assigned a unique name after the concept it was created from. The defining
expression is the related pattern. The measure can result in assigning real or discrete values
from the closed interval 0 to 1. In the simplest case, value 1 is assigned if the pattern is
satisfied, and value 0 otherwise. More sophisticated measures may express the distance
between an instance and a pattern in real values. For example, Bala, Michalski, and Wnek
(1992) use rule pattern attributes with a real-valued similarity measure for the task of tex-
ture recognition.



CONSTRUCTIVE INDUCTION IN AQ17-HCI 151

3.6. Summary

There may be many strategies to control attribute generation of various pattern types. In the
simplest approach, new attributes are generated based on all types of patterns detected in
the initial hypothesis. However, a drawback to this is that introducing new attributes makes
the representation space larger and thus more difficult to search. In order to design a strategy
for determining patterns for new attribute generation, each type of attribute pattern has
to be tested and its properties recognized. This strategy must be based on small and strongly
justified changes in the representation space. The selection of attribute pattern can be based
on the structure of the hypothesis and the sequence of pattern types already applied.

The process of inducing rules from examples may be repeated several times in different
representation spaces in order to achieve the desired prediction accuracy. The complexity
of inducing rules from examples in AQ15 is linear with respect to NR. NR is a number
of rules needed to describe the concept. The number of negative examples strongly affects
the shape of this dependency. The complexity of forming a new attribute is linear with
respect to the number of rules in the hypothesis. As this constant effort is made for every
iteration, the overall complexity is O(T * NR), where T is the number of iterations.

It is assumed from here on that the "Representation Space Transformation" module per-
forms two transformations only: it removes insufficiently relevant attributes from the repre-
sentation space, and it generates attributes based on rule-patterns in learned hypotheses.
A detailed presentation and analysis of other transformations is done by Wnek (1993).

4. A method for generating attributes from rule-patterns

This method generates attributes by agglomerating rules that form a rule-pattern. For each
concept learned, a rule-pattern is found, evaluated, and if sufficiently relevant, named and
added to the representation space. The rule-pattern is defined as a set of admissible rules
abstracted from the learned hypothesis using formula (4). The pattern strength evaluation
is done using formula (2). If the strength of the pattern exceeds the strength of all current
attributes, then a new attribute is constructed from this pattern. The attribute is assigned
a unique name after the concept it was abstracted from.

The new attribute descriptions involve attributes from the current descriptor set and the
operators defined within a given representational formalism. Since the AQ17-HCI program
uses the VL1 variable-valued logic formalism (a multi-valued extension of propositional
logic), the constructed attributes are VL| logical expressions. Therefore, with the new attri-
butes, the system introduces conceptual changes of the representation space. These changes
are more complex than a transformation to another space.

Notice that by extending the representation space by introducing new attributes that are
logical combinations of other attributes, some areas of the space may represent impossible
combinations of attribute values, and some areas may contain a high concentration of con-
cept examples. The higher the concentration of examples of a specific concept in some
area, the easier it is to describe and generalize these examples. Such an effect is thus desir-
able consequence of the change of the representation space (this effect is illustrated later
in figure 6).



152 J. WNEK AND R.S. MICHALSKI

The constructed attributes conceptually partition the whole representation space into dis-
joint subconcepts (clusters corresponding to individual values of an attribute). Due to the
mechanism of constructing new attributes, training examples of a given concept are agglom-
erated into two types of subsets: (1) "typical" examples of the concept, and (2) atypical
examples of any concept. Typical are those examples that are covered by the attribute con-
structed from the admissible ruleset of the concept. The remaining examples of the concept
cannot be covered by another constructed attribute because all concept descriptions are
disjoint. For example, when learning two descriptions of a concept, i.e., Positive and Nega-
tive description, two attributes are constructed, P1 and N2. Training examples that have
(P1 = 1) are typical for the Positive description, and those with (N2 = 1) are typical for
the Negative description. Typical positive examples have (N2 = 0), and typical negative
examples have (P1 = 0). Examples with (P1 = 0) and (N2 = 0) are atypical in both Posi-
tive and Negative descriptions of a concept. Examples with (P1 = 1) and (N2 = 1) are
impossible.

The system is able to use the defined subconcept and its negation in the process of building
concept descriptions. This is done through the reformulation of the training data using all
relevant original attributes and newly generated attributes. For each training example, the
values of the new attributes are calculated by evaluating the VL1 expression defining the
new attribute.

The ability to introduce new attributes in the form of subconcepts involves two implicit
extensions to the representational capabilities of the AQ family systems:

1. Rule set-to-condition operator.
This operator substitutes a DNF expression with an attribute value. For example, follow-
ing the domain description from table 1, the system is able to create and use the follow-
ing condition:

(c3 = 1)

which stands for (((x = 75,100) & (y = small)) or (x = 7)).
2. Rule set-negation-to-condition operator.

This operator substitutes a negated DNF expression with an attribute value. From the
conceptual point of view, this operator plays important role in negating the created sub-
concepts. For example:

(c3 = 0)

which stands for (not(((x = 75,100) & (y = small)) or (x = 7))) and is equivalent to
(((x = 75,100) or (y = small)) & (x = 7))

5. A simple example illustrating the method

To illustrate the performance of the method, let us describe an experiment on learning a
form of the multiplexer function with 3 binary inputs and 8 binary outputs: the multiplexer-11



CONSTRUCTIVE INDUCTION IN AQ17-HCI 153

(MX11) problem (Wilson, 1987). The function "switches on" an output (data) line addressed
by the input (address) lines. The remaining output lines are irrelevant for the given address.

The address lines are represented by a0, a1, a2 binary attributes, and the data lines are
represented by dO-d7 binary attributes. For example, the result of MX11 function on
[a0 = 0] [a1 = 1] [a2 = 1] is [d0 = #] [d1 = #] [d2 = #] [d3 = 1] [d4 = #] [d5 = #1
[d6 = #] [d7 = #], where "#" represents "0" or "1." An instance described by [a0 = 0]
[a1 = 1] [a2 = 1] [d0 = #] [d1 = #][d2 = #] [d3 = 1] [d4 = #] [d5 = #] [d6 = #]
[d7 = #] is a positive example of the MX11 concept.

Figure 2 presents the MX11 concept graphically, using the diagrammatic visualization
method. This method employs a General Logic Diagram (GLD), which is a planar repre-
sentation of a multidimensional space spanned over multivalued discrete attributes1

(Michalski, 1973; Wnek & Michalski, 1993). Each cell in the diagram represents a com-
bination of the attribute values, i.e., a concept example. Concepts are represented as sets
of cells. They are depicted in the diagrams by shaded areas. For example, the MX11 con-
cept is described by eight rules listed at the bottom of figure 2. For easy recognition, each
rule in the diagram is shaded differently.

Figure 2. Target concept MX 11 in the original representation space.



154 J. WNEK AND R.S. MICHALSKI

The diagrammatic visualization method permits one to display both target and learned
concepts, individual steps in a learning process, and errors in learning. The set of cells
representing the target concept (the concept to be learned) is called target concept image
(T). The set of cells representing the learned concept is called learned concept image (L).
The areas of the target concept not covered by the learned concept represent errors of omis-
sion (T\L), while the areas of the learned concept not covered by the target concept repre-
sent errors of commission (L\T). The union of both types of errors represents the error
image. In the diagrams, errors are marked by slanted lines.

Figure 3 explains the meaning of various cases in concept visualization. Concept images
are represented in the diagrams by shaded areas (figures 3A and 3B). If the target and learned
concepts are visualized in the same diagram, then the shaded areas represent a learned
concept (figure 3C). The error image is represented by slanted areas. It is easy to distinguish
between errors of omission and errors of commission in the diagram. Since errors of com-
mission are part of a learned concept, the corresponding areas on the diagram are both
shaded and slanted. Errors of omission are not part of the learned concept, and thus the
corresponding slanted areas remain white in the background. The shape of the target con-
cept is implicitly indicated by the borders of the correctly learned concept and the errors
of omission areas. The correctly learned part of the concept is simply shaded.

The MX11 function has the value of the data bit indexed by the address bits. In the ex-
periment, the input examples were encoded in terms of 11 binary attributes. Thus, the rep-
resentation space contains 2048 elements. The traning set had 64 (6%) of the positive ex-
amples and 64 (6%) of the negative examples. Table 2 shows a sample of the positive and
the negative examples.

Figure 3. An illustration of a target concept, a learned concept, and their interrelationship.

Table 2. Part of the set of training examples.

Positive examples
a0
0
0
0
1
1

a1
0
1
1
0
1

a2

1
0
0
1
0

d0

0
0
1
0
0

d1
1
0
1
0
0

d2
0
1
1
0
0

d3

0
0
1
0
0

d4

0
0
1
1
1

d5
0
0
1
1
1

d6

0
0
1
0
1

d7

0
1
0
1
1

Negative examples
a0

0
0
0
1
1

a1

0
1
1
0
1

a2

1
0
0
1
0

d0

0
0
1
0
0

dl

0
0
1
0
0

d2
1
0
0
0
0

d3
1
0
1
0
0

d4
1
0
1
0
1

d5
1
0
1
0
0

d6
1
0
1
0
0

d7

0
1
0
0
0



CONSTRUCTIVE INDUCTION IN AQ17-HCI 155

From these examples the Rule Learning module produced disjoint and maximally char-
acteristic hypotheses of the correct (Pos-Class) and incorrect (Neg-Class) behavior of the
multiplexer. The classification rules are shown in table 3. Pos-Class and Neg-Class are
hypotheses in the k-DNF form. Each rule in the hypotheses is accompanied with t and u
weights that represent total and unique numbers of training examples covered by a rule.

Figure 4 presents the AQ15-learned concept in the context of the target concept. The
total number of errors measured over the whole representation space is 299, which gives
a 15% total error rate. (The total error rate for overlapping covers is 20%.)

From the hypotheses presented in table 3, the admissible rulesets were selected to consti-
tute the candidate attributes P1 and N2 (table 4). Table 5 shows the definition of the new
attributes, and figure 5 shows the coverage of the instance space done by the new attributes.

Once the new attributes are created, they are used to reformulate the training examples
(table 6). For each training example, the new P1 and N2 attribute values are added. Note
that if the new attribute originated in the given class, then it mostly has the value "1" as-
signed. After examples are reformulated, the whole inductive process is repeated. Table 7
presents the newly induced rules.

As expected, the new attributes were used in the output hypotheses in both Pos and Neg
classes. We can observe that large portions of training examples were covered by the rules
(P1 = 1) in the Pos-Class, and by (N2 = 1) in the Neg-Class. Figure 6 summarizes the
new learning task in the changed representation space. The new space consists of 7 binary
attributes: 5 primary attributes and 2 constructed attributes. A characteristic feature of this
representation space is impossible instances, i.e., instances that do not have equivalent
descriptions in the original space. For example, instances described by the rule ((P1 = 1)
& (N2 = 1)) are impossible. This is directly related to the definitions of P1 and N2 (see
table 5 and figure 5), and the fact that these attributes were constructed from two disjoint
rulesets (section 3.4). This is also in agreement with the intuition that there should not

Table 3. Disjoint and maximally characteristic descriptions of MS11 concept induced by AQ15 from the training
examples.

Pos-Class if
1. (a0=1)&(a1=1)&(a2=0)&(d6=l)or
2. (a0=0) & (a1=0) & (a2=1) & (d1=1) or
3. (a0=1)&(a1=0)&(a2=l)&(d5=l)or
4. (a0=1)&(a1=1)&(a2=l)&(d7=l)or
5. (a0=1)&(a1=0)&(a2=0)&(d4=1)or
6. (a0=0) & (a1=1) & (a2=1) & (d2=0) & (d3=1) & (d7=1)or
7. (a0=0) & (a1=1) & (d2=1) & (d3=1) & (d4=0) & (d7=0) or
8. (a0=0) & (a1=0) & (a2=0) & (d0=1) & (d1=0) & (d2=1) & (d3=1) & (d5=1) or
9 . (a0=0) & (a1=1) & (a2=1) & (d1=1) & (d3=1) & (d5=0) & (d6=0) or
10. (a0=0) & (a1=1) & (a2=1) & (d0=1) & (d1=0) & (d2=0) & (d3=l) & (d4=1) & (d5=1) & (d6=1) & (d7=0) or
11 . (a0=0) & (a1=1) & (a2=0) & (d0=0) & (d1=0) & (d2=1) & (d3=0) & (d4=1) & (d5=1) & (d6=0) & (d7=0) or
12. (a0=0) & (a1=1) & (a2=0) & (d0=1) & (d1=1) & (d2=1) & (d3=0) & (d4=1) & (d5=0) & (d6=1) & (d7=1)

(t:11, u:11)
(t:11, u:11)
(t:10, u:10)
(t:10, u:10)
(t:9, u:9)
(t:4, u:3)
(t:3, u:3)
(t:2, u:2)
(t:2, u:l)
(t:l, u:l)
(t:l, u:l)
(t:l, u:l)

Neg-Class if
1. (a0=1)&(a1=1) & (a2=1) & (d7=0)or
2 . (a0=0) & (a2=0) & (d2=0) or
3 . (a0=0) & (a1=0) & (a2=1) & (d1=0) or
4. (a1=0)&(a2=0)&(d1 = 1)&(d4=0)or
5. (a0=1)&(a1=1)&(a2=0)&(d6=0)or
6 . (a0=1) & (a1=0) & (a2=1) & (d5=0) or
7 . (a0=0) & (a1=1) & (a2=1) & (d3=0) & (d7=l) or
8 . (a0=0) & (a1=0) & (a2=0) & (d0=0) & (d1=1) & (d2=1) & (d3=0) & (d6=0) & (d7=1) or
9. (a0=0) & (a1=0) & (a2=0) & (d0=0) & (d1=1) & (d2=1) & (d3=0) & (d4=0) & (d5=0) & (d6=1) & (d7=0)

(t:13, u:13)
(t:12, u:12)
(t:10, u:10)
(t:9. u:9)
(t:7, u:7)
(t:5, u:5)
(t:5, u:5)
(t:2, u:2)
(t:l, u:l)



156 J. WNEK AND R.S. MICHALSKI

Figure 4. AQ15-learned concept in the original representation space and its relationship to the MX11 target con-
cept (figure 2.)

Table 4. The admissible rulesets selected according to formula (4).

Pos-Class
1 . (a0=1) & (a1=1) & (a2=0) & (d6=1)
2. (a0=0) & (a1=0) & (a2=1) & (d1=1)
3. (a0=1)&(a1=0)&(a2=1)&(d5=1)
4. (a0=1)&(a1=1)&(a2=1)&(d7=1)
5 . (a0=1) & (a1=0) & (a2=0) & (d4=1)

[(I Oi) / (I a)] = 126 / 191 = 0.66 < TH
KZ Oj) / (I all = 153 / 191 = 0.80 > TH

(0:33)
(o:33)
(0:30)
(a:30)
(c:27)

(i=1..4)
(i=1..5)

Neg-Class
1. (a0=1)&(a1=1)&(a2=1)&(d7=0)
2. (a0=0) & (a2=0) & (d2=0)
3 . (a0=0) & (a1=0) & (a2=1) & (d1=0)
4. (a1=0)&(a2=0)&(d1=1)&(d4=0)

Id Oj) / (Z a)] = 105 / 192 = 0.55 < TH
[(I a) / (I a)1 = 132 / 192 = 0.69 > TH

(0:39)
(a:36)
(o:30)
(0=27)

(i=1..3)
(i=1..4)

Table 5. The definition of the constructed attributes P1 and N2.

P1 = 1 if
1. (a0=1)&(a1=1)&(a2=0)&(d6=1) or
2. (a0=0)&(a1=0)&(a2=1)&(d1=1) or
3. (a0=1)&(a1=0)&(a2=1)&(d5=1) or
4. (a0=1)&(a1=1)&(a2=1)&(d7=1) or
5. (a0=1)&(a1=0)&(a2=0)&(d4=1)

P1 = 0 otherwise

N2 = 1 if
1. (a0=1)&(a1=1)&(a2=1)&(d7=0) or
2. (a0=0) & (a2=0) & (d2=0) or
3. (a0=0)&(a1=0)&(a2=1)&(d1=0) or
4. (al=0)&(a2=0)&(dl=l)&(d4=0)

N2 = 0 otherwise



CONSTRUCTIVE INDUCTION IN AQ17-HCI 157

Figure 5. Images of the constructed attributes P1 and N2.

Table 6. A part of the reformulated training set.

Positive examples
a0

0
0
0
1
1

a1

0
1
1
0
1

a2

1
0
0
1
0

d0
0
0
1
0
0

d1
1
0
1
0
0

d2
0
1
1
0
0

d3
0
0
1
0
0

d4
0
0
1
1
1

d5
0
0
1
1
1

d6
0
0
1
0
1

d7
0
1
0
1
1

P1
1
0
0
1
1

N2

0
0
0
0
0

Negative examples
a0

0
0
0
1
1

a1

0
1
1
0
1

a2

1
0
0
1
0

d0

0
0
1
0
0

dl
0
0
1
0
0

d2
1
0
0
0
0

d3
1
0
1
0
0

d4
1
0
1
0
1

d5
1
0
1
0
0

d6

1
0
1
0
0

d7
0
1
0
0
0

P1
0
0
0
0
0

N2
1
1
1
0
0

Table 7. Decision rules with the constructed attributes.

Pos-Class if
1. (P1=1) or
2 . (a0=0) & (d3=1) & (P1=0) & (N2=0) or
3 . (a0=0) & (a1=1) & (a2=0) & (d3=0) & (P1=0) & (N2=0)

(t:51, u:51)
(t:11, u:11)
(t:2, u:2)

Neg-Class if
1.
2.
3.
4.

(N2=l) or
(a0=1) & (P1=0) & (N2=0) or
(a0=0) & (a1=1) & (a2=1) & (d3=0) & (P1=0) & (N2=0) or
(a0=0) & (a1=0) & (a2=0) & (d0=0) & (d3=0) & (P1=0) & (N2=0)

(t:44, u:44)
(t:12. u:12)
(t:5, u:5)
(t:3, u:3)

be any instances that conform to both "Positive" and "Negative" concept descriptions
represented by P1 and N2.

The MX11 target concept image is shown in figure 6A after mapping into the new rep-
resentation space. For easy identification, areas that correspond to those in figure 2 are
marked with the same pattern. Figure 6B shows all instances of the MX11 concept mapped
into the new space. One cell in the new space represents 32 or 64 original examples, depend-
ing on the rule describing the new cell. Figure 6C shows the training examples in the new
space. Figure 6D shows the final concept learned.

The learned concept still does not cover exactly the target concept (3 errors of omission
and 1 error of commission), but it gives improved prediction accuracy. The learning could
be further improved if the generalization were prohibited over impossible areas. Instead
of producing a rule (a0 = 0) & (d3 = 1) & (P1 = 0) & (N2 = 0) to cover the four positive
examples listed below, the system would be forced to generate a more specific rule:



158 J. WNEK AND R.S. MICHALSKI

Figure 6. Steps in learning the concept MX11 in the changed representation space.

1. (a0 = 0) & (a1 = 1) & (a2 = 1) & (d0 = 0) & (d3 = 1) & (P1 = 0) & (N2 = 0)
2. (a0 = 0) & (a1 = 1) & (a2 = 1) & (d0 = 1) & (d3 = 1) & (P1 = 0) & (N2 = 0)
3. (a0 = 0) & (a1 = 1) & (a2 = 0) & (d0 = 0) & (d3 = 1) & (P1 = 0) & (N2 = 0)
4. (a0 = 0) & (a1 = 0) & (a2 = 0) & (d0 = 1) & (d3 = 1) & (P1 = 0) & (N2 = 0)

The rule would not cause the only commission error. The only remaining uncovered exam-
ple (4) could be generalized to form the rule (a0 = 0) & (a1 = 0) & (a2 = 0) &
(d0 = 1) & (P1 = 0), and therefore eliminate the three omission errors. Ongoing research
is investigating ways of improving induction in spaces with impossible instances. Another
important issue that needs further research involves the utilization of information about
the number of original examples mapped into new examples.

The final hypothesis produced by AQ17-HCI was tested against the testing set. The result
was 94 % accuracy (compared with 85 % accuracy from rules generated by AQ15 without
constructive induction). Figure 7 shows the final concept image projected into the original
representation space.

6. Experiments

A major measure of the performance of a learning system is the prediction accuracy of
the learned concepts on the testing examples. The prediction accuracy is a ratio between



CONSTRUCTIVE INDUCTION IN AQ17-HCI 159

Figure 7. AQ17-HCI-learned concept projected into the original representation space and its relationship to the
MX11 target concept (compare with figures 2 and 4).

the number of correctly classified examples from the testing data set and the cardinality
of this set. For the sake of comparison with results published previously, we also use the
complementary measure of error rate. Error rate is a ratio between the number of incor-
rectly classified examples from the testing data set and the cardinality of this set. All experi-
ments were run ten times over randomly generated data, and the results were averaged.

The goal of our experiments was to test how well the AQ-HCI method does according
to prediction accuracy criterion, and how well it compares to other methods. The follow-
ing systems were compared: a system implementing the method for generating attributes
from rule-patterns, AQ17-HCI; a standard decision rule system, AQ15 (Michalski et al.,
1986); two decision lists systems, GREEDY3 and GROVE (Pagallo & Haussler, 1990); and
two decision tree systems, one based on a hypothesis-driven constructive induction,
FRINGE, and the other based on the standard ID3, REDWOOD (Pagallo & Haussler, 1990).

6.1. Experimental domains

The domains for testing AQ17-HCI and comparison with other methods were four discrete
functions: C1 (DNF3), C2 (DNF4), C3 (MX11), and C4 (PAR5). These functions were
used by Pagallo & Haussler (1989, 1990) to test several learning methods, specifically



160 J. WNEK AND R.S. MICHALSKI

REDWOOD, FRINGE, GREEDY3, and GROVE. In this study, we applied AQ17-HCI and
AQ15 and compared results with those reported by Pagallo and Haussler (1989, 1990).

Table 8 provides a characterization of the test domains. The number of training examples
was calculated according to the following formula (Pagallo & Haussler, 1990):

where N is the number of attributes, K is the number of conditions in the smallest DNF
description of the target concept, and e is the maximum error rate of the learned descrip-
tion. The number of conditions in the smallest DNF description of the target concept is
the product of the number of rules in the description and the average number of conditions
in a rule. In the experiments, e is set to 0.10. The testing set consists of 2000 examples
(different from training examples). Following table 8 are the descriptions of the target con-
cepts C1-C4.

6.2. Experimental results

This section compares the performance of the AQ17-HCI and AQ15 systems on concepts
C1-C4 on various sets of experimental data. The rules generated by both systems were
tested using the ATEST procedure (Reinke, 1984). ATEST views rules as expressions that,
when applied to a vector of attribute values, evaluate to a real number. This number is
called the degree of consonance between the rule and an instance of a concept.

The method for arriving at the degree of consonance varies with the setttings of the various
ATEST parameters. Rule testing is summarized by grouping the results of testing all the
instances of a single class. This is done by establishing equivalence classes among the rules
that were tested on those instances. Each equivalence class (called a rank) contains rules
whose degrees of consonance were within a specified tolerance (T) of the highest degree
of consonance for that rank. When ATEST summarizes the results, it reports the percentage
of first rank decisions (flexible match) (T = 0.02) as well as the percentage of only choice
decisions (100% match) (T = 0).

Concepts C1-C4 were learned and tested using data sets characterized in table 8. The
summary of the results obtained in ten executions of both systems for each concept learned
is presented in table 9. The AQ17-HCI system was able to correctly learn all concepts. The
100% match between the learned concept descriptions and the testing examples shows that
all concepts were learned precisely. The AQ15 system did not learn exact descriptions of
concepts C1, C2, and C4; however, it was able to recognize them using the flexible match-
ing procedure. The results reported in the "Flexible match" columns are compared with
results from other methods in table 11, in the next section.

Table 10 presents results from learning concept C2 using varying numbers of examples in
the training set. From the table, it is easy to estimate the number of examples required by
a system to achieve a desired prediction accuracy. The table shows that the AQ-HCI method
requires a significantly smaller training set to precisely learn the C2 problem. These results
are due to better descriptors used in expressing learned concepts both in the learning phase



CONSTRUCTIVE INDUCTION IN AQ17-HCI 161

Table 8. A characterization of experimental domains.

Target
concept

C1 (DNF3)
C2 (DNF4)
C3 (MX11)
C4 (PARS)

No. of
attributes

32
64
32
32

No. of
redundant
attributes

12
33
21
27

No. of
rules

6
10
8
16

Average
no. of

conditions
in a rule

5.5
4.1
4.0
5.0

No. of
training

examples

1650
2640
1600
4000

No. of
testing

examples

2000
2000
2000
2000

C1 The DNF3 function defined by rules:
xl x2 x6 x8 x25 x28-x29 =>C1 -x2-,xl0 x14 -x21 -x24 =>C1
x2 x9 x14 -x16 -x22 x25 => C1 x11 x17 x19 x21 -x25 => C1
x1 -x4 -x19 -x22 x27 x28 => C1 -x1 x4 x13 -x25 => C1

Attributes (x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32) are irrelevant, i.e. have random values for each
example.

C 2 The DNF4 function defined by rules:
x1 x4 x13 x57 -x59 => C2 x18 -x22 -x24 => C2
x30 -x46 x48 -x58 => C2 -x9 x12 -x38 x55 => C2
-x5 x29 -x48 =>C2 x23x33x40x52 => C2
x4 -x26 -x38 -x52 => C2 x6 xl 1 x36 -x55 => C2
-x6 -x9 -x10 x39 -x46 => C2 x3 x4 x21 - x37 -x57 => C2

Attributes (x2 x7 x8 x14 x15 x16 x17 x19 x20 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43 x44 x45 x47 x49 x50
x51 x53 x54 x56 x60 x61 x62 x63 x64) are irrelevant, i.e. have random values for each example.

C 3 The C3 function is based on multiplexer-11 function (Wilson, 1987).
-x1 -x2 -x3 x4 => C3 -x1 -x2 x3 x5 => C3
-x1 x2 -x3 x6 => C3 -x1 x2 x3 x7 => C3
x1 -x2 -x3 x8 => C3 xl -x2 x3 x9 => C3
x1 x2-x3 x10 =>C3 x 1 x 2 x 3 x 1 1 => C3

Attributes {x12 .. x32) are irrelevant, i.e. have random values for each example.

C 4 Parity-5 function with irrelevant attributes.
The function has value true on an observation if an even number of relevant attributes (x1 ..x5) are present,
otherwise it has the value false.
-x1 -x2 -x3 -x4 -x5 => C4 -xl x2 x3 -x4 -x5 => C4
-xl -x2 -x3 x4 x5 => C4 x1 -x2 x3 -x4 -x5 => C4
-x1 -x2 x3 -x4 x5 =>C4 x 1 x2 -x3 -x4 -x5 => C4
-x1 x2 -x3 -x4 x5 => C4 -x1 x2 x3 x4 x5 => C4
x1 -x2 -x3 -x4 x5 => C4 x1 -x2 x3 x4 x5 => C4
-x1 -x2 x3 x4 -x5 =>C4 x1 x2 -x3 x4 x5 => C4
-x1 x2 -x3 x4 -x5 =>C4 x1 x2 x3 -x4 x5 => C4
x1 -x2 -x3 x4 -x5 => C4 x1 x2 x3 x4 -x5 => C4

Attributes (x6 .. x32) are irrelevant, i.e. have random values for each example.

(relations already discovered and stored under new attributes make it possible for a deeper
search for dependencies among training data) and the testing phase (the match between
an example and a more concise rule results in a higher degree of consonance). The results
from this table were combined with results from other methods and are presented in figure
8 in the next section.



162 J. WNEK AND R.S. MICHALSKI

Table 9. The experimental results for different problems.

Target
concept

C1
C2

C3
C4

Average Error Rate

AQ15

Flexible match

0.3%

0.2%

0.0%

1.6%

100% match

1.5%

11.5%

0.0%

18.8%

AQ17-HCI

Flexible match

0.0%

0.0%

0.0%

0.0%

100% match

0.0%

0.0%

0.0%

0.0%

Table 10. The experimental results for different numbers of training examples in learning concept C2.

No. of
training
examples

330
660

1320

1980

2640

3960

Average Error Rate in Learning Target Concept C2

AQ15

Flexible Match

29.6%

7.7%

1.8%

0.8%

0.2%

0.2%

100% match

48.2%

24.8%

16.4%

13.6%

11.4%

10.5%

AQ17-HCI

Flexible Match

27.2%

2.4%

0.2%

0.0%

0.0%

0.0%

100% match

48.2%

9.4%

4.3%

0.0%

0.0%

0.0%

Both systems, AQ15 and AQ17-HCI, generate a complete and consistent set of rules from
the input examples. Since AQ-HCI involves attributes constructed from AQ15 rules, a ques-
tion arises: why does AQ17-HCI produce higher accuracy on testing examples? The answer
seems to lie in the AQ15 method of generalizing examples. The extend-against generaliza-
tion operator (Michalski, 1983) considers attributes one at a time.2 This can be an essential
obstacle in learning hard concepts in the context of preliminary description of a learned
problem (Rendell & Seshu, 1990). Hard concepts are spread out all over the given hypotheses
space and require multiple covers.

In order to merge those regions and to make the induction process simpler, a learning
algorithm has to detect possible attribute interactions and construct new attributes that capture
those interactions. A closer look at AQ17-HCI shows that it does exactly this. By abstracting
concept descriptions, the method takes advantage of already detected attribute interactions
and uses them in converting a hard problem to an easier one by just enlarging the initial
attribute set. Since new attributes combine interacting attributes, the systematic transforma-
tions in the representation space support the extend-against operator in finding more accu-
rate and effective hypotheses.

6.3. Empirical comparison of AQ-HCI with other methods

Figure 8 and table 11 summarize the results obtained in ten executions of all tested algo-
rithms. The results for the REDWOOD, FRINGE, GREEDY3, and GROVE algorithms
come from Pagallo and Haussler (1989, 1990).



CONSTRUCTIVE INDUCTION IN AQ17-HCI 163

Figure 8. Learning curves for the concept C2 for different systems.

Table 11. Experimental reuslts for testing descriptions of concepts C1-C4 learned by different systems.

Target
concept

C1

C2

C3

C4

Average Error Rate

Decision TREES (*)

REDWOOD

7.4%

24.9%

13.1%

36.5%

FRINGE

0.3%

0.0%

0.0%

22.1%

Decision LISTS (*)

GREEDY3

0.6%

0.0%

0.5%

45.8%

GROVE

1.4%

7.8%

3.9%

41.3%

Decision RULES (t)

AQ15

0.3%

0.2%

0.0%

1.6%

AQ17-HCI

0.0%

0.0%

0.0%

0.0%

*From Pagallo and Haussler (1989, 1990).
fFlexible match.
Concepts C1, C2, C3, and C4 were learned from 1650, 2640, 1600, and 4000 examples, respectively. All concepts
were tested on 2000 testing examples.

Figure 8 shows the learning curves for the concept C2. The curves were obtained by
measuring and averaging prediction accuracy over ten experiments for each measure point.
The measure points were 330, 660, 1320, 1980, 2640, and 3960 of training examples. Four
systems, AQ15, FRINGE, GREEDY3, and AQ17-HCI obtain 100% performance accuracy
when supplied with 2640 training examples. However, convergence to 100% is fastest in
the case of AQ17-HCI. The exact results for 2640 examples are given in the row describing
concept C2 in table 11.

Table 11 shows the results obtained from testing concepts C1-C4 (table 8). AQ17-HCI
with hypothesis-driven constructive induction capabilities has completely learned all the
target concepts. REDWOOD and GROVE did not learn any concept with 100% accuracy.
FRINGE and GREEDY3 learned three concepts but failed to learn the PAR5 concept. It
is worth noting that the standard decision rule system AQ15 (without constructive induc-
tion) learned all the concepts.



164 J. WNEK AND R.S. MICHALSKI

The results shown in table 11 suggest that all of the problems were hard for the standard
decision tree algorithm REDWOOD. The reason is that the decision tree structure does not
capture interactions between attributes. Only FRINGE, which places conjunctions of in-
itial attributes in the nodes of the decision tree, thus acting more like AQ15, was able to
partially overcome these difficulties. The AQ15 algorithm was able to find almost perfect
solutions. This suggests that the structure of this algorithm supports solving this class of
problems.

7. Conclusions

The presented AQ-HCI method of constructive induction generates new attributes by
analyzing and abstracting inductive concept hypotheses, rather than by directly combining
different attributes. In this method the search for new attributes is very efficient, although
more limited in the repertoire of attributes that can be constructed by direct, data-driven
methods. In our experiments, the proposed method performed very favorably, in terms of
prediction accuracy, in comparison to methods employed in such programs as AQ15, RED-
WOOD, FRINGE, GREEDY3, and GROVE.

In the AQ-HCI method, new attributes correspond to subsets of best performing rules
obtained in the previous iteration of the method. This is a real advantage of the method
because it can easily handle problems with attributes of any type, such as Boolean, sym-
bolic numeric, and numeric, as well as structured (where domains are hierarchies). The
algorithm detects redundant or insignificant attributes among those used in a primary descrip-
tion of a problem as well as those introduced during the attributes' generation process.
Initial and new attributes are examined according to classification abilities, and new
hypothesis building is based on the most relevant attributes.

The presented AQ-HCI method has shown to be effective in improving performance ac-
curacy in a wide range of DNF-type problems. Generated attributes are rather complex,
and therefore the overall complexity of the descriptions is increased. In future research,
we plan to investigate attribute generation based on selected components of the best per-
forming rules rather than entire rules. This could potentially lead to both a further im-
provement of the accuracy, as well as to a greater simplification of the overall complexity of
the hypotheses. We also plan to test the method on different types of learning problems in
order to determine its strongest areas of applicability (Arciszewski, Dybala, & Wnek, 1992).

The proposed methodology is general, and can be potentially applied not only with the
Aq-type rule learning method, but with other inductive learning methods, and with differ-
ent knowledge representations, such as frames, semantic networks, decision trees, etc. To
do so, one needs to identify types of patterns in hypotheses to be searched for, evaluated,
and selected as new attributes. It is likely that employing the proposed methodology within
any "nonconstructive" inductive learning system will improve its performance. In this sense
it represents a universal new approach to constructive induction.

In multiple concept learning, in addition to finding value-patterns, condition-patterns
and rule-patterns, it might be desirable to find patterns across class descriptions, class-
patterns. Such patterns represent conditions that are common for a subset of classes, and
distinguish this subset from other classes.



CONSTRUCTIVE INDUCTION IN AQ17-HCI 165

Preliminary studies indicate that intermediate generalizations tend to produce highest
prediction accuracy, and therefore we have chosen this type of descriptions in Phase 2 of
the method. However, further studies are needed to investigate this problem in a more sys-
tematic way.

Acknowledgments

The authors thank Giulia Pagallo for the help in the design of the experiments, Kenneth
De Jong and George Tecuci for comments on the earlier version of this article, and Eric
Bloedorn and Mike Hieb for the final review.

This research was conducted in the Center for Artificial Intelligence at George Mason Uni-
versity. The Center's research is supported in part by the Advanced Research Projects Agency
under Grant No. N00014-91-J-1854, administered by the Office of Naval Research, and the
grant No. F49620-92-J-0549, administered by the Air Force Office of Scientific Research,
in part by the Office of Naval Research under Grant No. N00014-91-J-1351, and in part
by the National Science Foundation under Grants No. IRI-9020266 and CDA-9309725.

Notes

1. The system DIAV implementing the visualization method (Wnek & Michalski, 1993) permits one to directly
display description spaces up to 106 instances (e.g., about 20 binary attributes). Larger spaces can also be
displayed, but their representations have to be projected to subspaces.

2. One way to address this problem can be a lookahead technique to detect interaction between attributes, but
this increases computational cost (Rendell & Seshu, 1990).

References

Arciszewski, T., Dybala, T., & Wnek, J. (1992). A method for evaluation of learning systems. HEURISTICS, The
Journal of Knowledge Engineering, Special Issue on Knowledge Acquisition and Machine Learning, 5, 4, 22-31.
Bala, J.W., Michalski, R.S., & Wnek, J. (1992). The principal axes method for noise tolerant constructive induc-

tion. Proceedings of the Ninth International Conference on Machine Learning (pp. 20-29). Aberdeen, Scotland:
Morgan Kaufmann.

Bentrup, J.A., Mehler, G.J., & Riedesel, J.D. (1987). INDUCE 4: A program for incrementally learning struc-
tural descriptions from examples (Reports of the Intelligent Systems Group, ISG 87-2). Urbana-Champaign:
University of Illinois, Department of Computer Science.

Bloedorn, E., & Michalski, R.S. (1991). Data driven constructive induction in AQ17-PRE: A method and experi-
ments. Proceedings of the Third International Conference on Tools for AI. San Jose, CA.

Bloedorn, E., Michalski, R.S., & Wnek, J. (1993). Multistrategy constructive induction: AQ17-MCI. Proceedings
of the Second International Workshop on Multistrategy Learning (pp. 188-206). Harpers Ferry, WV: Morgan
Kaufmann.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. Belmont:
Wadsworth.

Carpineto, C. (1992). Trading off consistency and efficiency in version-space induction. Proceedings of the 9th
International Conference on Machine Learning (pp. 43-48). Aberdeen, Scotland: Morgan Kaufmann.

Cestnik, B., Kononenko, I., & Bratko, I. (1987). ASSISTANT 86: A knowledge elicitation tool for sophisticated
users. Proceedings of EWSL-87 (pp. 31-45). Bled, Yugoslavia.



166 J. WNEK AND R.S. MICHALSKI

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.
De Raedt, L., & Bruynooghe, M. (1989). Constructive induction by analogy: A method to learn how to learn?

Proceedings of EWSL-89 (pp. 189-200). Montpellier, France: Pitman.
Drastal, G., Czako, G., & Raatz, S. (1989) Induction in an abstraction space: A form of constructive induction.

Proceedings of the IJCAI-89 (pp. 708-712). Detroit, MI: Morgan Kaufmann.
Duda, R., Gasching, J., & Hart, P. (1979). Model design in the Prospector Consultant System for Mineral Explora-

tion. In D. Michie (Ed.), Expert systems in the micro electronic age. Edinburgh: Edinburgh University Press.
Emde, W., Habel, C.U., & Rollinger, C.-R. (1983). The discovery of the equator or concept driven learning.

Proceedings of IJCAI-83 (pp. 455-458). Karlsruhe, Germany: Morgan Kaufmann.
Falkenhainer, B.C., & Michalski, R.S. (1990). Integrating quantitative and qualitative discovery in the ABACUS

system. In Y. Kodratoff & R.S. Michalski (Eds.), Machine learning: An artificial intelligence approach (Vol.
III). Palo Alto, CA: Morgan Kaufmann.

Flann, N.S., & Dietterich, T.G. (1986). Selecting appropriate representations for learning from examples. Proceed-
ings of AAAI-86 (pp. 460-466). Philadelphia, PA: Morgan Kaufmann.

Flann, N.S. (1990). Improving problem solving performance by example guided reformulation of knowledge.
In D.P. Benjamin (Ed.), Change of representation and inductive bias. Boston, MA: Kluwer Academic.

Greene, G.H. (1988). The Abacus 2 system for quantitative discovery: Using dependencies to discover non-linear
terms (Reports of Machine Learning and Inference Laboratory, MLI 88-4). Center for Artificial Intelligence,
George Mason University, Fairfax, VA.

Kietz, J.U., & Morik, K. (1991). Constructive induction of background knowledge. Proceedings of IJCAI-91 Workshop
on Evaluating and Changing Representation in Machine Learning (pp. 3-12). Sydney, Australia.

Knoblock, C.A. (1990). A theory of abstraction for hierarchical planning. In D.P. Benjamin (Ed.), Change of
representation and inductive bias. Boston, MA: Kluwer Academic.

Knoblock, C.A., Minton, S., & Etzioni, O. (1991). Integrating abstraction and explanation-based learning in
PRODIGY. Proceedings of AAA1-91 (pp. 541-546). Cambridge, MA: AAAI Press/The MIT Press.

Kokar, M.M. (1985). Discovering functional formulas through changing representation base. Proceedings of AAAI-86
(pp. 455-459). Philadelphia, PA.

Langley, P., Bradshaw, G.L., & Simon, H.A. (1983). Rediscovering chemistry with the BACON system. In R.S.
Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.), Machine learning: An artificial intelligence approach.
Los Altos, CA: Morgan Kaufmann.

Langley, P.W., Simon, H.A., Bradshaw, G.L., &Zytkow, J.M. (1987). Scientific discovery: Computational explora-
tions of the creative processes. Cambridge, MA: The MIT Press.

Larson, J.B., & Michalski, R.S. (1977). Inductive inference of VL decision rules. (Invited paper for the Workshop
in Pattern-Directed Inference Systems, May 23-27, Hawaii). ACM SIGART Newsletter, 63, 38-44.

Lenat, D.B. (1977). On automated scientific theory formation: A case study using the AM program. In J.E. Hayes,
D. Michie, & L.I. Mikulich (Eds.), Machine intelligence 9. New York: Halsted Press.

Lenat, D.B. (1983). Learning from observation and discovery. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell
(Eds.), Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.

Matheus, C. (1989). Feature construction: An analytic framework and application to decision trees. Ph.D. Disser-
tation, University of Illinois, Computer Science Department, Urbana-Champaign.

Michael, J. (1991). Validation, verification, and experimentation wth Abacus2 (Reports of the Machine Learning
and Inference Laboratory, MLI 91-8). Fairfax, VA: Center for Artificial Intelligence, George Mason University.

Michalski, R.S., & McCormick, B.H. (1971). Interval generalization of switching theory. Proceedings of the Third
Annual Houston Conference on Computer and System Science, Houston, Texas, April 26-27.

Michalski, R.S. (1973). AQVAL/1—Computer implementation of a variable-valued logic system VL1 and examples
of its application to pattern recognition. Proceedings of the First International Joint Conference on Pattern
Recognition (pp. 3-17).

Michalski, R.S. (1978). Pattern recognition as knowledge-guided computer induction (Technical Report No. 927).
Urbana-Champaign, IL: University of Illinois, Department of Computer Science.

Michalski, R.S., & Larson, J.B. (1978). Selection of the most representative training examples and incremental
generation of VLI hypotheses: The underlying methodology and the description of programs ESEL and AQ11
(Technical Report, 867). Urbana-Champaign, IL: Department of Computer Science Department, University
of Illinois.



CONSTRUCTIVE INDUCTION IN AQ17-HCI 167

Michalski, R.S. (1983). A theory and methodology of inductive learning. In R.S. Michalski, J.G. Carbonell,
& T.M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.

Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15
and its testing application to three medical domains. Proceedings of AAAI-86 (pp. 1041-1045). Philadelphia, PA.

Mitchell, T.M., Utgoff, P.E., & Benerji, R. (1983). Learning by experimentation: Acquiring and refining problem-
solving heuristics. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach. Los Altos, CA: Morgan Kaufmann.

Morik, K. (1989). Sloppy modeling. In K. Monk (Ed.), Knowledge representation and organization in machine
learning. New York/Berlin: Springer-Verlag.

Muggleton, S. (1987). Duce, an oracle-based approach to constructive induction. Proceedings of IJCAI-87 (pp.
287-292). Milan, Italy: Morgan Kaufmann.

Muggleton, S.,&Buntine, W. (1988). Machine invention of first order predicates by inverting resolution. Proceed-
ings of the 5th International Conference on Machine Learning (pp. 339-352). Ann Arbor, MI: Morgan Kaufmann.

Pagallo, G., & Haussler, D. (1989). Two algorithms that learn DNF by discovering relevant features. Proceedings
of the 6th International Machine Learning Workshop (pp. 119-123), Ithaca, NY: Morgan Kaufmann.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
Quinlan, J.R. (1986a). Induction of decision trees. Machine Learning, 1, 81-106.
Quinlan, J.R. (1986b). The effect of noise on concept learning. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell

(Eds.), Machine learning: An artificial intelligence approach (Vol. 11). Los Altos, CA: Morgan Kaufmann.
Quinlan, J.R. (1989). Documentation and user's guide to C4.5. Unpublished.
Reinke, R.E. (1984). Knowledge acquisition and refinement tools for the ADVISE meta-expert system. Master's

thesis, University of Illinois, Urbana-Champaign.
Rendell, L. (1985). Substantial constructive induction using layered information compression: Tractable feature

formation in search. Proceedings of IJCAI-85 (pp. 650-658).
Rendell, L., & Seshu, R. (1990). Learning hard concepts through constructive induction: Framework and ration-

ale. Computational Intelligence, 6, 247-270.
Schlimmer, J.C. (1987). Learning and representation change. Proceedings of AAAI-87 (pp. 511-515). Morgan

Kaufmann.
Subramanian, D. (1990). A theory of justified reformulations. In D.P. Benjamin (Ed.), Change of representation

and inductive bias. Boston, MA: Kluwer Academic.
Tecuci, G., & Kodratoff, Y. (1990). Apprenticeship learning in imperfect theory domains. In Y. Kodratoff &

R.S. Michalski (Eds.), Machine learning: An artificial intelligence approach (Vol. III). Palo Alto, CA: Morgan
Kaufmann.

Tecuci, G. (1992). Automating knowledge acquisition as extending, updating, and improving a knowledge base.
IEEE Transactions on Systems, Man and Cybernetics, 22, 6, 1444-1460.

Tecuci, G., & Hieb, M. (1992). Consistency driven knowledge elicitation within a learning oriented representa-
tion of knowledge. AAAI-92 Workshop Notes on Knowledge Representation Aspects of Knowledge Acquisition
(pp. 183-190), San Jose, CA.

Thrun, S.B., Bala, J.W., Bloedorn, E., Bratko, I., Cestnink, B., Cheng, J., DeJong, K.A., Dzeroski, S., Fahlman,
S.E., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R.S., Mitchell, T.,
Pachowicz, P., Vafaie, H., Van de Velde, W., Wenzel, W., Wnek, J., & Zhang, J. (1991). The MONK's prob-
lems: A performance comparison of different learning algorithms (Computer Science Reports, CMU-CS-91-197).
Pittsburgh, PA: Carnegie Mellon University.

Utgoff, P.E. (1984). Shift of bias for inductive concept learning. Ph.D. dissertation, Rutgers University, New
Brunswick, NJ.

Utgoff, P.E. (1986). Shift of bias for inductive concept learning. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell
(Eds.), Machine learning: An artificial intelligence approach (Vol. II). Los Altos, CA: Morgan Kaufmann.

Vafaie, H., & De Jong, K. (1991). Improving the performance of a rule induction system using genetic algorithms.
Proceedings of the First International Workshop on Multistrategy Learning (pp. 305-315). Harpers Ferry, WV:
George Mason University, Center for Artificial Intelligence.

Wilson, S.W. (1987). Classifier systems and the Animal problem. Machine Learning, 2, 199-228.
Wnek, J., & Michalski, R.S. (1991). Hypothesis-driven constructive induction in AQ17—A method and experiments.

Proceedings of IJCAI-91 Workshop on Evaluating and Changing Representation in Machine Learning (pp. 13-22).
Sydney, Australia.



168 J. WNEK AND R.S. MICHALSKI

Wnek, J., & Michalski, R.S. (1993). A diagrammatic visualization of learning processes (Reports of Machine
Learning and Inference Laboratory, to appear). Fairfax, VA: George Mason University, Center for Artificial
Intelligence.

Wnek, J. (1993). Hypothesis-driven constructive induction. Ph.D. dissertation, School of Information Technology
and Engineering, George Mason University, Ann Arbor, MI: University of Microfilms, Inc.

Wrobel, S. (1989). Demand-driven concept formation. In K. Morik (Ed.), Knowledge representation and organization
in machine learning, Berlin Heidelberg: Springer Verlag.

Received February 2, 1992
Accepted June 4, 1992
Final Manuscript January 20, 1993


