
Machine Learning, 11, 37-62 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Noise-Tolerant Occam Algorithms and Their
Applications to Learning Decision Trees

YASUBUMI SAKAKIBARA YASU@IIAS.FLAB.FUJITSU.CO.JP
International Institute for Advanced Study of Social Information Science (IIAS-SIS), Fujitsu Laboratories
Ltd., 140, Miyamoto, Numazu, Shizuoka 410-03, Japan

Editor: David Haussler

Abstract. In the distribution-independent model of concept learning of Valiant, Angluin and Laird have introduced
a formal model of noise process, called classification noise process, to study how to compensate for randomly
introduced errors, or noise, in classifying the example data. In this article, we investigate the problem of design-
ing efficient learning algorithms in the presence of classification noise. First, we develop a technique of building
efficient robust learning algorithms, called noise-tolerant Occam algorithms, and show that using them, one can
construct a polynomial-time algorithm for learning a class of Boolean functions in the presence of classification
noise. Next, as an instance of such problems of learning in the presence of classification noise, we focus on
the learning problem of Boolean functions represented by decision trees. We present a noise-tolerant Occam algorithm
for k-DL (the class of decision lists with conjunctive clauses of size at most k at each decision introduced by
Rivest) and hence conclude that k-DL is polynomially learnable in the presence of classification noise. Further,
we extend the noise-tolerant Occam algorithm for k-DL to one for r-DT (the class of decision trees of rank at
most r introduced by Ehrenfeucht and Haussler) and conclude that r-DT is polynomially learnable in the presence
of classification noise.

Keywords. learning from examples, probably approximately correct learning, noisy examples, polynomial-time
learnability, decision lists, decision trees

1. Introduction

The distribution-independent model introduced by Valiant (1984), which is called probably
approximately correct learning (PAC learning, for short), has contributed to the great pro-
gress on the theoretical front for learning from examples. Several interesting classes of
Boolean functions have been proved to be or not to be polynomially learnable in the PAC
learning model (e.g., Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989; Kearns, 1990;
Natarajan, 1989; Pitt & Valiant, 1988; see also Anthony & Biggs, 1992).

However, most of the works depend strongly on the assumption of perfect, noiseless ex-
amples. This assumption is generally unrealistic, and in many situations of the real world,
our observations will often be afflicted by noise. Thus it is practical to assume that the
examples given to the learning algorithm contain some noise. Few works have suggested
any way to make their learning algorithms noise tolerant, and two formal models of noise
have been studied so far in the PAC learning model for concept learning.

One is the malicious error model initiated by Valiant (1985) and investigated by Kearns
and Li (1988): independently for each example, the example is replaced, with some small
probability, by an arbitrary example classified perhaps incorrectly. The goal of this model
is to capture the worst possible case of noise process by an adversary. This model is also
called adversarial noise process by Angluin and Laird (1988).

38 Y. SAKAKIBARA

The other is the classification noise process introduced by Angluin and Laird (1988):
independently for each example, the label of the example is reversed with some small prob-
ability. The goal of this model is to study the question of how to compensate for randomly
introduced errors, or noise, in classifying the example data.

In this article, we consider the classification noise process to study the effect on
polynomial-time learnability. We investigate the problem of designing efficient learning
algorithms in the presence of classification noise.

We first develop a technique for building efficient robust learning algorithms in the
presence of classification noise. That is the technique of finding a concept consistent, not
with the given whole sample, which is the well-known technique used in learning in the
absence of noise, but rather with a certain large fraction of the sample. We call a polynomial-
time algorithm to find such a concept a noise-tolerant Occam algorithm, and show that
by using a noise-tolerant Occam algorithm for a class of concepts, one can construct a
polynomial-time algorithm for learning the class in the presence of classification noise.

Next, as an instance of such problems of learning in the presence of classification noise,
we focus on the learning problem of Boolean functions represented by decision trees. Deci-
sion trees are particularly interesting because they are commonly used in AI learning
algorithms, for which noise tolerance is essential. Decision trees are often used for classifica-
tion tasks and as the representation of acquired knowledge in a learning system. A classifica-
tion task is to assign an element of the domain to one of a specified number of disjoint
classes. For example, the diagnosis of a medical condition from symptoms is a classifica-
tion task, in which the classes could be either the various disease states or the possible
therapies. There has been much research concerning the problem of learning decision trees
(e.g., Breiman, Friedman, Olshen, & Stone, 1984; Clark & Niblett, 1989; Pagallo, 1990;
Utgoff, 1989). One famous and practical example of such systems is ID3 by Quinlan (1986a).
ID3 induces decision trees from examples. In the decision-tree learning problem, concepts
are defined on a set of objects in which the objects are described in terms of a set of attribute-
value pairs. In the case where each attribute is a Boolean variable (i.e., the value is 0 or
1), the problem of learning decision trees can be formulated as the problem of learning
Boolean functions.

The problem of learning decision trees in the PAC learning model has also been studied
in the absence of noise. Rivest (1987) has introduced a class of representations, called deci-
sion lists, for representing Boolean functions, and has shown that k-DL (the class of deci-
sion lists with conjunctive clauses of size at most k at each decision) is polynomially learn-
able in the PAC learning model. The decision list is a useful way of representing Boolean
functions, and in fact the decision lists are an important class because k-DL properly in-
cludes other well-known techniques for representing Boolean functions such as k-CNF (for-
mulae in conjunctive normal form with at most k literals per clause) and k-DNF (formulae
in disjunctive normal form with at most k literals per term). Ehrenfeucht and Haussler
(1989) have introduced the notion of the rank of a decison tree and have shown that for
any fixed r, the class of decision trees of rank at most r, denoted r-DT, is polynomially
learnable in the PAC learning model and that Rivest's result for decision lists can be inter-
preted as a special case of their result for rank 1. Recently, Blum (1991) has shown that
every decision tree of rank r can be represented as a decision list in r-DL, that is, r-DT
is a subclass of r-DL.

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 39

We begin with the decision lists for the problem of learning decision trees in the presence
of classification noise. We present a noise-tolerant Occam algorithm for k-DL and hence
conclude that k-DL is polynomially learnable in the presence of classification noise. This
strictly increases the class of Boolean functions that are known to be polynomially learn-
able in the presence of classification noise: the only example of a class of Boolean func-
tions is K-CNF that has been shown to be polynomially learnable in the presence of classi-
fication noise (Angluin & Laird, 1988) and k-DL properly includes K-CNF. Further, we
extend the noise-tolerant Occam algorithm for k-DL to one for r-DT and conclude that
r-DT is polynomially learnable in the presence of classification noise. Consequently, we
present a new method for constructing a decision tree from noisy examples. Both results
can hold at a noise rate even close to ½i.

2. Probably approximately correct learning from noisy examples

Valiant (1984) has introduced the distribution-independent model of concept learning from
random examples. Angluin and Laird (1988) have extended this model by introducing a
noise process, called classification noise process, to study how to compensate for random-
ly introduced errors, or noise, in classifying the example data. In this section, we give
a brief outline of Valiant's learnability model and the notion of polynomial learnability
(Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989) for Boolean functions, and define the
classification noise process and the notion of polynomial learnability in the presence of
classification noise for Boolean functions. Then we develop a technique of building effi-
cient robust learning algorithms, called noise-tolerant Occam algorithms, and show that
by using a noise-tolerant Occam algorithm for a class of Boolean functions, one can con-
struct a polynomial-time algorithm for learning the class in the presence of classification
noise.

2.1. Probably approximately correct learning for Boolean functions

We assume that there are n Boolean attributes (or variables) to be considered, and we denote
the set of such variables as Vn = {x\, x2, . . . , xn}. An assignment t is a mapping from
Vn to the set {0, 1}. Let Xn denote the set of all such assignments mapping from Vn to
{0, 1}. We may also think Xn denotes the set {0, 1}n of all binary strings of length n. Then
a Boolean function is defined to be a mapping from Xn to {0, 1}.

Boolean formulae are often used as useful representations for Boolean functions. The
simplest Boolean formula is just a single variable. Each variable xi (1 < i < n) is
associated with two literals: xi itself and its negation xt. A term is a conjunction of literals,
and a clause is a disjunction of literals. The size of a term or clause is the number of its
literals. Let true be the unique term of size 0, which always returns the value 1, and false
be the unique clause of size 0, which always returns the value 0. Let Cn denote the set
of all terms (Conjunctions) of size at most k over Vn, and let D"k denote the set of all clauses
(Disjunctions) of size at most k over Vn. Thus

40 Y. SAKAKIBARA

For any fixed k, Cn and Dn have sizes polynomial in n.
A Boolean formula is in conjunctive normal form if it is a conjunction of clauses. We

define k-CNF to be the class of Boolean formulae in conjunctive normal form with at most
k literals per clause. Similarly, a Boolean formula is in disjunctive normal form if it is
a disjunction of terms. We define k-DNF to be the class of Boolean formulae in disjunctive
normal form with at most k literals per term.

A Boolean formula can be interpreted as a mapping from assignments Xn into {0, 1}.
Thus each Boolean formula defines a corresponding Boolean function from Xn to {0, 1}
in a natural manner. We do not distinguish between Boolean formulae and the Boolean
functions they represent.

Now we describe Valiant's learnability model for Boolean functions. First, fix a class
Fn of Boolean functions over Vn and a target Boolean function fu in Fn to be learned.

An example of fu is a pair < 3, /> where 3 is an assignment in Xn and / = f u (a) . Thus
an example can be viewed as an assignment with the value of the target function fu at the
assignment. The value / is called the label of the example. An example < a,l> is called
a positive example of fu if / = 1 and called a negative example of fu if l = 0. A sample
is a finite sequence of positive and negative examples of the target Boolean function fu.
The size of a sample 5 is the number of examples in it. A Boolean function g is said to
agree with an example < a, /> if g (a) = /. A Boolean function is consistent with the given
sample if it agrees with all examples in the sample.

We assume that there is an unknown and arbitrary probability distribution D on Xn. The
probability of assignment a € Xn with respect to D is denoted PrD(a). Random samples
are assumed to be drawn independently from the domain Xn according to this probability
distribution D on Xn. There is a sampling oracle EX() for the target Boolean function fu,
which has no input. Whenever EX() is called, it draws an assignment a € Xn according
to the distribution D, and returns < a, fu(a) >. We define a learning algorithm for the class
Fn of Boolean function as an algorithm that has access to EX() and produces as output
a Boolean function in Fn.

A learning algorithm makes a number of calls to EX() and then conjectures some Boolean
function g € Fn. The success of learning is measured by two parameters, the accuracy
parameter e and the confidence parameter 6, which are given as inputs to the learning
algorithm. We define a notion of the difference between two Boolean functions / and g
with respect to the probability distribution D as

The error of a Boolean function g with respect to the target Boolean function fu is d(g,
fu). A successful learning algorithm is one that with high probability finds a Boolean func-
tion whose error is small. A Boolean function g is called an e-approximation of fu if d(g,
fu) < e and called e-bad otherwise.

The notion of polynomial learnability in Valiant's learnability model is formally defined
as follows.

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 41

A class Fn of Boolean functions over Vn is polynomially (probably approximately cor-
rectly (PAC for short)) learnable if there exists a learning algorithm A for Fn such that for
any e and d, for any target Boolean function fu € Fn, and for any distribution D on Xn,
when A is given as input parameters n, e, and 5 and run with the sampling oracle EX()
for fu, the algorithm outputs a Boolean function g € Fn such that d (g , f u) < e with proba-
bility at least 1 — 8 , and runs in time polynomial in n, 1/e, and 1/6.

The difficulty of learning a Boolean function that has been selected from Fn will de-
pend on the size \Fn \ of Fn. We say a class Fn of Boolean functions has polynomial repre-
sentation size if ln(|Fn \) = O(nt)for some constant t, that is, if ln(|Fn |) is a polynomial
in n. The logarithm of \Fn \, 1n(\Fn \) , may be viewed as the number of bits needed to write
down an arbitrary element of Fn, using an optimal encoding.

2.2. Classification noise process

The classification noise process introduced for concept learning can be interpreted to be
applicable to learning Boolean functions as follows.

The sampling oracle is able to draw assignments a from Xn according to the relevant
distribution D without error, but the process of reporting the value of the target Boolean
function fu at the assignment a— that is,/u(a)—is subject to independent random mistakes
with some unknown probability »n; independently for each example <a, />, < a ,0> is returned
with fu(a) = 1 and <a, 1> is returned when fu(a) = 0 with probability n.

It is assumed that the rate of noise n is less than 1/2. To indicate that the sampling oracle
is subject to errors of this type, we will denote it by EXn().

Angluin and Laird (1988) have discussed the following argument: in the presence of
classification noise, we should assume that there is some information about the noise rate
n available to the learning algorithm, namely, an upper bound nb such that n <nb < 1/2,
and just as the running time for polynomial-time learning is permitted in the absence of
noise to be polynomial in 1/e and 1/6, we should permit the polynomial to have 1/(1 -
2nb) as one of its arguments.

Now we give the precise definition of polynomial learnability in the presence of classifica-
tion noise:

A class Fn of Boolean functions over Vn is polynomially learnable in the presence of
classification noise if there exists a learning algorithm for Fn such that for any e, 6, and
17 (< 1/2), for any target Boolean function fu € Fn, and for any distribution D on Xn, when
A is given as input parameters n, e, 6, and nb (n) <nb < 1/2), and run with the sampling
oracle EXn() for fu, the algorithm outputs a Boolean function g € Fn such that d(g, fu)
< e with probability at least 1 - 6 , and runs in time polynomial in n, 1/e, 1/6, and
1/(1 - 2nb).

Angluin and Laird (1988) have shown that it is not necessary to have nb as input. That
is, they have described a procedure that outputs a value nb using calls to EXn() such that
with probability at least 1 - 6, nb is between n and 1/2.

42 Y. SAKAKIBARA

2.3. Previous research results

In the absence of noise, when given a sample of a target Boolean function fu, the fun-
damental strategy that a learning algorithm takes is producing a Boolean function consis-
tent with the sample. When the sample contains noise, this fundamental strategy may fail
because there is no guarantee that such consistent Boolean functions will be found.

Angluin and Laird (1988) have proposed the simple strategy of finding a Boolean func-
tion that minimizes the number of disagreements with the given sample, and have shown
that in the presence of classification noise, a learning algorithm for a class Fn of Boolean
functions that outputs a Boolean function minimizing the number of disagreements PAC-
learns Fn.

Let S = {<#i, / i> , <a2 ,l2> • • •> (a m , l m) } be a sample drawn from an EXn() oracle.
For a Boolean function/, let F(f, S) denote the number of indices j for which/disagrees
with < a j , l j , > .

Theorem 1 (Angluin & Laird, 1988) If we draw a sample S of

examples from EXn() for the target Boolean junction fu and find any Boolean function g
6 Fn that minimizes F(g, S), then with probability at least 1 - 8, g is an e-approximation

of fu.

Angluin and Laird (1988) have shown that k-CNF is polynomially learnable in the presence
of classification noise for any n < 1/2.

Kearns and Li (1988) have given hardness results for learning with malicious errors.
Let us define a class Fn of Boolean functions to be distinct if there are Boolean functions
f, g 6 Fn and assignments a,b € Xn satisfying f(#) = f(b} = 1, g (a) = 0, and g(b) = 1.

Theorem 2 (Kearns & Li, 1988) Let Fn be a distinct class of Boolean functions and e
the accuracy parameter. Then the largest rate of malicious error that can be tolerated by
any learning algorithm for Fn is less than e/(l + e).

Laird (1988) has shown several interesting results on handling other types of noise pro-
cesses and on estimating the noise rate. Sloan (1988) has introduced and studied two new
noise models between the malicious error model and the classification noise process.
Recently Goldman, Kearns, and Schapire (1990) have presented learning algorithms for
read-once formulas that are robust for a large amount of slightly more general classifica-
tion noise under restricted distributions.

2.4. Noise-tolerant Occam algorithms

Now we develop a technique of building efficient robust learning algorithms, called noise-
tolerant Occam algorithm, that is a generalization of Occam's Razor by Blumer, Ehrenfeucht,

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 43

Haussler, and Warmuth (1987). We show that by using a noise-tolerant Occam algorithm
for a class of Boolean functions, one can construct a polynomial-time algorithm for learn-
ing the class in the presence of classification noise. We will use this fact in the following
sections to show the polynomial learnability of decision lists and decision trees in the
presence of classification noise.

Angluin and Laird (1988) have proposed the strategy of finding a Boolean function that
minimizes the number of disagreements with the given sample. In general, however, it is
a hard problem to find a Boolean function that minimizes the number of disagreements
with the sample. We weaken this criterion. The following noise-tolerant Occam algorithm
takes the strategy of finding a Boolean function consistent with a certain large fraction
of the given sample with high probability, rather than of finding a Boolean function that
minimizes the number of disagreements.

A noise-tolerant Occam algorithm, OCCAM (S, e, 8,n b), for a class Fn of Boolean func-
tions over Vn is an algorithm that when given as input a sufficiently large sample S of m
examples drawn from E X n () for any target Boolean function fU ,and parameters e, 8, nb,

1. produces a Boolean function g € Fn such that

with probability at least 1 - 6, and
2. runs in time polynomial in n and m.

In the above definition, the probability that the algorithm OCCAM(S, e, d, nb) fails
depends on the statistical fluctuation of occurrences of classification noise when the sam-
ple is drawn, as shown in the following lemma.

First we show the following important lemma for OCCAM (S, e, 6, nb): if r < nb <
r + e(l - 2n)/2 and Fn has polynomial representation size, then when given a sufficient-
ly large sample S drawn from E X n () for fU, OCCAM(S, e, 6, nb) outputs an e-
approximation of fU with probability at least 1 - 6.

The inequality quoted below will be required in the proof to follow. Let p and r be num-
bers between 0 and 1, and let m be a positive integer. Let GE(p, m, r) denote the proba-
bility of getting at least rm successes in m independent Bernoulli trials with probability
p, and let LE(p, m, r) denote the probability of at most rm successes in m independent
Bernoulli trials with probability p. The following lemma bounds these quantities.

Lemma 3 (Hoeffding's Inequality (Hoeffding, 1963; Angluin & Laird, 1988)) If 0 <
p < 1, 0 < S < 1, and m is any positive integer, then

and

44 Y. SAKAKIBARA

Lemma 4 Suppose that n < nb < n + e(l - 2n)/2. Suppose also that Fn has polynomial
representation size. When given a sample S consisting of m examples drawn from EXn()
for fu, OCCAM(S, e, d, nb) outputs an e-approximation of fU with probability at least
1 — 6 . The sample size m required is

Proof. First we consider the effect of classification noise on searching any Boolean func-
tion in Fn. We analyze the expected rate of disagreement between any Boolean function
g and example sequences produced by the sampling oracle EX n () for the target Boolean
function fU. Let dg = d(g, fU). The probability that an example produced by E X n ()
disagrees with g is

1. the probability that an example is drawn from {<? € Xn \ fu(d) ^ g(%)} and reported
correctly (which is just dg(1 — n))

2. plus the probability that an example is drawn from {3 € Xn \ /[/(<?) = g(3)} and
reported incorrectly (which is just (1 - d g)n) .

Let pg denote the probability that an example from EX n () disagrees with g. Then we have

For the target Boolean function fU we have pfU = n, and for any e-bad Boolean function
g we have

Thus any e-bad Boolean function has an expected rate of disagreement that is greater than
that of the target Boolean function by at least e(l - 2n),

We now show that with probability at least 1-6, OCCAM (S, e, 6, nb) outputs an e-
approximation of fU. Let s - e(l - 2nb). The probability that the target Boolean function
fU has more than (nb + s/4)m disagreements with a sample S of m examples drawn from
EXn()is

by Hoeffding's inequality lemma, and the lower bound on m implies that this is less than
6/2. Hence with probability at least 1 - 6/2, OCCAM(S, e, 6, nb) can find a Boolean
function g 6 Fn such that F(g, S)/m < nb + s/4 to output. The probability that a Boolean
function with error greater than e has at most (nb + s/4)m disagreements is at most

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 45

by the assumption

by Hoeffding's Inequality lemma.

Since there are at most \Fn \ Boolean functions in Fn, the probability of producing a
Boolean function with error greater than e is less than

and by the lower bound on m, it is less than 6/2. Hence with probability at least 1 - 8,
OCCAM(S, e, 5, nb) outputs an e-approximation of fU. D

The above lemma indicates that OCCAM(S, e, 6, nb) requires an accurate estimate nb

of the actual noise rate 77 for polynomial learnability. In the following, however, we show
that for any upper bound nb < 1/2, by iterating OCCAM(S, e, 5, nb) for successively
smaller values of nb (down to almost 0) and picking the best Boolean function among the
outputs of OCCAM(S, e, 6, nb), the existence of OCCAM(S, e, 5, nb) for Fn implies the
polynomial learnability of Fn in the presence of classification noise.

Theorem 5 Suppose that n < 1/2. Suppose also that Fn has polynomial representation
size. If there exists a noise-tolerant Occam algorithm for Fn, then Fn is polynomially leam-
able in the presence of classification noise.

Proof. We will construct by using OCCAM (S, e, 6, nb) a learning algorithm for Fn that,
with probability at least 1-6, outputs an e-approximation of fU from a sampling oracle
EXn() with n < 1/2. The learning algorithm, POLY-LEARN, is given in figure 1.

We will show that with probability at least 1 - 6, POLY-LEARN outputs an e-approximation
of fU. Among the successively smaller values ne from nb down to almost 0, there will exist
an ne such that n < ne < + e(l - 2n)/2 because ne is decreasing by e(l - 2nb)/2 and
e(l - 2nb) < e(l - 2n). Then by the proof of lemma 4, the lower bound on m implies
that with probability at least 1 - 6/2, there will be at least one Boolean function gj (1 <
j < k) in the queue Q of POLY-LEARN such that

where

Hence with probability at least 1 - 6/2, the Boolean function gi (1 < i < k) in Q that
minimizes F(g i , S) must have F(g i , S)/m < n + 3e(l — 2v)/4.

The probability that a Boolean function g € Fn with error greater than e has F(g, S)/m
< n + 3e(l - 2n)/4 is at most

by Hoeffding's Inequality lemma.

46 Y. SAKAKIBARA

Figure 1. Polynomial-time learning with classification noise.

Since there are exactly \Fn \ Boolean functions in Fn, the probability of producing a
Boolean function with error greater than e is less than

and by the lower bound on m, it is less than 6/2. Hence with probability at least 1 - 6,
POLY-LEARN outputs an e-approximation of fU.

Further, there are at most [1 / f (l - 2n b) \ repetitions of calling OCCAM(S, e, d, ne),
and hence k is at most [1/e(l - 2nb)| in POLY-LEARN. These are executed in time
polynomial in 1/e, 1/(1 - 2nb), and the running time of OCCAM(S, e, 5, n e) , which is
bounded by a polynomial in n, 1/e, 1/6, and 1/(1 — 2nb). Searching a Boolean function
gi in Q that minimizes F (g i , S) is executed in time polynomial m, 1/e, and 1/(1 - 2nb),

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 47

since there are at most f l/e(l - 2nb)] Boolean functions in Q. Therefore POLY-LEARN
runs in time polynomial in n, 1,/e, 1/6, and 1/(1 - 2nb). D

In contrast to theorem 2 for the malicious error model, the noise rate is independent
of the desired accuracy e, and a noise rate close to 1/2 is achievable in theorem 5.

3. An efficient robust algorithm for learning decision lists

Since it is common in the machine learning literature to consider concepts defined on a
set of objects in which the objects are described in terms of a set of Boolean attribute-value
pairs, the problem of learning Boolean functions from examples has been widely studied
both theoretically and empirically. Recently Rivest (1987) has introduced a useful way, called
decision lists, to represent Boolean functions and to perform classification tasks, and has
shown that k-DL (the class of decision lists with conjunctive clauses of size at most k at
each decision) is polynomially learnable in Valiant's learnability model. However, Rivest's
learning algorithm for k-DL is not robust for noisy data, and he has left open to study
the problem of whether the Boolean functions in k-DL can be learned efficiently when
the classifications of the given examples may be erroneous with some small probability.

In this section, we give the affirmative answer for this open problem. We present a noise-
tolerant Occam algorithm for k-DL and hence conclude that k-DL is polynomially learn-
able in the presence of classification noise. This strictly increases the class of Boolean
functions that are known to be polynomially learnable in the presence of classification noise:
The only example of a class of Boolean functions that has been shown to be polynomially
learnable in the presence of classification noise is k-CNF (Angluin & Laird, 1988), and
k-DL properly includes k-CNF.

3.1. Decision lists

A decision list is a list L of pairs

where each ti is a term over Vn, each vi is a value in {0, 1}, and the last term tr is the
unique term true. A decision list L defines a Boolean function as follows: For any assign-
ment n 6 Xn, L(t) is defined to be equal to the value vi where i is the least index such
that t i (<) = 1. (Such an item always exists, since the last term is always true.) Let k-DL
denote the class of all Boolean functions defined by decision lists, where each term in the
list is of size at most k (i.e., each ti is in C£). As k increases, the class k-DL becomes
increasingly expressive. Note that k-DL is closed under complementation (negation).

We may think of a decision list as an extended "if — then — elseif — ... else —" rule.
Or we may think of decision lists as a linearly ordered set of production rules. For exam-
ple, the decision list

48 Y. SAKAKIBARA

Figure 2. Diagram of the decision list {(x1x2, 1), (x2x3x5, 0), (x3x4, 1), (true, 0)).

may be diagrammed as in figure 2. For example, L(l, 0 1, 1, 1) = 0; this value is specified
by the second pair in the decision list.

When we wish to emphasize the number of variables upon which a class of Boolean
functions depends, we will indicate this in parentheses after the class name, as in k-CNF(n),
k-DNF(n), or k-DL(n).

Theorem 6 (Rivest, 1987) For 0 < k < n, k-CNF (n) and k-DNF(n) are proper subclasses
of k-DL(n). For 0 < k < n and n > 2, (k-CNF(n) U k-DNF(n)) is a proper subclass
of k-DUn).

3.2. Efficient robust learning of k-DL

Now we consider an efficient robust algorithm for learning decision lists in the presence
of classification noise. We show that there exists a noise-tolerant Occam algorithm for k-DL,
and hence k-DL is polynomially learnable in the presence of classification noise.

Let LU denote the target decision list in k-DL(n) over Vn to be learned. Let (t, v) be a
pair in Qk X (0, 1}. We say a pair (t, v) disagrees with an example <, /> if t(3) = 1
and v ¥• 1. We say a pair (t, v) is correct w.r.t. a sample S drawn from EXn() for LU if
for every example < c, /> in S such that t(~) = 1, v = Lj/#).

We begin with the trivial fact observed by Rivest (1987) in the absence of noise that if
a decision list is consistent with a sample S, then it is consistent with any subset of S.
This can be restated in the presence of classification noise as follows: If a sample S is
drawn from E X n () f o r a decision list LU, then for any nonempty subset S' of S, there ex-
ists a correct pair (t, v) w.r.t. S' such that t(t) = 1 for at least one example < n, /> in S'.

Let S = {<Z?i, / i> , <<?2. ^)> • • •' <3»i> 'm>} be a sample drawn from an EXn() oracle.
For a decision list L, let F(L, S) denote the number of indices j for which L disagrees
with < 3j, lj). For a pair (t, v) € C% X {0, 1}, let F((t, v), S) denote the number of indices

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 49

j for which (t, v) disagrees with < #,, / ,>, and let T((t, v), S) denote the number of indices
j for which t(3j) = 1.

Now we present an efficient robust learning algorithm for k-DL. Our noise-tolerant Occam
algorithm NODL for k-DL is shown in figure 3. Here we try to give the intuitive explana-
tion of the algorithm NODL. We say a pair (t, v) explains an example < #, /> if t(3) = 1.
Given the sample S, NODL proceeds by identifying the pairs of the decision list in order.
NODL selects as the first pair of the decision list any pair (t,v) of CJ X {0, 1} if it disagrees
with a small fraction of the examples that are explained by it in S or if the number of exam-
ples explained by it is below a given threshold. NODL then proceeds to delete from S any
example explained by the chosen pair (t, v), and to construct the remainder of the decision
list in the same way using the remaining part of S.

Lemma 7 Suppose that NODL is given a sample S of m examples drawn from EX n () and
parameters n, k, t, and nb. If NODL outputs a decision list L (not "none"), then

Proof. Let L = <(t1 , v1), . . . , (tr, vr)>. For the i-th item (t i, vi) of L, let F0(ti, vi), S)
denote the number of examples < #, /> in S such that (t i, vi) disagrees with < n, I) and i
is the least index such that t i(2) = 1, and let T0((t i ,v i), S) denote the number of examples
< l, 1) in 5 for which i is the least index such that ti,(#) = 1. Any decision list L output
by NODL has the property that for any i (1 < i < r),

or

Therefore the total number F(L, S) of disagreements of L with S is at most the sum of
£;=! F0((tt, v,), S) and Q1mr/2, which are bounded by the quantities estimated in the follow-
ing inequalities:

50 Y. SAKAKIBARA

Figure 3. Efficient robust learning of k-DL.

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 51

and

since Hence

Lemma 8 Suppose that n < nb < 1/2. Suppose also that S consists of m examples drawn
from EX n () for the target decison list LU in k-DL(n) over Vn and

Then with probability at least 1 - 6/2, NODL outputs a decision list L.

Proof. First we prove that with probability at least 1 — 6/2, a sample S is drawn such
that for all choices t1, t2, ..., tj of terms in Cg and for all t 6 Q", whenever T((t, v), R)
> Q1m, the number of occurrences of classification noise in {{ct, 1) € R \ 1(3) = 1}
is at most (nb + e(l - 2nb)/8) • T((t, v), R), where R = S - {(3, /> € 5 | r,(Z) = 1}
- ... - {< n, /> € S | tj(3) = 1}. Let t1, t2, .., tj, in Q" and t € Q" be fixed. By Hoeff-
ding's inequality lemma, whenever T((t, v), R) > Q1m, the probability that classification
noise occurs more than (nb + e(l - 2nb)/8) • T((t v), R) times is at most

and the lower bound on m implies that this is less than 6/(2M+1 M). Since there are at
most 2M choices of sequences of terms in C" and M terms in C£, the probability that for
all choices t1, t2, ..., tj of sequences of terms in Cf and for all t € C£, the number of
occurrences of classification noise in {<Zf, /> € /Z | t(3) = 1} is at most (Nb + e(l -
2nb)/8) • T((t v), R) is at least 1 - 6/2. This completes the proof.

Next we assume that for all choices t1, t2, . . . , tj of sequences of terms in Q" and for
all t € Cj?, the number of occurrences of classification noise in { < < ? , / > € / ? ! t(ct) = 1}
is at most (nb + e(l - 2nb)/8) • T((t,v), R) whenever T((t, v), R) > Q1m. We show that
this assumption implies that NODL outputs a decision list L. For any stage, say i, in the
repetition in NODL where SS is not empty, there is at least one correct pair (t, v) w.r.t.
55 in CC. If T((t, v), 55)/m < Q1, then NODL can select the pair (t, v) as the i-th item
of L. If T((t, v), 55)/m > Q1, by the above assumption, the correct pair (t, v) has at most
(nb + e(l - 2nb)/8) • T((t, v), S5) disagreements with 55. Then NODL can select the pair
(t, v) as the i-th item of L. Hence eventually NODL halts and outputs a decision list L.

Therefore with probability at least 1 - 6/2, NODL outputs a decision list L. D

52 Y. SAKAKIBARA

Theorem 9 NODL is a noise-tolerant Occam algorithm for k-DL(n).

Proof. Since |C£| < (2n + 1)k, it is clear that NODL runs in time polynomial in n and
m. Then it is straightforward from lemmas 7 and 8. D

We quote the following important lemma by Rivest (1987).

Lemma 10 (Rivest, 1987) k-DL(n) has polynomial representation size.

Proof. \k-DL(n)\ = O(3^l(\C£\)\). This implies that ln(|k-DL(n)|) = O(nt) for some
constant t. D

Now we have the main theorem.

Theorem 11 k-DL(n) is polynomially learnable in the presence of classification noise.

Proof. It is straightforward from theorems 9 and 5 and lemma 10. D

Schapire (1991) had independently achieved this result by using probabilistic decision
lists, which are a probabilistic analog of (deterministic) decision lists. Schapire has shown
that a special class of probabilistic decision lists with conjunctive clauses of size at most
k at each decision can be learned efficiently and the result can be applied to learn ordinary
decision lists when the supplied examples are noisy.

4. An efficient robust algorithm for learning decision trees

Recently Ehrenfeucht and Haussler (1989) have introduced the notion of the rank of a deci-
sion tree; they have shown that the class of all decision trees of rank at most r on Vn is
polynomially learnable in Valiant's learnability model and that Rivest's result for decision
lists can be interpreted as a special case of their result for rank 1. However, their learning
algorithm is not robust for noisy data. Few empirical works (e.g., Quinlan, 1986b) for
decision trees have suggested any way to make their learning algorithms noise tolerant, and
there has been no theoretical treatment for learning decision trees from noisy examples so far.

In this section, we extend the noise-tolerant Occam algorithm for decision lists to one
for decision trees and conclude that the class of all decision trees of rank at most r on
Vn is polynomially learnable in the presence of classification noise. This result can hold
at a noise rate even close to 1/2.

Consequently, we present a new method for constructing a decision tree from noisy ex-
amples. Here we try to give the intuitive explanation of our method. In the course of con-
structing a decision tree from a given sample in a top-down manner, the learning algorithm
first chooses some variable that best divides examples of the sample into their attached
labels' classes and then partitions the examples according to the values of that variable.
This process of growing the decision tree is recursively applied to each partitioned subset
of the sample with the terminating procedure. In the absence of noise, the learning algorithm
of finding a consistent decision tree terminates the process when all examples in the cur-
rent subset have the same label. In contrast to it, in the presence of classification noise,
our new learning algorithm terminates the process when

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 53

• a certain large fraction of the examples in the current subset already have the same label, or
• the number of examples in the subset is below a given threshold.

Let 5 = {<£], / i>, <#2> ^ 2 > > • • •» <3m> O) be a given sample. For a decision tree
T, let F(T, S) denote the number of indices j for which T disagrees with < 3), /,->. Let x
be a variable in Vn. Assume x = xi, where 1 < i < n. Let SQ denote the set of all ex-
amples < t, /> in a sample 5 such that 3 = (a1 , .. ., an) and ai = 0, and S\ denote the
set of all examples < <?, /> in S such that 3 = (a1, . . . , a n) and ai = 1. We say a variable
x is informative (on S) if both S$ and Sf are nonempty.

Two algorithms, one in the absence of noise and one in the presence of noise, are illus-
trated in figure 4. The algorithm RFT is extended to have two extra parameters and modified
stopping conditions.

The correctness of our new method is theoretically proved in the framework of PAC learn-
ing as shown in the following. The adequate input values for two parameters QF and QI

in RFT can be calculated from e, nb, \S\, and the rank r of the target decision tree.

4.1. Decision trees

First we give formal definitions of decision trees and their rank, as introduced by Ehrenfeucht
and Haussler (1989).

A decision tree is a binary tree where each internal node is labeled with a variable and
each leaf is labeled with 0 or 1. A decision tree is a useful way to represent a Boolean
function. The class In of decision trees over Vn is defined recursively as follows:

1. If T is the binary tree consisting of only a root node labeled either 0 or 1, then T € Jn.
(We will abbreviate this case by simply saying "T = 0" or "T = 1".)

2. If T0, T1 € Jn and x € Vn, then the binary tree with root labeled x, left subtree T0,
and right subtree T\ is in Jn. (We will refer to the left subtree as the 0-subtree and
the right subtree as the 1-subtree.)

A decision tree T € Jn defines a Boolean function fT as follows:

1. If T - 0 then fT is the constant function 0, and if T = 1 then fT is the constant func-
tion 1.

2. Else if xi is the variable labeled at the root node, T0 the 0-subtree, and T1 the 1-subtree,
then for any assignment 3 = (a1, ..., an), if ai = 0 then fT(f) = f T o (f) , else fT<#) =

fT1,(8).

For example, the decision tree in figure 5 represents the Boolean function x1x2 V x3.
A decision tree is reduced if each variable appears at most once in any path from the

root to a leaf.
The rank of a decision tree T, denoted r(T), is defined as follows:

1. If T = 0 or T = 1, then r(T) = 0.
2. Else if r0 is the rank of the 0-subtree of T and r1 is the rank of the 1-subtree, then

54 Y. SAKAKIBARA

Figure 4. Two algorithms for constructing a decision tree.

otherwise.

Let r-DT(n) denote the set of all Boolean functions over Vn represented by decision trees
of rank at most r.

It is easily verified that every function in r-DT(n) can be represented by a reduced deci-
sion tree of rank at most r.

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 55

Figure 5. A decision tree representation for x1x2 v x3.

We quote the following important lemma by Ehrenfeucht and Haussler (1989).

Lemma 12 (Ehrenfeucht & Haussler, 1989)
1. Let L(n, r) denote the maximum number of leaves of any reduced decision trees over

Vn of rank r. Then

for all

for all

for all

Further, L(n, r) is bounded by (enlff for all n > r > 1.
2 . 1 f r = 0, then \r-DI\n)\ = 2. 7/r < n, then \r-DT(n)\ < (8n)(e/l/r)r.

4.2. Efficient robust learning of decision trees of rank r

Now we present a noise-tolerant Occam algorithm for r-DT(n) and hence conclude that
r-DT(n) is polynomially learnable in the presence of classification noise.

We give a noise-tolerant Occam algorithm for r-DT(n) in figures 6 and 7. The subroutine
RFINDT that finds a decision tree of rank at most r consistent with a certain large fraction
of the given sample is an extension of the algorithm NODL for k-DL and based on the
FIND procedure by Ehrenfeucht and Haussler (1989) to find a decision tree of rank at most
r consistent with the given sample in the absence of noise.

Now we show that NODT is a noise-tolerant Occam algorithm for decision trees of rank
r, and hence the class of decision trees of rank at most r is polynomially learnable in the

56 Y. SAKAKIBARA

Figure 6. Efficient robust learning of decision trees of rank r.

presence of classification noise for any n > r > 0. Throughout the following sequence
of lemmas and theorems, we assume that n > r > 0.

Lemma 13 Suppose QF = nb + e(l - 2nb)/8 and QI = e(l - 2nb)\S\/4(en/r) r . If
RFINDT(S, r, QF, QI) outputs a decision tree T (not "none"), then T is a decision tree
of rank at most r and

Proof. First, it is clear that if RFINDT(S, r, QF, QI) returns a decision tree (which occurs
either in step 1, 4b, or 4c), then by the definitions of reduced and rank, it will be a reduced
decision tree over Vn of rank at most r.

Next, any decision tree T output by RFINDT has the following property. For any leaf, say
j, of T, let S(j) denote the set of all examples in 5 that reach the leaf j. Then F(T, S(j))/
\S(j)\ < QF or \S(j)\ < QI. Therefore the total number F(T, S) of disagreements of T
with 5 is at most the sum of Eall leaves j F(T, S(j)) and QI{en/r)r/2, which are bounded by
the quantities estimated in the following inequalities:

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 57

Figure 7. Finding a decision tree of rank r.

and

58 Y. SAKAKIBARA

since Tis reduced and the maximum number of leaves of any reduced decision trees over
Vn of rank r is bounded by (enlr)r by lemma 12. Hence F(T, S)/ S < % + £ (! - 2i;6)/4.

D

Lemma 14 Let T be a reduced decision tree over Vn of rank r, S be a sample consistent
with T, and x be a variable that appears in T. Let TQ (Tf) denoted the decision tree ob-
tained by replacing every subtree with root labeled xofTby the 0-subtree (l-subtree) of
that subtree. Then T$ (Jf) is a reduced decision tree of rank at most r consistent with SQ
(Sf).

Proof. The proof is straightforward from the definitions of "rank" and "reduced," and the
observation that if a decision tree T is consistent with a sample S, then T is consistent
with any subset of S, and for every example < cT, /> in SJ (Sj) and for xt = x and <? =
(a,, ...,an), a, = 0 («,- = 1). D

For a term / over Vn, let var(t) = {x € Vn \ x or its negation x appears in t}. For a sam-
ple 5 and a term /, let S[t] = {<#, /> € S \ t(3) = 1}.

We say a decision tree Tis correct w.r.t. a sample 5 drawn from EX^() for a decision
tree Tv if for every example < 3, /> in S, /7<aT) = frJJt)-

Lemma 15 Suppose QF =)jfc + e(l - 2r;fc)/8 and Q, = 6(1 - 2r;fc)|S|/4(en/r)r. Suppose
also that S consists ofm examples drawn from EX^Ofor the target decision tree over Vn

of rank r and

Then with probability at least 1 - 6/2, RFINDT(S, r, QF, Qj) outputs a decision tree T.

Proof. Let Tv denote the target reduced decision tree over Vn of rank r to be learned, and
a sample S is drawn from EX^() for Tu.

First, we prove that with probability at least 1 — 5/2, a sample S is drawn such that
for all terms t over Vn, whenever \S^\ > Qi, the number of occurrences of classification
noise in 5M is at most QF • |SW|. Let a term t over Vn be fixed. By Hoeffding's inequality
lemma, whenever \S[t]\ > Q,, the probability that classification noise occurs more than
QF • \S[t] times is at most

and the lower bound on m implies that this is less than 5/(2 • 3"), Since there are at most
3" terms over Vn, the probability that for all terms / over Vn, the number of occurrences
of classification noise in S[t] is at most QF • \S[t]\ is at least 1 - 6/2. This completes the
proof.

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 59

Second, we assume that for all terms t over Vn, the number of occurrences of classfica-
tion noise in 5[(] is at most QF • \S^\ whenever \S^\ > Qt. We show that this assumption
implies that

for a term t over Vn, if there is a correct reduced decision tree T over
Vn - var(f) of rank at most r' w.r.t. S[t], then RFINDT(S[t], r', QF, Qj)
outputs a decision tree. (1)

We prove it by induction on r' and the number i of variables in Vn - var(t).
If r' = 0 or i = 0, a correct reduced decision tree T of rank at most r' w.r.t. 5[f) con-

sists of only a root node labeled either 0 or 1 (i.e., T = 0 or T = 1). By the above assump-
tion, |S[r]| < Q1, or F(0, S[t]) < QF • \S[t]\, or F(l, S[t]) < QF • |5(t)|. Hence RFINDT
outputs a decision tree.

Next suppose that (1) holds for r' - 1 and i, and for r' and z — 1. In the case that a
correct decision tree T w.r.t. S(t) consists of only a root node (i.e., T = 0 or T = 1), by
the above assumption, RFINDT outputs a decision tree T = 0 or T = 1. In the case that
T has more than two nodes, we prove that RFINDT cannot return "none" in step 5 and
4c. First we prove that RFINDT cannot reach step 5 and return "none." Let y be the variable
labeled at the root node in a correct reduced decision tree T of rank at most r'. Since RFINDT
will eventually find the variable y when both recursive calls for any other informative variable
x in step 4a are not successful, we assume that RFINDT chooses the variable y as an infor-
mative variable in step 4. (In the case that the variable y is not informative on S[t], either
Sft? or Sitf{ is empty. We assume that S[t£ is empty. Then S[t] = S^ = Sit^ and by lem-
ma 14, the 1-subtree of T is a correct reduced decision tree over Vn —
var(t A y) of rank at most r' w.r.t. S[rA>]. By the inductive hypothesis, RFINDT(Sltf,y], r',
QF> QI) outputs a decision tree, and so does RFINDT (S[t], r', QF, QI).) By the definition
of rank,

1. both the 0-subtree and the 1-subtree of T have the rank r' — 1, or
2. either the 0-subtree or the 1-subtree of t has the rank at most r' - 1 and the other has

the rank r'.

In both cases, by lemma 14, the 0-subtree of T is a correct reduced decision tree over
Vn — var(f) - {y} w.r.t. S[r^, and the 1-subtree is a correct reduced decision tree over
Vn - var(t) - {y} w.r.t. 5W|. By the inductive hypothesis, both recursive calls RFINDT
for Sw£ and S^ are successful, and hence RFINDT(S[t], r', QF, QI) outputs a decision tree.

Next we prove that RFINDT cannot return "none" in step 4c. Assume that in step 4a,
RFINDT(Si,]*, r' — 1, QF, QI) is successful for an informative variable x. Note that any
informative variable does not appear in the term t. If x does not appear in T, then T is
a correct reduced decision tree over Vn - var(t) — {x} of rank at most r' w.r.t. S[,j* =
5[r/u]. If* appears in T, then by lemma 14, 7f is a correct reduced decision tree over Vn -
var(t) - {x} of rank at most r' w.r.t. S[t]*. By the inductive hypothesis, RFINDT(S[tfl, r',
QF, QI) returns a decision tree. This completes the proof of (1).

Since TU is a correct reduced decision tree over Vn of rank r w.r.t. S, RFINDT(S, r, QF,
QI) outputs a decision tree with probability at least 1-5/2. D

60 Y. SAKAKIBARA

Lemma 16 For any nonempty sample S drawn from EXn() for a decision tree over Vn and
r > 0, the running time of RFINDT(S, r, QF, QI) is O(\S\(n + l)2r).

Proof. The proof is almost same as the one for the time analysis of the procedure FIND
by Ehrenfeucht and Haussler (1989).

Let t(i, r) be the maximum running time needed for RFINDT(S, r, QF, QI) when 5 is
drawn from EX n () for a decision tree over Vn of rank at most r and at most i variables
are informative on S. Let m = \S\.

If i = 0 or r = 0, then t(i, r) is clearly O(m). If r > 1, then the time required to test
whether F(l, S)/\S\ < QF or F(0, S)/\S\ < QF (step 1), to test whether |5| < QI (step
2), to determine which variables are informative (step 4), and to perform the other miscel-
laneous tests is O(mn). Each of the two recursive calls for an informative variable x in
step 4a takes time at most t(i — 1, r — 1), since the variable x is no longer informative
in either SQ or S[. Since there are at most i informative variables on S, these calls are made
at most i times in the course of the loop of step 4, which gives a total time for all execu-
tions of step 4a of at most 2it(i — 1, r — 1). The only remaining step is 4(c)i, where a
recursive call is made either to RFINDT(So, r, QF, QI) or RFINDT(Si, r, QF, QI) for some
informative variable x. This takes time at most t(i - 1, r). Since this step terminates the
loop, this call is made at most once. It follows that for r > 1,

which is bounded by O(mn(i + 1)2r-1 + m(i + l)2r) (see Ehrenfeucht & Haussler, 1989).
Since i < n and m = \S \, this implies that the running time for RFINDT(S, r, QF, QI)

is 0(\S\(n + l)2r). D

Theorem 17 NODT is a noise-tolerant Occam algorithm for decison trees of rank r.

Proof. It is straightforward from lemmas 13, 15, and 16. D

Now we have the main theorem.

Theorem 18 r-DT(ri) is polynomially learnable in the presence of classification noise.

Proof. Since r-DT(n) has polynomial representation size by lemma 12, it is straightforward
from theorems 5 and 17. D

Elomaa and Kivinen (1991) had independently achieved this result based on our result
(theorem 5) for noise-tolerant Occam algorithms and by using a similar technique to ours
shown in section 3.

Recently Blum (1991) has shown that every decision tree of rank r can be represented
as a decision list in r-DL, that is, r-DT(n) is a subclass of r-DL(n). The idea to construct
a decision list in r-DL corresponding to an aribitrary decision tree of rank r is as follows:
Find a leaf that is closest to the root in the decision tree. Form a term that corresponds
to the path from the root to the leaf. Add a pair of the term and the label of the leaf to
the decision list. Delete the leaf and the node closest to the leaf from the tree. Repeat the
above procedure until no leaf exists.

NOISE-TOLERANT OCCAM ALGORITHMS AND DECISION TREES 61

Combined with this result, it is straightforward to show that r-DT(n) is poly normally
learnable in the presence of classification noise in terms of r-DL(n) by using NODL. Now
it is interesting for us to compare the sample size needed by NODT with the one by NODL.
By lemma 15, NODT gives the sample size m > 128(en/r)r/e3(l - 2nb)

3 In (2 • 3n/5). By
lemma 8, NODL gives the sample size m > 128M/e3(l - 2nb)

3 In (2M+1 M/S), where
M = O(nr). Thus NODT might give a better bound than NODL.

5. Conclusions

We have focused on the problem of learning Boolean functions represented by decision
trees from noisy examples. We have developed a technique of building efficient robust learn-
ing algorithms, called noise-tolerant Occam algorithms, in the presence of classification
noise, and have shown that by using a noise-tolerant Occam algorithm for a class of Boolean
functions, one can construct a polynomial-time algorithm for learning the class in the
presence of classification noise. Next we have presented a noise-tolerant Occam algorithm
for k-DL and hence conclude that k-DL is polynomially learnable in the presence of
classification noise. This strictly increases the class of Boolean functions that are known
to be polynomially learnable in the presence of classification noise: the only example of
a class of Boolean functions that has been shown to be polynomially learnable in the presence
of classification noise is k-CNF (Angluin & Laird, 1988), and k-DL properly includes k-
CNF. Further, we have extended the noise-tolerant Occam algorithm for decision lists to
one for decision trees, and we conclude that the class of decision trees of rank at most
r is polynomially learnable in the presence of classification noise.

It is important for us to have empirical studies and to see how well our algorithms work
in a practical situation. Quinlan's (1986b) research is a good empirical study of the effects
of different sorts of noise on learning decision trees. Mingers (1989) has studied an empiri-
cal comparison of several pruning methods for learning decision trees. It is an interesting
future problem to evaluate our algorithms empirically and to compare the results to Quinlan's
results and to the results using those pruning methods for handling noisy data.

Acknowledgments

The author would like to thank the anonymous referees for their careful reviewing and
helpful comments. The author would also like to thank Manfred Warmuth, Masako
Takahashi, Philip Laird, and Jyrki Kivinen for their useful suggestions and comments. The
author would especially like to thank Robert Schapire for pointing out an error in lemma
8 on an earlier draft.

References

Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning 2, 343-370.
Anthony, M., & Biggs, N. (1992). Computational learning theory. Cambridge Tracts in Theoretical Computer

Science. Cambridge: Cambridge University Press.

62 Y. SAKAKIBARA

Blum, A. (1991). Basic argument for rank-k DTs being contained in k-DLs. Unpublished manuscript.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1987). Occam's razor. Information Processing

Letters, 24, 377-380.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis

dimension. Journal of the ACM, 36, 929-965.
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. Wadsworth

Statistics/Probability Series. California: Wadsworth International.
Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
Ehrenfeucht, A., & Haussler, D. (1989). Learning decision trees from random examples. Information and Com-

putation, 82, 231-246.
Elomaa, T., & Kivinen, J. (1991). Learning decision trees from noisy examples (Report A-1991-3). Helsinki: Univer-

sity of Helsinki, Department of Computer Science.
Goldman, S.A., Kearns, M.J., & Schapire, R.E. (1990). Exact identification of circuits using fixed points of

amplification functions. Proceedings of the Thirty-First IEEE Symposium on Foundations of Computer Science
(pp. 193-202). IEEE Computer Society Press.

Hoeffding W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58, 13-30.

Kearns, M.J. (1990). The computational complexity of machine learning. Cambridge, MA: MIT Press.
Kearns, M., & Li, M. (1988). Learning in the presence of malicious errors. Proceedings of the Twentieth Annual

ACM Symposium on Theory of Computing (pp. 267-280). New York: The Association for Computing Machinery.
Laird, P.D. (1988). Learning from good and bad data. Boston, MA: Kluwer Academic Publishers.
Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning,

4, 227-243.
Natarajan, B.K. (1989). On learning sets and functions. Machine Learning, 4, 67-97.
Pagallo, G.M. (1990). Adaptative decision tree algorithms for learning from examples (Technical Report UCSC-

CRL-90-27). Doctoral dissertation, Department of Computer and Information Sciences, University of Califor-
nia, Santa Cruz, CA.

Pith, L., & Valiant, L.G. (1988). Computational limitations on learning from examples. Journal of the ACM,
35, 965-984.

Quinlan, J.R. (1986a). Induction of decision trees. Machine Learning, 1, 81-106.
Quinlan, J.R. (1986b). The effect of noise on concept learning. In R.S. Michalski, J.G. Carbonell, & T.M. Mit-

chell (Eds.), Machine Learning: An Artificial Intelligence Approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.
Rivest, R.L. (1987). Learning decision lists. Machine Learning, 2, 229-246.
Schapire, R.E. (1991). The design and analysis of efficient learning algorithms (Technical Report MIT/LCS/TR-493).

Doctoral dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA.

Sloan, R. (1988). Types of noise in data for concept learning. Proceedings of the 1988 Workshop on Computa-
tional Learning Theory (pp. 91-96). San Mateo, CA: Morgan Kaufmann.

Utgoff, P.E. (1989). Incremental induction of decision trees. Machine Learning, 4, 161-186.
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.
Valiant, L.G. (1985). Learning disjunctions of conjunctions. Proceedings of the Ninth International Joint Confer-

ence on Artificial Intelligence (pp. 560-566). Los Angeles, CA: Morgan Kaufmann.

Received July 2, 1991
Accepted August 11, 1992
Final Manuscript August 20, 1992

