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Abstract. Case-Based Reasoning (CBR) is one of the emerging paradigms for designing intelligent systems. Pre-
liminary studies indicate that the area is ripe for theoretical advances and innovative applications. Heuristic search
is one of the most widely used techniques for obtaining optimal solutions to many real-world problems. We form-
ulated the design of wastewater treatment systems as a heuristic search problem. In this article we identify some
necessary properties of the heuristic search problems to be solved in the CBR paradigm. We designed a CBR
system based on these observations and performed several experiments with the wastewater treatment problem.
We compare the performance of the CBR system with the A* search algorithm.
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1. Introduction

In recent years researchers have been investigating a new paradigm for problem solving
and learning, by using specific solutions to specific problem situations. The basic idea is
to make use of old solutions while solving a new problem. Such an approach is known
as case-based reasoning (CBR). During the past few years researchers have been investigat-
ing a variety of tasks such as general problem solving (Kolodner, 1987), legal reasoning
(Ashley & Rissland, 1988), medical diagnosis (Bareiss, 1989) and opportunistic learning
(Hammond, 1989) in the context of CBR. In a related work, Stanfill and Waltz (1986) have
studied an application for word pronunciation using memory-based reasoning. In all these
cases the case-based reasoning approaches have been used to support learning techniques
and improve problem-solving strategies.

Heuristic search is one of the most important techniques in the field of artificial intelli-
gence. Several real-world problems involve searching for an optimal solution under several
constraints. The computational complexity of these problems require the reduction of the
solution search space. Therefore, CBR is expected to be a good methodology for the prob-
lems for which heuristic search has been used. Application of CBR for heuristic search
has not been studied extensively. The only known previous work is an application for the
eight-puzzle problem by Lehnert (1987; 1988). While this study showed some encouraging
results, its implementation is influenced by the fact that eight-puzzle embodies complete
knowledge. The case-based structure is built based on the availability of certain index func-
tions specific to the problem. The indexing technique used in this study maps all legal
eight-puzzle boards to 12 possible indices, represented in terms of 12 metric equivalent
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classes. Any path in the search tree is considered as a sequence of integers between 0 and
12 (not including 1), while 0 representing the equivalence class of goal state. The search
for any new problem is performed using these index functions. Bradtke and Lehnert (1988)
suggest the use of a "perfect index" function that maps every input problem state onto
a number that encodes the minimum number of moves required to transform the problem
state into a goal state. This index assumes the availability of a maximally difficult problem.
Such a perfect index function needs considerable knowledge about the problem space and
the current goal state. In our present study we show that from an estimate of the cost for
a maximally difficult problem we can search the case base for partial solutions and get
optimal solutions efficiently. We also show that even if such an estimate from the maximally
difficult problem is not available, we can generate bounds for the cost and use these bounds
to search for a partial solution.

The primary problem for a CBR system is of determining those old situations that are
"similar" to the current case. The relevant old solutions need to be organized in the memory
so that the descriptions of the problem at hand can be used to retrieve the relevant cases.
Relevance is often determined not by the obvious features of the input problem, but by
some abstract relationships among features. In the heuristic search problems, the relevant
old solutions are used to find the best place to "jump onto" an optimal path to a solution.
In this article we identify some conditions under which two optimal solutions can share
a partial solution for certain heuristic search algorithms. We design a case base that can
exploit the above observation. We also provide an algorithm to solve any new problem
using such a case base. The case base automatically updates itself with new knowledge
as and when new problems are solved. In the next section we describe a real-world engineer-
ing problem, the wastewater treatment problem that motivated this research work. We show
an example of using CBR to find an optimal treatment design for a given waste stream.

2. Wastewater treatment problem

The wastewater consists of several chemicals (compounds) that need to be removed during
the treatement process. A variety of treatement processes and technologies exist that are
capable of reducing the concentrations of one or more contaminants. In general, several
compounds appear together in a mixture, and we may need to use two or more processes
in series to achieve the desired level of treatment. Such series of treatment processes are
called treatment trains. A treatment train is a sequence of individual unit processes where
the effluent of one process becomes the influent to the next process. Therefore designing
a treatment system involves selecting and sizing a set of these treatment processes (technol-
ogies) that will meet all the treatment objectives.

2.1. Problem description

A treatability database has been developed by the Water and Hazardous Waste Treatment
Research Division of EPA, Cincinnati. Each record in the database consists of the name
of a chemical, the type of a treatment process that was applied to the waste, and the observed
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influent and effluent levels of chemical through the treatment process. Several such records
are collected for each chemical. A concept learning system based on Quinlan's (1986) ID3
algorithm is used to extract knowledge rules from this database. This knowledge is repre-
sented in the form of unit process descriptions. One such description is generated for each
treatment process. Each of these descriptions specify the effect of a particular treatment
process on several compounds at different concentrations. A typical unit process descrip-
tion is given as follows:

General Format
< technology : name

{ chemical 1 — infl_conc : effl_conc
chemical2 — infl_conc : effl_conc

}>

An Example
< technology : Activated Sludge

{ Benzene —> 0.1-1000 mg/L : 0.01 mg/L
Phenol —> 10 mg/L : 0.01-0.1 mg/L

}>

The above description for Activated Sludge describes its removal capabilities for chemicals,
benzene, phenol, etc., at different influent concentrations. These unit process descriptions
are supplemented with some external rules specifying the interactions between these tech-
nologies. A typical external rule is

Never(Activated Sludge, Aerobic Lagoons)

which means that the treatment train can contain only one of the two technologies, Acti-
vated Sludge and Aerobic Lagoons, but not both. Several such rules are included in the
unit process descriptions.

Let there be n chemicals present in the water. Let the influent concentrations be I1, I2,
. . . , In and the target concentrations be O1, O2, . . . , On. These two concentrations can
be represented as two different points in an n-dimensional space. The objective of the prob-
lem is to determine the sequence of technologies that need to be applied to reach from
the given influent concentrations to the target concentrations. Each unit process description
determines the operation of travelling from one point (corresponding to the influent concen-
trations) to another point (corresponding to the effluent concentrations) in the n-dimensional
space. A heuristic-based state-space search mechanism is developed to synthesize the proc-
esses for reducing the influent concentrations to the target concentrations. (Krovvidy et
al., 1991).
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2.2. CBRfor wastewater treatment

The process of obtaining the optimal treatment trains using a heuristic search function in-
volves a large search space. This search effort can be reduced if we can use some of the
old treatment train already existing in the case base. We use a simple example to show
the advantage of CBR in the heuristic search procedure. Assume that there are three con-
taminants in the water. We are required to design a treatment train for the wastewater to
reduce the initial concentrations to the specified safe concentrations for the three contami-
nants: (All concentrations are given in ;tg/L)

We need to have an intelligent search mechanism to find out whether a solution exists in
the case base for this problem. Assuming that there is no such solution present in the case
base, we use A* algorithm to find an optimal treatment train for this node. Let technology
E be used at state 1 with the effluent concentrations as

We again search the case base to find a solution for the new levels of concentrations. Sup-
pose there is a treatment train in the case base as shown in (2.3):

The effluent concentrations shown in (2.2) already exist in the treatment train (2.3) after
the application of technology B. Therefore, the solution to be retrieved from the case base
is C - > D. The overall treatement train for the new problem is E - > C - > D.

We now describe how to index a case base to obtain the most suitable case for a given
problem using a formal analysis. In the next section we develop the necessary theoretical
background. In section 4 we describe the structure of the case base and the procedure for
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inserting/solving a new case into the existing case base. In section 5, we present the appli-
cation of CBR for wastewater treatment problem. In section 6, we illustrate an example
for the wastewater treatment design problem. In section 7, we provide the results from our
experiments. In section 8, we conclude with some directions for further research.

3. Theory development

An excellent description of heuristic search methods and different algorithms is available
in the works of Pearl (1984) and Nilsson (1972). In this section we introduce our notation
for heuristic search functions and wastewater treatment problem and prove some properties
that are useful in the CBR. A brief description of the A* algorithm is given in the appendix.

Notation

S
G
N
N'
k(N, N')
P
n
I1, ..In
o1, ..on
gs(N)
h*(N)
f*s(N)

gs(N)
h(N)
fs(N)
J
Cj j= 1..J
Rkyi

Eki

Cmin

Cmax

©

f^s(N)
7

Start node
Goal node
Intermediate node
A successor node to N
Cost incurred from going to N to N'
A new problem state
Number of compounds
Input concentrations of the compounds
Goal concentrations of the compounds
The cost of the cheapest path going from S to N
The cost of the cheapest path going from N to G
gs(N) + h*(N)
The optimal cost of all solution paths from S, constrained to go through N
The cost of the current path from S to N
An estimate of h*(N) and
gs(N) + h(N)
Total number of technologies
Unit cost of jth technology
Fraction of the kth compound removed by the yth technology at the ith stage
Effluent concentratioin of kth compound after the ith stage
Minimum cost per unit removal among all technologies
Maximum cost per unit removal among all technologies
Pivotal node with maximum possible concentrations for all compounds
£<N) + gs(N) + h(N)
Threshold value for remembering partial solutions.

Monotonicity: If N' is any descendent of N, then h(N) is said to be monotonic if

where k(N, N') = actual cost incurred in going from N to N'.
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Pivotal f-values: For a given start node 'S', define any other node 'x' not on the optimal
path as a pivot. Then define fx(N) = g*(S) + fs(N). These fx(N) values are called the
pivotal f-values, with 'x' as a pivot. The term fx(N) denotes the cost incurred to find an
optimal path from x to G passing through S and N.

Lemma 1: If h is monotonic, then for any pivotal node 'x', the pivotal f-values of the se-
quence of nodes expanded by A* during the search from a node 'S' is non-decreasing.

Proof: For all nodes on the path, we know that fs(N) values are non-decreasing (Nilsson,
1972). It can be seen from the definition of pivotal f-values that they are obtained by adding
a constant amount, namely gx(S), to the corresponding fs value. Hence the non-decreasing
order is still maintained.

In the subsequent discussions, we assume that h is monotonic. Pearl (1984) argues that
"monotonicity is not an exceptional property but rather a common occurrence among admis-
sible heuristics."

Consider figure 1. Let ^ be a pivotal node and S and P be two different start nodes with
G as the goal node. Let N be the node present on the optimal paths from S and P.

g*(P) = The cheapest cost for tp to P.

gP(N) = The cost incurred from P to N.

h(N) = Estimated cost from N to G.

g*(S) = The cheapest cost from p to S.

gs(N) = The cost incurred from S to N.

Proper pivotal node: Let 'N' be a node on two different optimal paths originating from
S and P. If for some node 'p', g£(P) + gp(N) = g*(S) + gs(N), then V is called a proper
pivotal node.

Figure 1. Pivotal f-values for a node on two optimal paths.
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Lemma 2: If 'V' is a proper pivotal node, then for any node 'N' present on two optimal
paths originating from S and P the pivotal f-value for 'N' computed from either path is
the same.

Proof: Let fd|(N) be the pivotal f-value computed from the path originating from S and
f£(N) be the pivotal f-value computed from the path originating from P.

Since V is the proper pivotal node, we have

Therefore, f^(N) value is unique irrespective of the path chosen.
The interpretation for lemma 2 is that no matter which path we choose, the cost for the

solution from the pivotal node to the goal node constrained to go through N is the same.
However, we only need to know g£(S) and g£(P) values and the knowledge of actual paths
from p to S or P is not necessary.

Lemma 3: If 'N' is present on two different optimal paths form S and P, and if f^(N) =
f£(N) for some node V, then >' is a proper pivotal node.

Proof: Given

Therefore, 'p' is a proper pivotal node.
Lemma 3 is useful to identify and establish the existence of a proper pivotal node for

a given search space.

Indexing onto an optimal path: We use pivotal f-values as our index function. As defined
earlier, this function has two parts: the cost from the most difficult problem to the given
problem, and the estimated cost from the new problem state to the goal state.
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Let SS1S2... SkG be an optimal path from S to G. Let P be a node from which we need
to find an optimal path to G. Let V be a proper pivotal node. From lemma 1, we know that

Let 'N' be an intermediate node generated as a part of the optimal path from P to G
using the A* algorithm. We can search for the presence of 'N' in SS1S2 . . .SkG by com-
puting f£(N) and locate S; such that

Since f^ values are in ascending order, this search can be performed efficiently.
The basic idea is to generate an optimal path from a given node P until it has some node

'N' on its expandable nodes list that also exists on the optimal path from some other node
S. Therefore, the solution path for P consists of two parts; the path from P to 'N' (new
generated) and the path from 'N' to G (already generated as part of solution for S).

In the following sections we describe the structure of the case base and procedures for
inserting/solving any new problem using the case base. The existence of a proper pivotal
node specifies that any two nodes P and S share a part of their optimal paths if both P
and S themselves belong to two different optimal paths originating from the proper pivotal
node to the goal node G. In the subsequent discussion, we simply use f-values instead of
pivotal f-values wherever there is no ambiguity.

4. Design and searching the case base

In order to design a structure for the case base, we must describe a representation for each
case. In a heuristic search problem, each case can be viewed as a sequence of states that
takes a given problem state to a targeted goal state. Two or more cases may share part
of their solution paths. Each state N in the solution path is represented as a D-tuple, <N1,
N2 NO) where Ni determines the position of N in the ith dimension. In section 4.1
we describe the organization of the case base as a hierarchical structure. In section 4.2
we present an algorithm to index the case base and retrieve partial solutions to solve any
new problem.

4.1. Structure of the case base

The case base is constructed as an hierarchical layered structure. At the primary level we
have sections arranged in the ascending order of the f-values of the nodes. All nodes pre-
sent in a given section have their f-values within a given range. Each section is further
divided into several partitions. Each partition has a partial path generated in the optimal
search. We consider these partitions as chunks of knowledge. The sections are connected
to each other through the partitions. Figure 2 depicts a case base with m sections. Each
section Si has Pi partitions, and each partition j from section Si has Nijk nodes.
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Figure 2. Structure of the case base.

4.2. Case-base construction/search

The case base is built in an incremental fashion. When a new problem state is given, the
existing case base is used to find the closest case from its memory. An optimal path between
the problem state and the old case is found. In the initial stages, when the case base has
very few cases, the solution for a new problem requires more searching. However, after
solving a sufficient number of problems, the case base improves its performance for solving
any new problems, as it needs less search space. In this section we describe the procedures
for constructing and searching the case base for solving a given problem.

Let P be a node representing the new problem state. Let N be an intermediate node gen-
erated while searching for a path from P to G. Given N, we can identify whether it is
present in the existing case base in the following way:

get_case(N, case-base) /*Get N from the case base */
find the f-value for the node N
obtain the section to which it can belong
get_partition(N, section)

end get_case

get_partition(N, S) /* Get N from the section S */
for each partition 'k' in S

let P1k. P2k. • • •, P1k be the path stored in the partition k.
find the minimum j such that N can be inserted between p(j-l)k and Pjk.
(Since the f-values for plk, p2k, . . . , plk are in the ascending order, the location

of N can be easily found such that f-value of P(j-l)k < f^p(N) < f-value
of Pjk

choose that partition with fv,p(N) = f-value of Pjk associated with the existing
path

(Break any ties arbitrarily, always in favor of the goal node)
Append the path from pjk to G, to the path from P to N and return
If no such partition exists, then

use A* algorithm to obtain the next node to be expanded
while using A* algorithm, before expanding a new node

verify if it already exists in the case base using the above steps,
end get_partition
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In the following sections we present a heuristic state-space search approach for wastewater
treatment problem. We then present CBR approach for generating optimal treatment trains.

5. Heuristic state-space approach for wastewater treatment system

A heuristic-based state-space search mechanism is used to synthesize the processes for
reducing the influent concentrations to the target concentrations. In the next section we
describe the treatment train formally, and in section 5.2, we present a heuristic search algo-
rithm for the wastewater treatment problem. In section 5.3 we present the application of
CBR for the wastewater treatement problem.

51. Optimal treatment train

The treatment train can be considered as a chain of processes that are selected at different
stages of the searching process. Let the unit process chain at the ith stage be as shown
in figure 3.

The vectors Xi and Xi+1 of size n, denote the influent and effluent concentrations of n
compounds before and after stage 'i', where at stage T, we apply a technology to the water.

Let the removal efficiency, R, represent the fraction of a given compound removed. Then

Let 1k represent the input influent concentration of the kth compound. Let Rkyi represent
the fraction of the kth compound removed by the yth unit process technology in the i* step
or order in the total treatment train.

Let Eki represent the effluent or output concentration level of the kth compound from
the y* unit process used in the ith step. Then

The last two subscripts indicate that the yth technology is used in the ith step of the total
treatment process. Also note that

the original concentration.
For example, for technology 1 followed by technology 2 after the beginning of the treat-

ment process, for the kth compound we have

Figure 3. Treatment train at ith stage.
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whereas, the corresponding equation when technology 2 follows technology 1 would be

With each Rkyi there is an associated cost Hyi, the cost of treatment plant y at stage i.
We need to find the minimum total cost associated with the train sequence of unit processes
that bring all the final Ekm's below the acceptable level for all k compounds in the waste-
water mixture.

Mathematically, we seek the particular sequence train of unit processes, yl, y2, ..., ym
such that

when all Ekm's < Lk, 2 Hyi is minimal,
yi

where yl represents the first technology chosen, y2 represents the second technology
chosen, etc., where each Ekm, represents the final effluent concentration for the kth com-
pound, and where each Lk represents the acceptable wastewater concentration level for
the kth compound.

5.2. Heuristic search for optimal treatment train

The heuristic function is based on the decrease in the expected amount of risk/toxicity
after a technology is applied. Let there be n chemicals present in the water. Let the influent
concentrations be I1, I2, ...,In and the target concentrations be O1 O2, ..., On. Based
on the A* search, the algorithm for reducing the influent concentrations to the target con-
centrations can be described as follows.

Start_state = S = {I1, I2, ..., In}; Goal_state = G = {Ot, O2... On}
Present_state = P = {Pl, P2.... Pn}
Let g(P) = The cost incurred in reducing the concentrations from S to P

h(P) = Estimated cost to reduce the concentrations from P to G
f(P) = g(P) + h(P)
OPEN = Set of nodes to be examined
CLOSE = Set of nodes already examined

P = S, OPEN = { }, CLOSE = { }
OPEN = OPEN U {S}
repeat

select the node P with minimum f-value among all the nodes in OPEN
OPEN = OPEN - {P}
IF P * G then

CLOSE = CLOSE U {P}
Generate all the successors of P and place them in OPEN
Establish a link between P and each of its successor.
(The unit process descriptions are used to obtain these successors)
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until P = G
Retrieve the treatment train by tracing the back path from G to S.

The choice of the least cost technology is based on a heuristic function developed in
the next section.

S.3. Cost-based heuristic function

In this section we develop a heuristic function that will be used in the state space search
process to generate the treatment train. The heuristic search is performed using the A*
algorithm. Section 5.3.1 describes the concept of cost per unit removal. Section 5.3.2 presents
a description of the application of this concept to obtain the optimal treatment train using
A* algorithm.

5.3.7. Cost per unit removal of toxicity

Assume that we have the cost values for the treatment processes that are being considered.
The unit process descriptions represent the vector valued function fij that describes how
waste stream is transformed into an effluent stream. As described in section 2.1, the unit
process descriptions determine the effect of a particular technology on several compounds
at different influent concentrations. Consider figure 3, and let

Vij = 1 if unit 'j' is chosen at stage T

= 0 otherwise

Then

where J is the total number of processes. Let there be n chemicals present in the water. Let
the influent concentrations be I1, I2, . . . , In and target concentrations be O1, O2, . . . , On.

Let

Eki = concentration of compound k before stage i.

Eki+1 = concentration of compound k after treatment option j at stage i.

Cj = cost incurred due to option j.
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The weight factor associated with the kth compound is given as

Then the cost per unit amount of target toxicity removed by process

5.3.2. A* algorithm applied for optimal treatment train

The application of the A* algorithm as explained in section 5.2 needs the values for g(P)
and h(P) for any given intermediate node. The g function is defined as the sum of the ac-
tual costs of the technologies in the treatment train. Let P be the concentrations at the ith
stage in the treatment train;

Then

where Ck is the cost of technology Tk.
The h(P) function is defined as the estimate of the cost of the cheapest paths from P

to the goal node G. This function is defined by finding the lower bounds on the cost of
the treatment train for the given wastewater. The procedure to find these bounds is explained
using an example.

Consider a wastewater stream with two contaminants, cont1, cont2. Let there be two
technologies T1 and T2. The unit process descriptions for these technologies are defined as

<Technology :T1                      <Technology : T2

{ cont1 — 100 75 { cont1, — 100 : 40
con^ — > 200 160 cont, — > 200 : 150
cont2 — 100 80 cont2 — 100 : 75
cont2 — > 200 150 cont2 —> 200 : 160

}> }>

We also assume that the cost of technology T1 is 100 units and that of T2 is 175 units.
For T1, the best removal rate is obtained when cont1 = 200 and cont2 = 200. From
(5.3.3), we have the following:
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The best cost per unit removal for T1 = 100/((200 - 160) + (200 - 150)) = 100/90
« 1.1

Similarly, the worst cost per unit removal for T1, = 100/((100 - 75) + (100 - 80)) =
100/45 m 2.2

The best cost per unit removal for T2 = 175/((100 - 40) + (200 - 160)) = 175/100
= 1.5

Similarly, the worst cost per unit removal for T2 = 175/((200 - 150) + (100 - 75))
= 175/75 « 2.33

Therefore, the least unit cost of removal = min {1.1, 1.5} = 1.1
and the maximum unit cost of removal = max {2.2, 2.33} = 2.33

The next section presents a formal description of the above method followed by an ex-
pression for the heuristic function for estimating the cost of the treatment train. This heuristic
estimate is shown to be monotonic.

Cost bounds for the solution: We compute the upper and lower bounds for the cost per
unit amount of removal among all the processes. Let Cmin, Cmax denote the possible mini-
mum and maximum costs per unit amount of removal among all the given processes. Let
C1, C2, . . . , CJ be the costs for the J technologies, respectively.

For each technology 'j' (1 < j < J)
For each compound 'k', (1 < k ^ n)

Let Ijg, be the influent concentration with maximum removal.
OJa, the corresponding effluent concentration.
l{b the influent concentration with minimum removal.
Ort, the corresponding effluent concentration.

Then,

Let G be the node (n-tuple) that has the allowable concentration for each compound. For
any given set of concentrations Y (n-tuple), the heuristic estimate for the cost of the treat-
ment train from Y to G is given by
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where |Y — G| denotes the componentwise difference, i.e.,

5.4. Analysis of the wastewater treatment heuristic function

In order to apply the CBR paradigm for the wastewater treatment problem, we need the
following conditions to be satisfied:

i) the heuristic is monotonic.
ii) The existence of a proper pivotal node.

Lemma 4: The heuristic function described by equation (5.3.8) is monotonic.

Proof: While Cmin denotes the minimum possible cost per unit amount of removal, the
actual concentrations of Y may require us to use some other technology 'T' with a differ-
ent cost. If Z is the descendant of Y, and if technology T is used, then

Since Cmin is the lower bound among all the technologies, for any technology T,

which implies that the heuristic is monotonic.
Let > be the node with maximum possible concentrations for all compounds. Let S be

a node from which there is a treatment train that needs to be stored in the case base. When
the solution from S is stored in the case base, the index function f/(N) values for each
node 'N' in that solution need to be computed.

In this expression, we can compute the exact values of gs(N) and h(N). However, gJ,(S)
cannot be computed directly, unless we generate an optimal path from <p to S. So, we use
a lower bound g^(S) instead of g£(S), where
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On a similar note, an upper bound on g*(S) is given by g£(S), where

Therefore,

All the nodes in the optimal path are stored using g^'(S) instead of g£(S).

Lemma 5: Let p be the node with maximum possible concentrations for all the compounds.
Let S be a node from which there is a treatment train already available in the case base.
If P is a new node, then there exists lower and upper bounds for the f-values for any inter-
mediate node 'N' to be present on the optimal paths from S and P as well.

Proof: In the CBR paradigm, whenever, we are given a new problem state P, we need to
search for the new node in the case base. All the solutions in the case base are stored using
a lower bound on its f-value as an index.

Let

To find an intermediate node 'N' present on the optimal paths from S and P as well,
we compute an upper bound fup and a lower bound f1o for f-values and confine our search
in only those sections that are bounded by these f-values.

Within these bounds, we use the property of dominance (explained in the following para-
graph) to retrieve the closest node for a given problem state. For smaller case bases, we
can search the entire case base without computing any bounds. For case bases of large
size, computing these bounds and searching within these bounds is more efficient.

Property of dominance: Let p1, p2, . . . , pm be points belonging to the n-dimensional space
En, with coordinates x1; x2, . . . , xn. Point P1 dominates point p2 (denoted by p2 / p1

if Xi(p2) < Xi(p1), for i = 1, 2, . . . , n. Given a set of m points in En the relation domi-
nance on set S is clearly a partial ordering on S for n > 1 (Preparata & Shamos, 1985).
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In the wastewater treatment problem let q1, q2, . . . , qm denote a treatment train. The
nodes q1, q2, . . . , qm are n-tuples representing the intermediate concentrations of n-
compounds in the treatment train. It can be observed that qm^ qm-1,̂  z. ... z. q1; as
we only remove/reduce the concentrations of any chemical and we never add/increase the
existing concentrations. This property is used to search for the closest node in an existing
solution path for a given problem.

6. An example of CBR for wastewater treatment design

Let the influent concentrations for seven compounds be as follows:

After generating unit process descriptions for 10 technologies, the minimum and maxi-
mum costs per unit removal are found to be 0.0318 and 1.3945, respectively. The goal con-
centrations are specified as 100 /tg/L for all the compounds. Let A represent the node cor-
responding to the concentrations shown in (6.1). The f-value of A is found to be 14.864.
Since no previous cases exist, the A* algorithm is used to find the treatment train. The
treatment train along with the intermediate concentrations and their f-values are shown
in (6.2).

As described in section 4, the case base is arranged with sections having increasing f-
values. The solution generated for the given problem is denoted as A — > B — > C — > G.
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Figure 4. Case base after solving first problem.

The segment A — > B has f-values between 14 and 15. Therefore, they are placed in the
section corresponding to that range. Similarly other nodes are stored in the case base ac-
cording to their f-values. The complete solution is shown in figure 4.

Now suppose a new case is given as shown in (6.3).

Let the node corresponding to the given concentrations be D. To check for the presence
of D in the case base, we find the lower and upper bound for the f-value and confine search
within those sections. This node has its flo value as 10.102 and its fup value as 14.634. It
can be easily seen that this node is not present in the case base. So, we use A* algorithm
to generate a partial solution until we reach the goal concentrations or some node that is
already present in the case base. After two stages, the resulting partial treatment train along
with the intermediate concentrations is as shown:

164



WASTEWATER TREATMENT FROM CBR 359

Figure 5. Case base after solving the example.

If the node F is present in the case base, the upper bound for f-value is found to be less
than 15. Therefore, we only have to search the case base with f-values less than 15. We can
see that node B matches with node F. Therefore, the complete treatment train is D — > E
— > F —> C —> G. The complete case base is shown in figure 5.

7. Performance Study

We implemented a CBR system based on the ideas described in this article for the waste-
water treatment problem. The unit process descriptions for 10 technologies are developed.
We solved 10 different design problems with different concentrations for 7 compounds.
Figures 6a and 6b show the improvement in the performance of CBR over A* algorithm
for wastewater treatment design.

Remembering partial solutions: We can consider the case memory as a set of solutions.
A path from the start node S to the goal node G is the sequence of states from S to G.
However, if all the past cases are remembered in the memory, then we need a large amount
of storage space. Therefore, it is necessary to remember the cases selectively. Most of the

Figure 6a. Time saved by CBR compared with A" for wastewater treatment design.
X-axis The number of cases in the case base
Y-axis (Time taken by A* - Time taken by CBR) in seconds
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Figure 6b. Performance of CBR and A* search for wastewater treatment design.
X-axis The number of cases in the case base
Y-axis (# of nodes expanded by A* - # of nodes expanded by CBR)

case-based systems address the memory problem by remembering a selected set of cases.
Ruby and Kibler (1988) conducted experiments with Lehnert's Case-Based Problem solver
to determine if performance could be improved by selectively adding cases to memory.
The performance is found to be slightly better when a new case is stored only when it
cannot be correctly classified by the instances currently in memory. In our system, we
present a different approach to store the cases. Instead of selectively choosing a case, we
suggest to store partial solutions for a given case.

We store partial paths of the solutions rather than completely remembering or forgetting
the cases. Let SS1S2... SkG be an optimal path from S to G (S0 = S, Sk+1 = G). We store
the path Sj to G for some threshold r, such that

In this scheme, we store the complete path if T = 0.0 and no path for r = 1.0. We have
solved ten different wastewater design problems with different values of T. In each case,
the performance is studied by tabulating Dr values (see table 1), where

DT = (# of nodes expanded by A*) - (# of nodes expanded by CBR with T as threshold)

Table 1. Performance study with only partial solutions stored.

Threshold

Dr

0.0

420

0.25

420

0.5

416

0.75

350

1.0

0
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8. Conclusions and discussion

In this article, we have shown some properties for applying the CBR approach for heuristic
search problems. We have shown how CBR can be used to obtain an optimal solution for
a heuristic problem for an existing solution. We have proposed that from an estimate of
the cost of a maximally difficult problem, we can efficiently search the case base for par-
tial solutions. Even if such an estimate from the maximally difficult problem is not available,
we can generate bounds for the cost and use these bounds to search for a partial solution.
We have applied these studies to the problem of wastewater treatment design involving
heuristic search. The CBR approach is used to obtain the treatment trains for treating the
wastewater. We have observed that the search effort is significantly reduced through the
CBR approach. Several experimental studies were performed, and their results have been
reported. The empirical studies reported in section 7 demonstrate that CBR has a low over-
head compared to normal heuristic search. In general, CBR approach has been found to
perform very well after acquiring enough experience. Another advantage of the CBR ap-
proach is its incremental nature of solving new cases. The experimental results due to CBR
approach are compared with A* algorithm for the number of nodes expanded and the total
time spent for obtaining the solution.

The CBR approach and A" algorithm gave the same solutions due to the nature of the
underlying search strategy. A* always searches from scratch, independent of the number
of problems solved. The effort involved in obtaining the solutions depends only on the
distance from the problem state to the goal state. However, CBR improves the performance
when there are solutions in the case base that are similar to the given problem state. There-
fore, the number of nodes expanded vis-a-vis the time taken to obtain the solution is im-
proved with the number of cases in the case base.

The building of case base was found to be useful to record the old experiences for future
use. A simple scheme to remember only partial solutions in the case base was implemented.
Threshold values of 0.0, 0.25 and 0.5, and 1.0 were used and the performance of the case
base was studied. It could be seen that the degradation in the performance was marginal
from r = 0.25 to 0.5. The increment for r was chosen based on the average size of any
treatment train (4 or 5). For solutions of large size, this increment must be reduced. This
scheme of remembering partial solutions is more relevant for problems in the heuristic
search domain. The solutions for heuristic search domain can be considered as a sequence
of states. For any new problem, when indexing into the case base, the fan-in is high for
problem states closer to the goal node. This in turn implies that it is more appropriate
to remember those states which have a high likelihood of being indexed, and forget those
states which may not be indexed very often.

Further research work needs to be done to identify some other efficient methods of for-
getting the old cases to control the growth of the case base. The case base can be periodically
restructured such that those old cases that have not been referenced for a sufficiently long
time can be deleted. Before deleting such cases, they can be stored in the secondary mem-
ory for future use. The A* algorithm can be used both for optimization problems and satis-
ficing problems because the shortest path is the most natural choice for the small-is-quick
principle. It should be noted that the breadth-first strategy is a special case of A* with
h = 0 and k(N, N') = 0. Similarly, the uniform-cost strategy is also a special case of

167



362 S. KROVVIDY AND W.G. WEE

A* with h = 0. Therefore, it is very important to compare the performance of CBR approach
with A* algorithm. Another interesting problem for further investigation is to modify the
case base for heuristic functions that are non-admissible.
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Appendix: A* Algorithm

Let S be the start node and G be the goal node. Following the notation from section 3,
fs(N) is an estimate of the cost of a minimal cost path from S to G constrained to go
through node N. Let OPEN be the list of nodes that are not yet examined and CLOSED
be the list of nodes that are already examined. Then A* algorithm is given as follows:

1) Put node S in OPEN list.
2) If OPEN is empty, exit with failure.
3) Remove from OPEN that node N whose f-value is smallest and put it in CLOSED.
4) If N is a goal node, exit with the solution path obtained by tracing back through the

pointers.
5) Expand node N, generating all its successors. For each successor N', compute its f-value.
6) Associate with all N's not already on either OPEN or CLOSED the f-values just com-

puted. Put these nodes in OPEN and direct pointers from them back to N.
7) Associate with those successors that were already on OPEN or CLOSED the smaller

of the f-values just computed and their previous f-values. Put on OPEN those successors
on CLOSED whose f-values were thus lowered and redirect the pointers from N for
those nodes.

8) Go to 2.
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