
Machine Learning, 6, 251-276 (1991)
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Nearest Hyperrectangle Learning Method

STEVEN SALZBERG (SALZBERG@CSJHU.EDU)
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218

Editor: Tom Dietterich

Abstract. This paper presents a theory of learning called nested generalized exemplar (NGE) theory, in which
learning is accomplished by storing objects in Euclidean n-space, E", as hyperrectangles. The hyperrectangles
may be nested inside one another to arbitrary depth. In contrast to generalization processes that replace symbolic
formulae by more general formulae, the NGE algorithm modifies hyperrectangles by growing and reshaping them
in a well-defined fashion. The axes of these hyperrectangles are defined by the variables measured for each exam-
ple. Each variable can have any range on the real line; thus the theory is not restricted to symbolic or binary values.

This paper describes some advantages and disadvantages of NGE theory, positions it as a form of exemplar-
based learning, and compares it to other inductive learning theories. An implementation has been tested in three
different domains, for which results are presented below: prediction of breast cancer, classification of iris flowers,
and prediction of survival times for heart attack patients. The results in these domains support the claim that
NGE theory can be used to create compact representations with excellent predictive accuracy.

Keywords. Exemplar, induction, generalization, prediction, incremental learning, exceptions

1. Introduction

This paper presents a theory of learning from examples called Nested Generalized Exemplar
(NGE) theory. NGE theory is derived from a learning model called exemplar-based learn-
ing that was proposed originally as a model of human learning by Medin and Schaffer
(1978). In the Medin and Schaffer theory, examples are stored in memory verbatim, with
no change of representation. The set of examples that accumulate over time form category
definitions; for example, the set of all chairs that a person has seen forms that person's
definition of "chair" (see also (Osherson & Smith, 1981; Medin, 1983; Smith & Osherson,
1984; Barr & Caplan, 1987)). An example is defined within the NGE model as a vector
of features values plus a label that represents the category of the example.

NGE theory makes several significant modifications to the exemplar-based learning model.

1. It retains the notion that examples should be stored verbatim in memory, but once it
stores them, it allows examples to be generalized. In NGE theory, generalizations take
the form of hyperrectangles in a Euclidean n-space, where the space is defined by the
variables measured for each example. The hyperrectangles may be nested one inside
another to arbitrary depth, and inner rectangles serve as exceptions to surrounding rec-
tangles. (See Thornton (1987) for a hypercuboid learning model.)

2. Another significant change that NGE makes to exemplar-based learning is that of attaching
weights to each hyperrectangle. These weights, which are modified extensively during
the learning process, are used by the algorithm as described below. With respect to other



252 S. SALZBERG

machine learning theories, these nested, weighted, generalized exemplars are a novel
way to represent concepts.

3. NGE dynamically adjusts its distance function, which gives it a greater tolerance for
noise in some situations. (Some algorithms use a similarity function, which is basically
the opposite of a distance function.) The distance function determines the distance be-
tween a new example and all exemplars stored in memory.

4. NGE combines the uses of hyperrectangles (generalizations) with specific instances,
in contrast to other models that use either one or the other form of representation.

The test of this theory, as with all empirical learning theories, is its performance on
real data. Until we can develop provably correct learning algorithms, all machine learning
algorithms must be subject to empirical verification. In particular, a learning theory should
be compared to other theories by testing it on the same data sets. This paper presents results
of the NGE algorithm using three different data sets, each of which was previously used
in experiments with other learning theories. The application domains of the three data sets
are (1) predicting the recurrence of breast cancer, (2) classifying iris flowers, and (3) predict-
ing survival times for heart attack patients.

The program that implements NGE theory in this paper is called EACH, for Exemplar-
Aided Constructor of Hyperrectangles. EACH makes predictions and classifications based
on the examples it has seen in the past. The precise details of the EACH algorithm will
be explained further below, but briefly: the learner compares new examples to those it has
seen before, and finds the closest example in memory. To determine what is closest, a dis-
tance measure is used. This distance measure is modified by the program during the learn-
ing process. Once an example has been stored, it is termed an exemplar; this term is used
henceforth specifically to refer to objects stored in computer memory. Over time, exemplars
may be changed from points to hyperrectangles, as explained later. Stored with each ex-
emplar is the value of the variable that the system is trying to predict. In the simplest case,
the system predicts that the dependent variable for a new example will have the same value
as that stored on the closest exemplar. Exemplars have properties such as weights, shapes,
and sizes—all of which can be adjusted based on the results of the prediction. The learning
itself takes place only after EACH receives feedback on its prediction. If the prediction was
correct, EACH strengthens the exemplar used to make it. Strengthening can occur by increas-
ing weight or size. If the prediction was incorrect, EACH weakens the exemplar. These
processes, too, will be explained in detail later.

The experimental comparisons given below support the following claims:

1. The classification accuracy of the NGE model compares favorably to that of other machine
learning algorithms.

2. EACH is superior to a "greedy" version of the program (described below) in memory
requirements and the two versions are equivalent in terms of classification accuracy.

3. Feature weights are an important component of EACH'S success.
4. EACH achieves substantial compression of the data sets.

These claims will be considered again in the experimental results section.



A NEAREST HYPERRECTANGLE LEARNING METHOD 253

2. NGE theory as a kind of exemplar-based learning

Exemplar-based learning is a recent addition to the AI literature. However, based on the
existing work, one can construct a hierarchy of different exemplar-based learning models.
The position of Nested Generalized Exemplar theory in that hierarchy is shown in Figure 1.

Every theory in the family shown in Figure 1 shares the property that it uses verbatim
examples as the basis of learning; in other words, these theories store examples in memory
without any change in representation. From this initial theoretical position, however, several
divergent models have already appeared. A model called "instance-based learning" retains
examples in memory as points, and never changes them. The only decisions to be made
are what points to store, where to put them, and how to measure distance. Kibler and Aha
(1987, 1989) have created several variants of this model, and they are experimenting with
how far they can go with strict point-storage models. All of their models use some kind
of nearest neighbor technique to classify new inputs. Nearest neighbor algorithms, though
a recent addition to the arsenal of machine learning techniques, have been explored in many
forms in the pattern recognition literature, going back as far as the early work of Cover
and Hart (1967).

Once a theory moves from a symbolic space to a Euclidean space, it becomes possible
to nest generalizations one inside the other. The capability to do this nesting is a unique
contribution of Nested Generalized Exemplar theory. Its generalizations, which take the
form of hyperrectangles in Euclidean n-space E", can be nested to an arbitrary depth,
where inner rectangles act as exceptions to outer ones. NGE theory is intended to encom-
pass more than just hyperrectangles: it includes all theories that create nested generaliza-
tions of any shape from exemplars. Other shapes that might be the subject of future research
are spheres, ellipses, and convex hulls. However, the nested hyperrectangles created by
EACH are the only current implementation of NGE.

Another research track that fits into the exemplar-based learning paradigm is case-based
reasoning. One of the first such systems was CYRUS (Kolodner, 1980; Kolodner & Simpson,
1984), a system that learned by reading (short) stories about Cyrus Vance, the former U.S.
Secretary of State. It used stories as examples that it stored in an abstraction hierarchy.
CYRUS generalized symbolic slot values, as did the later case-based Protos system (Bareiss,
1988). Learning in CYRUS was measured by improvements in its ability to read stories.

Figure 1. NGE as a type of exemplar-based learning.



254 S. SALZBERG

Although the task was very different, the basic idea of saving examples for use in later
processing is the same as that used by NGE. Exceptions are implicitly handled in CYRUS
(and in other systems, such as Protos, that modify abstraction hierarchies) by the use of
defaults in the abstraction hierarchy: when a default is overidden on a specific node in
the hierarchy, that node can be considered an exception to more abstract nodes.

Case-based reasoning methods, and any other methods that use symbolic abstraction hier-
archies (Ashley & Rissland, 1987; Rissland & Ashley, 1987; Bareiss, 1988), might reasonably
be called abstraction-based methods. EACH clearly shares some features with these methods,
especially in the basic approach that stores an example verbatim and later generalizes it.
On the other hand, the strategy of using a distance metric to find the nearest points (or
rectangles) in feature space clearly resembles other exemplar-based methods such as those
of Aha and Kibler. These similarities illustrate that the boundary between abstraction-based
and exemplar-based systems is not so clear, and EACH falls quite near this boundary. Fisher
(1989) illustrates the similarities well by pointing out that case-based reasoning "is most
productive when few training observations are available and noise is not present" (p. 829),
but that abstractions will be required as more cases are observed. The alternative to abstrac-
tion is what Fisher calls "selective retention'—storing selected examples verbatim—which
is just the strategy employed by Aha and Kibler (1989). Selective retention improves effi-
ciency and accuracy, but presents new problems when dealing with irrelevant attributes.
The general point is that although the learning techniques are quite different, case-based
and exemplar-based learning share some fundamental principles and goals.

2.1. Generalizations with exceptions

Perhaps the most important distinguishing feature of NGE learning is its ability to capture
generalizations with exceptions. The importance of such an ability has been remarked upon
before:

Programs that can only discover conjunctive characteristic descriptions have limited
practical application. In particular, they are inadequate in situations involving noisy data
or in which no single conjunctive description can describe the phenomena of interest.
Consequently, as one of the evaluation criteria [of the systems under review], we con-
sider the ease with which each method could be extended to ... discover exceptions.
(Dietterich & Michalski, 1983, p. 50)

Exemplar-based learning models do not, in general, create any generalizations, although
virtually all other learning programs do. Among those programs that create generalizations,
none represent generalizations with exceptions in the same way as NGE theory. Helmbold,
Sloan, and Warmuth (1989) have developed an algorithm that uses a similar representation,
but this algorithm is currently a theoretical model, not yet applicable to real world prob-
lems. Probably the best example of a learning model that explicitly handles exceptions is
Vere's (1980) system for constructing multilevel counteriactuals. His system learned general-
izations in the blocks world, in which the only legal relations were binary predicates such
as (on a b) and (behind b c) and unary predicates such as (green a) and (pyramid c). The



A NEAREST HYPERRECTANGLE LEARNING METHOD 255

program produced a single description, disjunctive if necessary, that covered all positive
examples and no negative examples. For example, it might produce a description such as:
(on XI table)A-i ((on X2 X3)A(on X3 X4)), where the negated clauses are exceptions.
According to Vere, a typical expression contained counterfactuals (negated terms) nested
several layers deep.

Vere's system differs from EACH in several significant ways: it only allowed symbolic
features, it only handled noise-free data, its results applied only to two-category problems,
and it was not incremental. An important result that it demonstrated was that by using negated
terms (counterfactuals), one could create much more concise concept descriptions. These
negated terms are conceptually similar to the exceptions created by EACH.

The generalizations created by any program that learns from examples are associated
with a prediction or category. The fact that naturally occuring categories are not always
easily characterized—in particular, the fact that natural categories have exceptions—has
been a major problem for generalization algorithms. The NGE model, as implemented
in EACH, explicitly creates exceptions by creating "holes" in its hyperrectangles. These
"holes" are also hyperrectangles, and they can have additional exceptions inside them, nested
as deep as the data require.

2.2. Problem domain characteristics

In addition to describing the advantages that NGE offers over other methods, it is also
worthwhile to consider the kinds of problem domains it may not handle well. Although
NGE (along with other exemplar-based learning models) is domain independent, there are
some domains in which the target concepts are very difficult for NGE, and other learning
techniques may perform better. In particular, exemplar-based learning is best suited for
domains in which the exemplars are clusters (ideally, convex solids) in feature space, and
where the behavior of the exemplars in a cluster is relatively constant (i.e., they all fall
into the same category). Nested Generalized Exemplar learning works equally well when
exemplars in a cluster have different behavior, because it can store clusters within clusters.
On the other hand, if the exemplars are strung out along an infinite curve (for example),
then the best description of the domain is the equation of that curve (which can be estimated
using multiple regression analysis), rather than a set of exemplar objects. Although exemplar-
based learning can handle such a domain, it will not create nearly as concise a description
as a curve-fitting method will. Figure 2 illustrates this point. In the figure, we see that
the exemplars listed in the "bad" plot for category a are scattered along a curve which
could probably be approximated by a cubic function.

2.3. Related theoretical work

Very recent results in computational complexity dovetail nicely with the hyperrectangle
memory model constructed by EACH. In particular, Helmbold, Sloan, and Warmuth (1989)
have devised an algorithm that learns by constructing nested, axis-parallel hyperrectangles.
Given an admittedly restrictive set of assumptions, Helmbold et al. prove some very strong



256 S. SALZBERG

Figure 2. Good and bad structures for exemplar-based learning.

optimality results for their algorithm. In particular, they consider four optimality criteria:
(1) the number of examples required to make accurate predictions with high confidence,
(2) the probability of making a mistake on the nth instance, (3) the expected number of
errors for the first m instances (using an incremental algorithm), and (4) the worst case
number of errors for the first m instances. Their algorithm is asymptotically optimal with
respect to all these measures.

Their learning algorithm applies to any intersection-closed concept class. Rectangles are
intersection-closed, since the intersection of any two rectangles is also a rectangle. Mono-
mials and subspaces of E" are also intersection-closed. This constraint on their algorithm
means that the "true" concepts in the class must be, for example, rectangular (this con-
straint does not apply to EACH). However, the representation constructed by the algorithm—a
set of nested rectangles—is not constrained to be intersection-closed.

3. The NGE learning algorithm

This section describes the details of the nested generalized exemplar learning algorithm
used by EACH. For the sake of brevity, descriptions of the data structures and minor sub-
routines have been omitted. A pseudo-code summary of the algorithm appears as an appen-
dix. Following the description of the algorithm is an analysis of how the NGE algorithm
partitions feature space.

3.1. Initialization

In order to make predictions, EACH must have a history of examples on which to base its
predictions. Memory is initialized by "seeding" it with a small set of examples (the minimum
size of this set is one). The seeding process simply stores each example in memory without
attempting to make any predictions. These examples are chosen at random from the training
set (as long as the examples are presented in random order, the system can use the first



A NEAREST HYPERRECTANGLE LEARNING METHOD 257

N instances from the training stream as seeds). The number of seeds was determined by
trial and error on a simulated data set (where an unlimited number of examples were avail-
able), and performance was not found to be sensitive to the size of the seed set.

An example is a vector of features, where each feature may have any number of values,
ranging from 2 (for binary features) to infinity (for real-valued features). For example,
the echocardiogram examples were patients who had recently suffered acute heart attacks,
each patient being described by a vector of six variables. One of those six variables was
binary, one was an integer ranging from 1 to 90, and the others were real-valued. In addi-
tion, each exemplar has a slot containing the category associated with that example. This
category variable may be binary, discrete, or continuous, and the system will try to predict
it accordingly.

When predicting continuous variables, the system uses an error tolerance parameter that
indicates how close two values must be in order to be considered equivalent. This parameter
is necessary because for real-valued variables, it is usually the case that no two values ever
match exactly, and yet the system needs to know if its prediction was close enough to be
considered correct. For example, if the user sets the error tolerance to 1%, and an exemplar
e makes the prediction 5.0, then any value in the range [4.95, 5.05] will be considered a
match. If a new example has the value 5.03 for its prediction variable, and this example
matches e, EACH will not store a new point in memory. The result is that continuous predic-
tions are approximated by a discrete set of values.

3.2. Match and classify

After initialization, the algorithm operates incrementally, processing one example at a time.
Every new example is matched to memory using the matching process described below.
Because memory has remained small in all the tests run so far, it has been acceptable to
require the system to compare the new example to every object in memory. (For example,
the echocardiogram data never required a memory for more than about 20 objects.) The
best match is used for classification in the obvious way: the system predicts that the new
example will fall into the same category as the best matched exemplar.

The matching process is one of the central features of the algorithm, and it is also a
process that allows some customization, if desired. This process computes the distance
between a new data point (an example) and an exemplar memory object (a hyperrectangle
in En). For the remainder of this section, I will refer to the new example as E and the
hyperrectangle as H.

The system computes a match score between E and H by measuring the Euclidean distance
between the two objects. The simplest equation for this measurement assumes that H is
a point. The distance is determined by the usual distance function computed over every
dimension in feature space, with a few additions that are explained below. Specifically,
the distance DEH from E to H is calculated as:



258 S. SALZBERG

where WH is the weight of the exemplar H, wi is the weight of the feature i, Ef. is the value
of the ith feature on example E, Hf. is the value of the ith feature on exemplar H, minh

maXj are the minimum and maximum values of that feature, and m is the number of fea-
tures recognizable on E.

The best match is the one with the smallest distance. A few special characteristics of
the computation, which are not evident in the formula above, deserve mention here. First,
let us suppose we measure the distance between E and H along the dimension/ Assume
for simplicity that/is a real-valued feature. In order to normalize all distances so that one
dimension will not overwhelm the others (every feature may have a different unit from
every other, e.g., meters, seconds, years), the maximum distance between E and H along
any dimension is 1. To maintain this property, the system uses its statistics on the maximum
and minimum values of every feature. Suppose that for E, the value of f is 10, and for
H, the value of f is 30. The unnormalized distance is therefore 20. Suppose further that
the minimum value of f for all exemplars is 3, and the maximum value is 53. Then the
total range of f is only 50, and the normalized distance from E to H along this dimension
is 20/50, or 0.4. (Note: another way to normalize values is to use the standard deviation
as one unit, and to measure distances in terms of that. However, if values for a dimension
do not follow a normal distribution, the standard deviation is not an appropriate unit.)

Because the maximum and minimum values of a feature are not given a priori, the distance
calculation will vary over time as these values change. This variation is a direct consequence
of the incremental nature of the algorithm. If the maximum and minimum values are known
ahead of time, then the distance calculation will not suffer this variation.

Now consider what happens when the exemplar, H, is not a point but a hyperrectangle,
as is usually the case. In this case, the system finds the distance from E to the nearest
face or edge of H. There are obvious alternatives to this, such as using the center of H
(as with the centroid method in cluster analysis (Everitt, 1980)), but these lead to compli-
cations because the algorithm allows the nesting of exemplars inside one another. The formula
used above changes because H f i, the value of the ith feature on H, is now a range instead
of a point value. If we let Hlower be the lower end of the range, and Hupper be the upper
end, then our equation becomes:

where

when
when
otherwise

The distance measured by this formula is equivalent to the length of a line dropped perpen-
dicularly from the point Ef. to the nearest surface, edge, or corner of H. This length is
modified by the weighting feelers, as described below. Note that points internal to a hyperrec-
tangle have distance 0 to that rectangle. Furthermore, a point belongs only to the innermost



A NEAREST H YPERRECTANGLE LEARNING METHOD 259

Figure 3. Matching of points to rectangles.

rectangle if it is internal to several nested rectangles. In the case of overlapping rectangles,
a point falling in the area of overlap belongs to the smaller rectangle (this preference is
merely a heuristic, based on the assumption that larger exemplars may have been over-
generalized) . Figure 3 illustrates how the matching algorithm matches new points to rec-
tangles. In the figure, point A is mapped to rectangle 1, B to rectangle 2, C to rectangle
4, D to rectangle 4, and E to rectangle 3.

For binary features, the distance computation is much simpler: if the features are equal,
the distance is zero, else it is one. The same computation applies to any discrete, non-
numeric features.

Notice that there are two weights on the distance metric. WH is a simple measure of how
frequently the exemplar, H, has been used to make a correct prediction. In fact, the use
of this weight means that the distance metric measures more than just distance. WH is a
measure of the reliability, or the probability of making a correct prediction, of each exem-
plar. (In fact, WH is an inverse measure, since the larger it is, the less reliable the exemplar
is.) This weight measure says, in effect, "in this region of feature space, the reliability
of my prediction is n" and of course EACH should prefer more reliable exemplars. The
distance measure accomplishes this as follows. Suppose, in the above example, that H had
been used for 15 previous predictions and that it had been correct on 12 of those occasions.
The system will multiply the weight of the total match score between E and H by 15/12,
or 1.25. Thus weight is a non-decreasing function of the number of times an exemplar
has been used. If the exemplar always makes the correct prediction, then the weight will
remain at 1. (Note that the seed exemplars do not get a weight of zero, because they are
treated as if they had predicted themselves correctly; i.e., they are marked as having been
used once and having been correct once.) More generally, if the weight of an exemplar
is n/c, then when it is used to make an incorrect prediction, its weight increases from n/c
to (n + l)/c. If it is used to make a correct prediction, its weight will decrease to n + \/c + 1.
Note that if n = c, the weight will remain at 1 after a correct use of the exemplar H.

Also, as the number of correct uses of H increases, the effect of an incorrect use decreases:
if H has been correct 100 times, and its weight is n/100, then an incorrect use makes the
weight (n + 1)/100. This is an increase of 0.01 in absolute terms. If H has only been correct
10 times, its weight will increase from n/10 to (n + 1)/10, an increase of 0.1. In the former
case the effect of an incorrect use is much smaller. This effect is desirable because as we
know more about H, we do not want a single new example to change significantly our
confidence in it.



260 S. SALZBERG

Furthermore, noisy exemplars will gradually "disappear" as their weight WH increases.
If a point represents noise, then its prediction will rarely be correct for other points nearby.
If such an exemplar is used 10 times, for example, but is only correct once, then its distance
to new points will be multiplied by 10. New points will be much more likely to match
some other point in memory than a noisy one. Very recently, Aha and Kibler (1989) have
used a similar measure to create an instance-based learning system that tolerates noise.
Their program saves statistics on the number of correct and incorrect classifications made
by an exemplar, and only uses exemplars with a good record of classifications.

The other weight measure, w,, is the weight of the ith feature. These weights are adjusted
over time, as described below. Since the features do not normally have equal predictive
power, they need to be weighted differently. In practice, the system performed best if these
weights were adjusted for a fixed number of examples, and then locked in. When feature
weight adjustment was allowed to continue indefinitely (on experiments not included here),
the algorithm tended to oscillate, since adjustments in these weights can wipe out previous
learning by negating the effects of previous adjustments. On the other hand, if EACH were
applied to a domain that was gradually changing over time, weights should not be fixed.

A problem with these attribute weights is that they measure the relative importance of
each attribute over the entire domain. If it turns out that an attribute is highly relevant
over a small range of values but irrelevant for other values, the weight adjustment in the
current algorithm cannot reflect this property. The utility of exemplar-specific attribute
weights remains an open issue.

3.3. Feedback and learning

Learning only occurs when EACH gets feedback about its classification. The main feedback
is simply whether or not the classification or prediction was correct.

Correct prediction. If EACH makes the correct prediction, it records some statistics about
its performance and then makes a generalization. Two objects, E and H (using the same
notation as above), are used to form the generalization. H is replaced in memory by a larger
object (i.e., an abstraction) that is a generalization of E and H. H may have been a single
point, or it may have been a hyperrectangle (after a single generalization, an exemplar
becomes a hyperrectangle). If H was a hyperrectangle, then for every feature of E that
did not lie within H, H is extended just far enough so that its boundary contains E. If
H and E were both points, H is replaced by a new object that has, for each feature of E
and H, a range of values defined by E and H. For example, in a simple case with just
the two features f1 and f2, if E was at (2, 5) and H was a point at (3, 16), then the new
object would be a rectangle extending from 2 to 3 in the/, dimension and from 5 to 16
in the f2 dimension.

One consequence of this generalization procedure is that all hyperrectangles created by
EACH are axis-parallel hyperrectangles, because they are not rotated by the algorithm. An-
other consequence is that growing an exemplar H1 may cause it to overlap an existing exem-
plar H2. As mentioned above, a point within the overlapping area belongs to the smaller
exemplar.

Incorrect prediction. If the system makes the wrong prediction, it has one more chance
to make the right one. This "second chance" heuristic (which is intended to be nothing



A NEAREST HYPERRECTANGLE LEARNING METHOD 261

more than a heuristic) is used by EACH in order to avoid creating more memory objects
than necessary. The idea is to try very hard to make a generalization and thus keep down
the size of memory. So, before creating a new exemplar, EACH first looks at the second
best match in memory. Assume here that H1 was the closest exemplar to E and H2 was
second closest; i.e., H2 would be the closest if H1 were removed. If H2 will give the correct
prediction, then the system tries to adjust hyperrectangle shapes to make the second closest
exemplar into the closest exemplar. It does this by creating a generalization (using the proc-
ess outlined in the previous section) from H2 and E. The goal of this process is to improve
the predictive accuracy of the system without increasing the number of exemplars stored
in memory.

An interesting side note here is that the problem of creating an optimal number of (possibly
overlapping) rectangles to classify a set of points is NP-hard. This proof of this result is
via a reduction to a graph searching problem, achieved by laying a grid over all the points
(Kasif, 1989).

A very important consequence of this "second chance" heuristic is that it allows the
formation of hyperrectangles within other hyperrectangles. If a new point p1 lies within
an existing rectangle, its distance to that rectangle will be zero. Its distance to another point
p2 (a previously stored exception) within the rectangle will be small but positive. Thus
EACH will first assume that the new point belongs to the same category as the rectangle.
If p1 is the same category as p2, then the second chance heuristic will discover this fact,
and form a rectangle from these two points.

If the second best match also makes the wrong prediction, then the system simply stores
the new example, E, as a point in memory. Thus E is made into an exemplar that can im-
mediately be used to predict future examples, and can be generalized and specialized if
necessary. This new exemplar may be inside an existing exemplar H, in which case it acts
as an exception to, or "hole" in H.

EACH adjusts the weights w, on the features fi after discovering that it has made the wrong
prediction. Weight adjustment occurs in a very simple loop: for each. fi, if Efi matches Hf,
the weight w, is increased by setting wi := w,-(l + Ay), where Ay is the global feature
adjustment rate. A typical value used for Ay is 0.2. An increase in weight causes the two
objects to seem farther apart, and the idea here is that since EACH made a mistake matching
E and H, it should push them apart in space. If Ef. does not match Hf., then w, is decreased
by setting wi := wi(l - Ay). If EACH makes a correct prediction, feature weights are ad-
justed in exactly the opposite manner; i.e., weights are decreased for features that matched,
which decreases distance, and increased for those that did not. Recall that each weight
Wj applies uniformly to the entire feature dimension fh so adjusting w, will move around
exemplars everywhere in feature space. Thus this weight must be adjusted gradually, in
order to avoid oscillation that would result from cancelling the effects of earlier learning.

3.4. Partitioning feature space

Using a Euclidean distance formula to determine distance essentially partitions the feature
space between the hyperrectangles. Some analysis of how rectangular exemplars divide
feature space is presented below (for a more detailed analysis, see (Salzberg, 1989)). With



262 S. SALZBERG

many dimensions and many rectangles (as in the experimental domains used for testing
EACH), the partitioning is too complex to illustrate here; consequently, the discussion here
is restricted to two dimensions and two rectangles. It should become clear that the NGE
representation is equivalent to partitioning a space with many hypersurfaces, where the
surfaces are not, in general, parallel to the axes—despite the fact that the rectangles them-
selves are always axis-parallel.

Figure 4 illustrates how two particular rectangles partition an unweighted feature space.
The surface S that undulates between the two rectangles is simply the set of all points equidis-
tant to the two rectangles, where distance is measured to the nearest edge or corner of
a rectangle. In the center of the figure, for example, the surface is a vertical line segment
equidistant from two edges of the rectangles. As we trace out the surface, we find it alter-
nates between straight line segments and parabolic segments (parabolic segments are sets
of points equidistant to a corner of one rectangle and an edge of the other). The surface
in the figure has a total of nine segments, alternating straight lines and parabolas, with
eight junction points where straight segments meet parabolic ones. Every junction is smooth,
so S has a continuous derivative. Note, however, that the infinite straight line extensions

Figure 4. The separating surface.



A NEAREST HYPERRECTANGLE LEARNING METHOD 263

at either end of the surface are neither collinear nor parallel. This partitioning of the plane
is considerably more complex than the partitioning induced by a pair of points or circles.

EACH also attaches weights to each rectangle, which further complicates the shape of
the surface. When hyperrectangles are nested, the inner rectangle is simply a sharp-edged
hole in the outer one, so the distance measure does not come into play. In a domain for
which EACH creates very closely packed hyperrectangles, it is possible that all new examples
will fall inside existing hyperrectangles, and the partitioning of feature space will not be
so important. (The iris flower domain, for example, was structured in this way.) This illus-
tration should make it easier to compare EACH to learning algorithms that form different
types of clusters (e.g., ellipsoids) or that explicitly partition space with hyperplanes.

3.5. Greedy variant of algorithm

A modification of the basic algorithm was developed in order to maximize the post hoc
success rate on the training data. (Post hoc success refers to the success rate of the algorithm
on examples it has already seen.) The idea behind this variant was that by storing more
exemplars, the program would not only match the training data more closely, but would
also exhibit superior classification performance on unseen test examples. One of the inter-
esting results reported below is that storing more examples does not, in general, improve
performance. This result corresponds to observations of Breiman et al. (1984), Quinlan
(1986), and many others that overfilling a dala sel generally hurls performance on new
dala. The modified algorithm differs from EACH in that it always creates a new exemplar
after making a mistake, as opposed to checking the second closest match and adjusting
the boundaries of existing exemplars. Because it tends to create more exemplars than the
original algorithm, and thus to be "greedy" in its use of memory, this version is called
Greedy EACH.

The Greedy EACH algorithm was intended to be a compromise between the goal of creating
a perfect post hoc model and that of creating useful generalizations. The Greedy EACH
algorithm only creates (or increases the size of) a hyperrectangle when it makes a correct
prediction. When it makes an incorrect prediction, it automatically stores a new point in
feature space, without checking the second closest match. A significant implication of this
rule is that Greedy EACH cannot create nested hyperrectangles: recall that a rectangle is
created when two points match and make the same prediction. However, a new example
ef thai falls inside an existing reclangle R will always be measured closer lo R than to any
exception point ej inside the rectangle, even if it is very close to BJ. The distance measure
will find a small positive distance between any two points et and Cj, but a zero distance
between R and a point et within R. (It might be possible to modify the measure to allow
the Greedy algorithm to find a match between e-t and ej, but such modifications were not
tested.) So, although the Greedy algorithm can create exceptions—by storing points within
a rectangle—it cannot create nested rectangles.

4. Experimental results with EACH

The EACH program has tested using real data from three different problem domains: (1) pre-
dicting the recurrence of breast cancer, (2) classifying iris flowers, and (3) predicting survival



264 S. SALZBERG

for heart attack victims. The use of real data in these tests provided a measure of the system's
accuracy on noisy and incomplete data sets, and, most importantly, allowed comparisons
between EACH and other systems.

Below, each data set is described briefly, followed by a presentation of the experimental
results. The main results are (1) summaries of EACH'S performance rates and (2) summaries
of the memory requirements. Performance rate is the performance level of the system dur-
ing a test run, measured as the percentage of correct predictions or classifications. EACH
is also compared to other learning models that were run on the same data. Different measures
of performance and experimental designs were necessary on different experiments in order
to compare EACH to previously published results in those cases.

For all the experiments, EACH was run with the feature adjustment rate Ay at 0.0 and
0.2.' Earlier trials using simulated data (Salzberg, 1988) indicate that 0.2 was a good value
of Ay for small data sets (on the order of a few hundred examples), so that value is used
throughout. The results below also include success rates for Greedy EACH. These different
results are included to allow comparisons between EACH and Greedy EACH and to test the
usefulness of feature weights.

4.1. Breast cancer data

The first problem domain for EACH is predicting the recurrence of breast cancer. The exam-
ples consisted of 273 patients who underwent surgery to remove tumors, all of whom were
followed up five years later. The task for EACH was to predict whether or not breast cancer
would recur during that five year period. The data set contains nine variables that were
measured, including both numeric and binary values. The dependent variable was a binary
prediction: either the patient did suffer a recurrence of cancer, or she did not.

This data is identical to that used by Michalski, Mozetic, Hong, and Lavrac (1986) in
a study of the incremental learning algorithm AQ15. EACH'S results are compared with AQIS's
results in the discussion below. AQ15 is a concept learning program which uses a logic-
based language to represent the rules it learns. Thus the representations learned by these
two programs are quite different. (See Buchanan and Mitchell (1978) for a discussion of
rule-learning algorithms, and Bundy, Silver, and Plummer (1985) for a comparative study.)
This data set has also been used in a more recent study by Weiss and Kapouleas (1989)
that compared a large number of different learning and classification algorithms.

To allow for proper comparisons, the experimental design used was the same as that
used by Michalski et al. For each trial, the examples were divided into a training set and
a test set. 70% of the examples were randomly chosen for each trial to be in the training
set. Four different trials were run, and the final results are an average of those trials. Weiss
and Kapouleas (1989) also use this methodology, so the methodology here is consistent
with both studies.

In order to make a comparison to human performance, Michalski et al. tested five human
experts on the same examples. The human prognoses were correct in 64% of the cases.
Michalski et al. report that random guessing would produce 50% correct. However, it would
be unfair not to note that approximately 70% of the patients fell into the non-recurrence
category. Hence a strategy or predicting the more likely category for every example would



A NEAREST HYPERRECTANGLE LEARNING METHOD 265

give a 70% success rate, although it would be incorrect for all of the cases in which the
other category was the right response. One must assume that Michalski used a strategy
of tossing a fair coin to choose a category in order to produce the 50% figure.

4.1.1. Success rates and comparisons

The best performance of EACH occurred when feature adjustment was in effect (A/ =0.2
for this and all subsequent experiments), where the success rate was 77.6%. Table 1 gives
a summary of BACK'S performance on this data set with different values of A/. AQ15 had
success rates of 66 %, 66 %, and 68%, using three different configurations of that program.
If we take 68 % as the performance rate of AQ15, a t test on EACH'S success rate finds that
EACH is significantly better, p < .01, than AQ15. The improvement over human experts
is even more marked. Without using the feature adjustment rate; i.e., setting Ay = 0,
EACH'S success rate on the test sets was 71.5%, still slightly better than AQ15. Table 1 also
includes success rates for the decision tree program CART (Breiman et al., 1984), the PVM
rule (Weiss & Kapouleas, 1989), and a back-propagation neural net model. These three
results were reported in Weiss and Kapouleas (1989).

4.1.2. Memory requirements

The average size of memory after processing the entire data set of 278 patients was just
22 exemplars. When weight adjustment was not used, the final size of memory was 19
exemplars, although performance was not quite as good. As expected, Greedy EACH required
far more memory. These results are summarized in Table 2.

Table 1. Success rales for breast cancer data.

Algorithm

EACH, Ay = 0.2
EACH, Af = 0
Greedy EACH
AQ15
CART
PVM rule
Neural net
Doctors

Success Rate (%)

77.6
7 1 . 5
72.9
68
77.1
77.1
71.5
64

Table 2. Memory requirements for breast
cancer data.

Algorithm

EACH, Af = 0.2
EACH, Af = 0
Greedy EACH

Size of Memory

22
19
68



266 S. SALZBERG

4.1.3. Varying the feature adjustment rate

Some interesting properties of the algorithm were observed in other tests using the same
data. In partciular, the effect of the feature adjustment rate, Ay, on the success rate was
very good as long as Ay was kept small. With Ay = 0.05, for example, the success rate
was 75%, still a very good result. If Ay grew too large, though, the weight adjustments
evidently got out of hand, cancelling the effects of earlier weight adjustments and biasing
the overall model in the wrong direction. With Ay = 0.3, the over-adjustment effect was
small, but beginning to be noticeable—the system performed at a 72% success rate, better
than with Ay = 0, but not as well as with Ay = 0.2. With higher values of Ay, success
rates were lower.

4.2. Iris classification

The next task given to EACH was that of classifying a set of 150 iris flowers, using a data
set from Fisher (1936). Each of the examples consists of four integer-valued variables-
making it the smallest vector used in the tests of EACH—plus a known assignment of the
example to a particular species of iris. The data covered three different species: /. virginica,
I. setosa, and /. versicolor. The four variables measured were sepal length, sepal width,
petal length, and petal width.

The methodology used here was the leaving-one-out cross-validation technique. Cross-
validation involves removing mutually exclusive test sets of examples from the data. For
each test set, the remaining examples serve as a training set, and classification accuracy
is measured as the accuracy on all the test sets. The leaving-one-out method involves remov-
ing exactly one example from the data and training on the remaining examples. The tech-
nique is repeated for every example in the data set, and the accuracy is measured across
all examples. For the iris data set, this involved 150 runs through the data. On each run,
149 examples were used as training, and one example was tested. This methodology was
the same one used for the identical data set by Weiss and Kapouleas (1989) in their study
comparing several different learning techniques.

4.2.1. Success rates

With no feature adjustment, EACH made 139 correct classifications, for a success rate of
92.6%. With feature adjustment set to 0.2, EACH somewhat better, getting 143 classifica-
tions correct, for a success rate of 95.3%. These success rates are summarized in Table 3.
As in the previous section, the PVM rule and a neural net algorithm (back propagation)
from the Weiss and Kapouleas study (1989) have been included for comparisons. The suc-
cess rate for CART comes from a study by Crawford (1989).

The smaller memory size used by EACH with Ay = 0 was due in part to the use of a
smaller seed set (five seeds instead of ten) for that test. Smaller seed sets produced less
accurate results in the other tests on this data.



A NEAREST HYPERRECTANGLE LEARNING METHOD 267

Table 3. Success rates for iris flowers.

Algorithm

EACH, Ay = 0.2
EACH, Ay = 0
Greedy EACH
CART
PVM rule
Neural net

Success Rate (%)

95.3
92.6
94.6
93
96.0
96.7

Average Memory Size

18.3
6.3

14.4
—
—
—

4.3. Echocardiogram tests

The third set of data used to test the EACH program was a set of records from people who
had recently suffered acute myocardial infarctions (heart attacks). This data set contained
the smallest number of examples of all sets reported here, but it provided an opportunity
to compare EACH to another modeling technique, since medical researchers have used a
statistical regression algorithm on the same data. In addition, this data (like the breast cancer
data) is real, noisy, and incomplete. It is incomplete in the sense that more variables would
need to be measured for each patient in order to make perfect predictions. Noise exists
in several variables for which measurement accuracy is not very precise. For example, the
"wall motion score" described below is a score determined by a specialist looking at echo-
cardiograms and grading them subjectively.

4.3.1. Description of the domain

First, a brief description of the data itself is necessary, since (unlike the breast cancer data
and the iris data) it has not been described elsewhere in the literature. Each example is
a record for a patient who has had a heart attack. The data set includes several measures
taken from echocardiograms, which are ultrasound measurements of the heart itself. The
goal of physicians using these measurements is to predict a patient's chances of survival. In
particular, experimental work is being performed currently to detemine if the echocardiogram
(in conjunction with other measures) can be used to predict whether or not a patient will
survive longer than a certain time period; e.g., one year. The data used in these trials were
provided by a medical researcher who is using a statistical regression model (Cox regres-
sion) to predict whether patients will live more than one year after a heart attack (Kinney,
1988). In addition, an earlier study (Kan et al., 1986) used echocardiograms to predict
the same variable, with similar results. (Kan's study used a different data set containing
345 patients.) Six input variables were used in the experiments below. A complete descrip-
tion of the variables used by Kinney (1988) and by EACH can be found in Salzberg (1989).

Because the prediction was binary, there are two results to report: positive predictive
accuracy and negative predictive accuracy. These variables are defined as follows: a positive
prediction is a prediction that a patient will live for more than one year, and a negative
prediction is a prediction that the patient will die. Positive predictive accuracy is the ratio



268 S. SALZBERG

of the successful positive predictions to all positive predictions (successful and unsuccessful),
and negative predictive accuracy is the ratio of successful negative predictions to all negative
predictions. The most interesting results concern negative successes, because it is with
these that doctors have the most difficulty. The best statistical models are only correct about
60% of the time in predicting that a patient will die (Kan et al., 1986; Kinney, 1988).

4.3.2. Results

The data in the tests below include 119 patients. Of these, just three were sufficient as a
seed set, leaving 116 patients for the learning trials. Table 4 shows, in addition to overall
success rates, the negative predictive accuracy and positive predictive accuracy for each
method. An important methodological comment about the studies of Kinney and of Kan
et al. is that they only recorded how well their statistical models fit the training data. (The
experiments here used the same data set as Kinney, while the Kan study used a different
data set.) Unlike the experiments testing machine learning techniques, neither of these ex-
periments divided the data into a training and a test set. Since the statistical models have
not been applied to unseen data, the accuracies for these models are a post hoc measure
of how well each model fits the data. As discussed in Crawford (1989) and in numerous
places in the statistics literature, such measures systematically overestimate the accuracy
of a model. In fact, instance based models such as EACH and IB2 (Aha et al., 1990) can
usually achieve perfect accuracy on data that has previously been seen. The success rates
reported in Table 4 for EACH, on the other hand, were obtained using the "leaving one
out" method described in the previous section.

5. Discussion

The results on both the breast cancer data and the iris data support the claim that EACH
compares favorably with other machine learning algorithms. For the breast cancer data,
EACH matched the performance of the PVM rule (Weiss & Kapouleas, 1989) and of the
CART algorithm (Breiman et al., 1984), and it surpassed the performance of AQ15
(Michalski et al., 1986). As mentioned above, a statistical comparison shows that BACK'S
performance on this data is significantly better (p < .01) than AQIS's. For the iris data,
EACH performed approximately the same as CART, PVM, and neural nets, using the results
from Crawford (1989) and Weiss and Kapouleas (1989) as standards for comparison.

Table 4. Echocardiogram success rates.

EACH, Ay = 0.2
EACH, Ay = 0
Greedy EACH
Kinney
Kan et al.

Negative Predictive
Accuracy (%)

56
50
56
60
61

Positive Predictive
Accuracy (%)

79
78
80
—
97

Overall
Accuracy (%)

75
71
78
—
86

Size of
Memory

11
7

28
—
—



A NEAREST HYPERRECTANGLE LEARNING METHOD 269

The accuracy of EACH on the echocardiogram data compares favorably with statistical
models on negative predictive accuracy (the measure of most interest to doctors using these
models), but does not perform as well as the model of Kan et al. on positive accuracy.
However, as noted above, the Kan study reported only the fit of the model to the training
data, a number that is virtually always an overestimate of the accuracy on unseen data.

Feature weights. A second claim supported by the results is that feature weights are an
important component of HACK'S success. The results on all three data sets show that feature
adjustment does, in general, improve EACH'S performance. Table 5 summarizes the results
with and without feature weight adjustment on the three test domains. Although the effect
of feature weights is not large, it appears to be consistent across all the experiments. Exper-
iments on a simulated domain (reported in Salzberg (1989)) indicated that more rapid weight
adjustment is useful during the first few hundred examples, but that smaller values of Af
perform better when the training set expands to several thousand examples. Additional ex-
periments need to be run to determine a weight adjustment policy that will apply across
all domains.

EACH vs. GREEDY EACH. The third claim that these experiments investigated was that
EACH would be superior to Greedy EACH on either classification accuracy or memory re-
quirements, or both. The hypothesis was that the inability of Greedy EACH to create nested
rectangles would reduce its classification accuracy. Furthermore, the nature of the Greedy
algorithm leads it to store more examples. The results on this claim are somewhat mixed,
but generally support the superiority of EACH to Greedy EACH. Table 6 shows comparisons
on both accuracy and memory requirements for the two algorithms.

The table shows that EACH performed slightly better on two of the domains and slightly
worse on the third. There does not seem to be a significant performance difference here.
In terms of memory requirements, Greedy EACH needed considerably more memory on
two of the three domains, although it needed slightly less on the iris flowers problem. Since
both algorithms only store new exemplars when they misclassify an example, the difference
in memory requirements will be most clear on problems for which classification accuracy
is not very high. As expected, this difference was clear for the breast cancer and echocar-
diogram domains, where overall accuracy was in the 70-80% range.

Table 5. Effect of feature weights on accuracy.

EACH with weights
EACH without weights

Breast Cancer

77.6
71.5

Iris Flowers

95.3
92.6

Echocardiogram

75
71

Table 6. EACH vs. Greedy EACH.

EACH
Greedy EACH

Breast Cancer

Accuracy

77.2
72.9

Memory

22
68

Iris Flowers

Accuracy

95.3
94.6

Memory

18
14

Echocardiogram

Accuracy

75
78

Memory

11
28



270 S. SALZBERG

As explained above, Greedy EACH is unable to create nested hyperrectangles. EACH should
prove superior for domains in which nested exceptions are the most accurate representa-
tion of the concept class. The results here demonstrate an advantage in storage efficiency
for EACH, but no clear advantage in accuracy. The Greedy algorithm even performed slightly
better (though not significantly) on the echocardiogram problem, which had the fewest
examples. One conclusion to draw from this result is that as the size of the training set
increases, the normal, conservative memory policy will outperform the greedy policy. Addi-
tional experiments are required to further test this hypothesis.

Memory size and structure. The fourth and final claim was that by storing only a small
number of hyperrectangles, EACH achieves substantial compression of the training set. To
evaluate this claim, we can calculate the number of bits required to store the training set
and the number of bits EACH uses to store its exemplars (plus the number of bits needed
to store any training examples that are misclassified by EACH).

We begin by calculating the number of bits required to store each training example. For
the breast cancer data, each example is described by nine attributes, of which three are
binary (requiring only one bit each) and the others are real-valued. For all real-valued quan-
tities, we will assume that 16 bits are required, although this is surely an overestimate.
Finally, of course, one bit is required to indicate whether the cancer recurred. Hence, to
store a training example, 3 + 6(16) + 1 = 100 bits are needed. There are 191 training
examples, so the total number of bits required to store the training set is 19,100.

Now let us compute the number of bits that EACH uses to store its representation of the
training set. For the non-binary attributes in an exemplar, EACH stores an upper and lower
bound. There is also a weight WH stored with each exemplar, so the storage required is
3 + 12(16) + 1 + 16 = 212 bits. Since EACH used 22 exemplars for the breast cancer
data, its storage requirement for these exemplars was 4664 bits. In addition, a weight w,
was stored on each feature, requiring another 144 bits for the nine features. Finally, even
after training, EACH misclassifies 24 of the training examples, so we must add another
2400 bits to account for the storage that would be needed in order to perform perfectly
on the training data. Adding these numbers up, we get a total of 7208 bits for EACH.

Comparing these two quantities, we see that the data compression achieved by EACH was
better than 2.5 to 1. The compression for the other data sets, although not as impressive,
was still substantial. These calculations give some indication of how EACH compares to
models that store every single example (Reed, 1972). (Kibler and Aha (1987, 1989) have used
such models as benchmarks against which to compare their own exemplar-based models.)

One useful feature of exemplar based learning is that the user can examine the memory
after learning, and glean some useful informtion from it. A user can examine the rectangles
visually (two dimensions at a time) to search for additional properties of the data. For ex-
ample, for the iris classification task, the program needed very few exemplars to achieve
its performance. On one trial (Salzberg, 1989), it needed only five exemplars, and still
achieved over 90% accuracy. Of those five exemplars, three were used for the category
/. virginica, and only one for each of the other two categories, indicating that virginica
was the most difficult category to define. Figure 5 shows one of the two-dimensional views
of the rectangles. The figure also illustrates the fact that one of the categories (/. setosa)
was linearly separable from the from the other two.



A NEAREST HYPERRECTANGLE LEARNING METHOD 271

Figure 5. Sepal width vs. petal width for iris flowers.

Examining the model created by EACH for the echocardiogram data reveals other interest-
ing characteristics. Using a trial that required 19 exemplars, five of the exemplars were
found to make a positive prediction, which was the correct prediction for approximately
three-fourths of the patients. One would expect, then, that these five hyperrectangles would
be quite large, as in fact they are—the largest one covers 25 % of the entire feature space.
In essence, these rectangles define the positive prediction as the system's default.

Of the 14 negative exemplars, seven are simple points; i.e., they were never made into
hyperrectangles. Each of the other seven points was used successfully in a prediction, and
thus was expanded into a hyperrectangle. The generalization that the system learned could
be characterized as a disjunct of these fourteen exemplars, and the exemplars could be shown
to doctors as descriptions of patients who are unlikely to survive longer than one year.
For example, Figure 6 shows an exemplar created by EACH that predicts that the patient
will not survive beyond one year. This exemplar indicates that if the patient's age is between
62 and 85 and pericardial effusion exists, and the other variables fell into the ranges shown,
then the prediction is that the patient will die within one year. The weight indicates that
this exemplar has made correct predictions in 55.6% of the cases in which it has been used.

Figure 6. Exemplar created from echocardiogram data.



272 S. SALZBERG

6. Conclusion

The experiments presented above demonstrate that an exemplar-based learning model that
constructs hyperrectangles can learn effectively in a diverse set of domains. The EACH system
presented here displayed robustness in the face of noise and incomplete data. Comparisons
with experts' performance in the breast cancer domain were quite favorable, with the pro-
gram performing significantly better than the experts.

One of the strengths of the exemplar-based learning model is the simplicity of both the
algorithm and the representation it creates. In its barest form, the exemplar model says
to store every example as a single point and to predict new points based on simple Euclidean
distance to old points. Nested Generalized Exemplar theory retains some elements of this
basic model, but it makes some significant modifications. The most important feature of
the NGE model is the construction of axis-parallel rectangles—hyperrectangles—and the
nesting of exceptions within these rectangles.

The generalization process is also an important component of Nested Generalized Exem-
plar theory. The generalization rule that EACH uses is to increase the size of a hyperrec-
tangle whenever it makes a correct prediction for a new point lying outside its boundaries.
The use of generalization in what is essentially an exemplar-based method points out the
strong similarity between exemplar-based learning and DNF-based methods such as those
of Quinlan (1986) and Michalski et al. (1986). One of the main distinctions between the
methods is that exemplar-based methods can correctly classify an example that is not matched
by any exemplar. EACH embodies this ability while still making generalizations whenever
possible.

Another important feature of the NGE learning model is the fact that the hyperrectangles
can be easily interpreted, when presented in a form such as Figure 5 or Figure 6, by domain
experts. This perspicuity is essential for any learning system that might be used by humans
as a decision making tool.

Another important issue for NGE is the use of weights in the distance metric. The results
above indicate that performance is improved by adjusting the weights on features. The weights
on the rectangles themselves are included in the model in order to increase the tolerance
for noise. Although the experiments here did not systematically test the usefulness of these
weights, Aha and Kibler (1989) have recently created a noise-tolerant version of their
instance-based algorithm which uses a factor very similar to EACH'S weight factor. Their
algorithm keeps track, for each exemplar, of the percentage of the time an exemplar is
used to make a correct prediction. EACH tracks the same statistic. If the percentages fall
below a certain threshold, Aha and Kibler assume the point represents noise and erase
it from memory. Their experiments have yielded positive results with respect to their weight
factor. Unlike their program, EACH never erases an exemplar, but the weight factor makes
poor exemplars less and less likely to be used by the program.

The theoretical results of Helmbold, Sloan, and Warmuth (1989) nicely complement the
experimental model presented here. Although their algorithm includes many restrictions
that prevent direct comparisons with NGE, they are working on more general proofs that
may remove some of these restrictions. For example, they are working on a proof of an
algorithm that allows many distinct sets of nested hyperrectangles, instead of just one
(Warmuth, 1989).



A NEAREST HYPERRECTANGLE LEARNING METHOD 273

As long as we lack proofs of the correctness or optimality of any machine learning algo-
rithm, we will, and should, continue to explore many alternatives. The EACH algorithm
represents an alternative that is simple to implement and undemanding of computer memory,
yet produces accurate classification models. As with other learning programs, the best sup-
port for this one lies in its successful application to real data sets. The results described
here provide an encouraging basis for further work and extensions to the NGE algorithm.

Acknowledgments

Thanks to David Aha, Tom Dietterich, Barbara Grosz, William Woods, and two anonymous
reviewers for many helpful comments on several careful readings of the manuscript. Thanks
to Eve Kinney for providing the echocardiogram data.

Notes

1. Setting Ay to 0.0 is equivalent to not using feature weights.

Appendix

The pseudocode shown below presents an overview of the EACH algorithm. Some details
described in the text of the paper have been omitted for the sake of brevity. Procedures
that simply search data structures have also been omitted.

begi n
Number_of_seeds := 10; /* Size of seed set */
for i from 1 to number_of_seeds do

Store_i n_memory(read_one_exampIe);
/* Begi n ma i n Ioop */
print(''Do you want to process another example? 1');
read(answer)
if (answer = ''yes'1) then

begi n
e_i := (read_one_example);
process_next_exampIe(e_i);

end;
end.

/* the procedure process_next_example does all of the processing
for a s i n g l e example */

procedure process_next_exampIe(e_i);
begi n

/* fin d the two closest matches to the new example */
Ml := find_closest_exempIar(e_i,*global_memory*);
M2 := find_second_cIosest_exempIar(e_i,*global_memory*);



274 S. SALZBERG

/* p r e d i c t i o n s are stored w i t h exemplars */
PI := get_prediction(Ml);
P2 := get_prediction(M2);

/* the new example has its result stored w i t h it */
result := get_resuIt(e_i);

if (PI = result) then
begi n

adjust_weight_for_success(Ml);
genera I i ze_exempIar(Ml,e_i);

end
e I se

begi n
adjust_weight_for_fai lure(Ml);
if (P2 = result) then

begi n
adjust_weight_for_success(M2) ;
genera I i ze_exempIar(M2,e_i);

end ;
e I se

begi n
adjust_we i ght_for_fa i Iure(M2);
/* store the example as a new exemplar */
store_i n_memory(e_i);
adjust_feature_wei ghts(e_l,Ml);

end;
end;

end. /* process_next_exampIe */

/* The procedure genera Iize_exampI ar extends a hyperrectangIe H just
far enough to i n c l u d e a new example e, where e is a p o i n t . This
procedure can also handle the case where H is a po i n t . I have
omitted d e t a i l s of sub-procedures. */

procedure general ize_exempI ar(H,e);
begi n

for i from 1 to *number_of_features* do
be i ng
/* feature(i.X) returns the value of feature i on for

X, where X is e i t h e r a point or a rectangle.
The value of feature i may be e i t h e r a number or an
int e r v a l . lower_end and upper_end return pointers
to the lower and upper values of an i n t e r v a l . */

if feature(i.e) < Iower_end(feature(i ,H))
then Iower_end(feature(i,H)) := feature(i.e)
else if feature(i.e) > upper_end(feature(i,H))

then upper_end(feature(i,H) := feature(i ,e));
end;

end. /* genera I ize_exempI ar */



A NEAREST HYPERRECTANGLE LEARNING METHOD 275

References

Aha, D. (1989). Incremental, instance-based learning of independent and graded concept descriptions. Proceedings
of the Sixth International Workshop on Machine Learning (pp. 387-391). Ithaca, NY: Morgan Kaufman.

Aha, D., & Kibler, D. (1989). Noise-tolerant instance-based learning algorithms. Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (pp. 794-799). Detroit, Michigan: Morgan Kaufmann.

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
Ashley, D., & Rissland, E. (1987). But, see, accord: Generating "Blue Book" citations in HYPO. A case-based

system for trade secreta law. Proceedings of the First International Conference on Artificial Intelligence and
Law (pp. 67-74). Boston, MA: ACM Press.

Bareiss, R. (1988). Protos: A unified approach to concept representation, classification, and learning. Ph.D.
Thesis, University of Texas at Austin. (Technical Report CS-88-10). Nashville, TN: Vanderbilt University, Depart-
ment of Computer Science.

Bareiss, R., Porter, B., & Murray, K. (1989). Gaining autonomy during knowledge acquisition. (Technical Report
AI89-96). Austin, TX: University of Texas, Artificial Intelligence Laboratory.

Barr, R., & Caplan, L. (1987). Category representations and their implications for category structure. Memory
and Cognition, 75, 397-418.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Leamability and the Vapnik-Chervonenkis
dimension. Journal of the ACM, 36, 929-965.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont: Wadsworth.
Buchanan, B., & Mitchell, T. (1978). Model-directed learning of production rules. In D. Waterman, & F. Hayes-

Roth (Eds.), Pattern-directed inference systems. New York: Academic Press.
Bundy, A., Silver, B., & Plummer, D. (1985). An analytical comparison of some rule-learning programs. Artificial

Intelligence, 27, 137-181.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory,

13, 21-27.
Crawford, S. (1989). Extensions to the CART algorithm. The International Journal of Man-Machine Studies,

31, 197-217.
Dietterich, T., & Michalski, R. (1983). A comparative review of selected methods of learning from examples.

In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning. San Mateo, CA: Morgan Kaufmann.
Everitt, B. (1980). Cluster analysis. Hampshire, England: Gower Publishing Co. Ltd.
Fisher, D. (1989). Noise-tolerant conceptual clustering. Proceedings of UCAI-89 (pp. 825-830). Detroit, MI:

Morgan Kaufmann Publishers.
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
Helmbold, D., Sloan, R., & Warmuth, M. (1989). Learning nested differences of intersection closed concept classes.
Proceedings of the 1989 Workshop on Computational Learning Theory. San Mateo, CA: Morgan Kaufmann.
Kan, G., Visser, C., Koolen, J., & Dunning, A. (1986). Short and long term predictive value of wall motion

score in acute myocardial infarction. British Heart Journal, 56, 422-427.
Kasif, S. (1989). Personal communication.
Kibler, D., & Aha, D. (1987). Learning representative exemplars of concepts: An initial case study. Proceedings

of the Fourth International Workshop on Machine Learning (pp. 24-30). Irvine, CA: Morgan Kaufmann.
Kinney, E. (1988). Personal communication.
Kolodner, J. (1980). Retrieval and organizational strategies in conceptual memory: A computer model. Ph.D.

Thesis (Research Report 187). Department of Computer Science, Yale University, New Haven, CT.
Kolodner, J., & Simpson, R. (1984). Problem solving and dynamic memory. Proceedings of the First Annual

Workshop on Theoreteical Issues in Conceptual Information Processing (pp. 1-10). Atlanta, GA: Georgia Institute
of Technology.

Medin, D. (1983). Structural principles in categorizaton. In J. Tighe, & B. Shepp (Eds.), Perception, cognition,
and development. Hillsdale, NJ: L. Erlbaum Associates.

Medin, D, & Schaffer, M. (1978). Context theory of classification learning. Psychological Review, 85, 207-238.
Michalski, R., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15

and its testing application to three medical domains. Proceedings of AAAI-86 (pp. 1041-1045). Philadelphia,
PA: Morgan Kaufmann.



276 S, SALZBERG

Osherson, D., & Smith, E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9, 35-58.
Porter, B., Bareiss, R., & Holte, R. (1989). Knowledge acquisition and heuristic classification in weak-theory

domains. (Technical Report AI89-96). Austin, TX: University of Texas, Artificial Intelligence Laboratory.
Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, J, 81-106.
Reed, S. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382-407.
Rissland, E., & Ashley, K. (1987). A case-based system for trade secrets law. Proceedings of the First International

Conference on Artificial Intelligence and Law (pp. 60-66). Boston, MA: ACM Press.
Salzberg, S. (1985). Heuristics for inductive learning. Proceedings of IJCAI-85 (pp. 603-610). Los Angeles, CA:

Morgan Kaufmann.
Salzberg, S. (1986). Pinpointing good hypotheses with heuristics. In W. Gale (Ed.), Artificial Intelligence and

Statistics, Reading, MA: Addison-Wesley Publishing Co.
Salzberg, S. (1989). Learning with nested generalized exemplars, Ph.D. Thesis (Technical Report TR-14-89).

Cambridge, MA: Harvard University, Department of Computer Science.
Smith, E., & Osherson, D. (1984). Conceptual combination with prototype concepts. Cognitive Science, 8, 337-361.
Thornton, C. (1987). Hypercuboid formation behaviour of two learning algorithms. Proceedings of lJCAI-87 (pp.

301-303). Milan, Italy: Morgan Kaufmann.
Vere, S. (1980). Multilevel counterfactuals for generalizations of relational concepts and productions. Artificial

Intelligence, 14, 138-164.
Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.
Warmuth, M. (1989). Personal communication.
Weiss, S., & Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets, and machine

learning classification methods. Proceedings of 1JCA1-89 (pp. 781-787). Detroit, MI: Morgan Kaufmann.


