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News and Notes

1. Introduction

The News and Notes column of Machine Learning is intended to be a forum for let-
ters to the editor, announcements of conferences, descriptions of research projects,
summaries of conferences, and so forth. Contributions from the readership are
solicited. Submissions to this column should be sent to Dr. Thomas Dietterich,
Department of Computer Science, Oregon State University, Corvallis, OR, 97331
USA (tgd%oregon-state@csnet-relay).

2. International Meeting on Advances in Learning (IMAL)

IMAL is a five-day international seminar on Machine Learning being organized
by Yves Kodratoff and Ryszard Michalski. It will be held from July 28th to
August 1, 1986 in the wonderful alpine environment of Les Arcs (France). The
seminar will serve both as a summer school to introduce experts from different fields
to machine learning and as a forum for presenting selected technical papers. There
will be five invited lecturers giving tutorial presentations on different topics of
machine learning. A tutorial lecture will start each day. It will be followed by a
technical paper on a closely related topic. The invited lecturers are Yves Kodratoff
(Orsay), Ryszard Michalski (Urbana), Tom Mitchell (Rutgers), Roger Schank
(Yale), and Patrick Winston (MIT). In addition to invited lecturers, there will be
several commentators who will prepare questions and comments on each invited lec-
ture. They will chair evening sessions discussing each lecture. The commentators are
I. Bratko (Lyublyana), P. Brazdil (Porto), R. Holte (Uxbridge), and R. Stepp
(Urbana-Champaign).

The deadline for submission of papers will have passed by the time you read this,
but information about participation in the meeting can be obtained from Mme.
Christine de Monfreid, Laboratoire de Recherche en Informatique, Batiment 490,
Universite de Paris-Sud, F-91405 ORSAY Cedex, France. The participation fee is US
Dollars 300.

3. Machine learning at IJCAI-85
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The growing enthusiasm surrounding work in machine learning evidenced itself
at the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85)
held in Los Angeles during August, 1985. In addition to the first tutorial on
machine learning, conference attendees heard 31 learning papers - more than in
any previous IJCAI. A total of 75 learning papers were submitted (making it the
fourth most popular category, after expert systems, natural language, and
knowledge representation). All areas of work in machine learning - from in-
teractive knowledge acquisition to automated theory formation - were well repre-
sented.

Because of the diversity of topics, it is difficult to pinpoint the most interesting
or significant papers presented at the conference. Sound, high quality research
was presented in all areas. That in itself is a significant trend, because it
demonstrates that the area of machine learning is attracting competent newcomers
at a good pace. The area of explanation-based learning continued to receive lots of
attention. Perhaps the most significant new development has more to do with
methodology than science - namely, the focus on "learning apprentice systems".
The paper by Mitchell, Mahadevan, and Steinberg discusses the notion of a learning
apprentice as a learning system that watches an expert use a knowledge-based
problem solving system. The learning system can acquire new knowledge by ob-
serving the ways that the expert solves problems. It can even interrupt the expert
to ask some questions if it is having difficulty. Smith et al. describe another learning
apprentice system. In addition to the work on learning apprentices, many other
areas were also covered at the conference. Rather than attempting to select a
few papers for in-depth review, we have decided to present a broad description
of all of the different areas of machine learning that were presented at the
conference.

Table 1 shows the way that we have broken down the various parts of machine
learning. The top division is between automatic learning methods and interactive
methods. The interactive systems tend also to focus on knowledge acquisition in sup-
port of expert systems. Under the interactive systems, we examine (a) systems that
interview the user and (b) learning apprentice systems.

Under the heading of automatic learning systems, we break things into empirical
(inductive) and analytic (deductive) methods. The empirical methods, of course, have
received the most attention in the past, and many different aspects of empirical learn-
ing were discussed at the conference including (a) theories of inductive learning,
(b) methods for performing specific tasks (clustering, concept learning, etc.),
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Table ], Taxonomy of machine learning topics at IJCAI-85.

Learning and Knowledge Acquisition

1 . Interactive methods
a. Interviewing systems
b. Learning apprentice systems

2. Automatic methods
a. Empirical methods

i. theory
ii. specific tasks

- conceptual clustering
- concept learning
- learning search heuristics
- learning expressions
- scientific theory formation
- control of systems

iii. learning by experimentation
iv. formation of new terms

b. Analytic methods
i. macro operators
ii. explanation-based learning

(c) experimentation, and (d) formation of new terms. Work in analytical learning
is more focused, with two papers discussing the learning of macro operators and
several papers discussing methods and problems in the area of explanation-based
learning.

3.1 Interactive knowledge acquisition systems

Interactive knowledge acquisition systems focus on interacting with an expert in
order to create, debug, modify, or extend a knowledge-based expert system. Two
basic strategies have been pursued. One approach (exemplified by Bennett's 1985
ROGET system) concentrates on the interactive design of new knowledge systems.
The program interviews the expert in order to acquire the basic structure of the task.
The result produced by the program is a prototype expert system to which more
knowledge can be added. The other approach to interactive knowledge acquisition
takes over at this point. It aims to assist the expert as he or she adds knowledge (or
modifies existing knowledge) to improve the performance of the expert system. This
approach was first pursued by Davis (1982) in Teiresias. Recently, the term "learning
apprentice system" has gained prominence as a way of describing this second kind
of learning system.
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3.1.1 Interactive acquisition and design of knowledge-based systems

Three papers presented new results in this area. Kahn, Nowlan, and McDermott
describe MORE, a system for acquiring the design of diagnostic systems. Like
ROGET, MORE has a fairly strong set of expectations for how diagnostic systems
are constructed. It begins with categories such as hypotheses (i.e., basic causes of
faults or diseases - the goal of the diagnosis), symptoms, tests, test conditions,
symptom attributes, and symptom-conditions. By interviewing the expert, it con-
structs a kind of object/relation model of the domain. It has eight strategies for
eliciting the information from the expert. The body of the paper is a discussion of
these strategies.

Marcus, McDermott and Wang describe a more primitive system, SALT, which
acquires the initial knowledge base for a configuration system. Configuration
systems, such as Rl and VT, operate by constructing (configuring) a solution from
a starting set of components subject to various domain-specific constraints. SALT
is a menu-based editor that knows about the structure of three key types of expertise
for configuration systems: methods for configuring a component, constraints on
configurations, and fixes - that is, expertise about how to adjust a configuration
when some constraint is violated. SALT generates OPS5 rules which are then incor-
porated into a "configuration system" shell.

Lanka describes a method for automatically constructing a database schema from
examples of how the database will be used. This is a new kind of task that has not
previously appeared in the machine learning literature. The task is similar to that ad-
dressed by ROGET and MORE in that it involves identifying the key objects and at-
tributes in the domain and inferring their relationships. However, it is significantly
different in that the key constraints being applied by the learning system are
linguistic. The learning system analyzes example English questions that will be asked
of the database, and infers the structure of the database from these questions. For
example, from the question "Which faculty teach a course in the CIS department?",
the system infers that "faculty" and "course" are both entities and "course" is a
function of "department." The paper describes various problems that arise when
different examples yield conflicting analyses.

3.1.2 Learning apprentice systems

Apprenticeship learning systems were identified as a fruitful area of research in Tom
Mitchell's Computers & Thought lecture at IJCAI-83. These systems are defined as
"interactive knowledge-based consultants that directly assimilate new knowledge by
observing and analyzing the problem solving steps contributed by their users through
their normal use of the system." Two papers discussed learning apprentices at
IJCAI-85.

Mitchell, Mahadevan, and Steinberg describe a learning apprentice system for
VLSI circuit design called LEAP. This system is likely to be the precursor to a whole
generation of apprentice learning systems. This direction should be a healthy one for
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the machine learning field. It studies learning in the context of actual problem solv-
ing, it provides a nice framework for tapping into the rich knowledge that human
experts possess, and it emphasizes the justification of acquired heuristic rules via a
deep domain theory. The VLSI design system is an "abstract-refinement" design
system (in the terminology of Mostow, 1985). Its design operators show how to refine
a goal into subgoals. The body of the paper for the most part duplicates Mahadevan's
paper (see below) in which he shows how to apply the methods of explanation-based
learning to acquire new goal-subgoal rules. Readers should study the Mahadevan
paper first, and then read the Mitchell et al. paper (skipping the duplicate sections).

Smith, Winston, Mitchell, and Buchanan describe a learning apprentice for the
Dipmeter Advisor expert system at Schlumberger. The Dipmeter Advisor is similar
to many diagnostic expert systems. As in Teiresias, when the Advisor produces an
answer that is incorrect, the learning apprentice is engaged to repair the failure.
Unlike Teiresias, which relied on the expert to localize the missing or incorrect rule,
the system described by Smith et al. employs knowledge of the justifications for the
rules in order to accomplish this task. Rules that are justified as being'' definitional''
cannot be in error. Rules that are justified as "theoretical" are supported by a half-
order theory. They are only questioned if no other possible errors can be found.
Other rules, such as "default" rules and "abductive" rules have more complicated
justifications that can be checked. If the justifications hold, then the rules are as-
sumed to be o.k. Once the error is found, the system decides whether to ignore it (as
being a statistical outlier) or to modify the knowledge base so that it won't repeat
the error. In the latter case, it currently enters an interactive rule editor and allows
the expert to modify the indicated rule.

Both of these papers describe ambitious projects that are still under very active
development. The papers deserve careful study, and we can expect to hear more
about these projects in the future.

3.2 Automatic learning systems

These systems are intended to acquire knowledge without any interaction with a
human user. We first describe work on inductive (empirical) learning systems. Then,
we review the work on deductive (analytical) learning systems.

3.2.1 Inductive learning systems

Theory. Two papers presented theoretical results on inductive learning. In his paper,
Valiant extends his previous work on the learnability of concepts in polynomial time.
One of the most interesting aspects of this work is Valiant's probabilistic criterion for
determining when a learning system has successfully learned a concept. Let D + and
D - be the sets of all possible positive (and negative) examples of the concept (respec-
tively). Valiant views the learning system as an agent existing in some world where it is
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more or less likely to encounter these various positive and negative instances. Hence,
he assumes probability distributions over the D + and D - sets, distributions that in-
dicate the probability of observing any particular training instance. His criterion
doesn't insist that the program discover the "right" concept definition, but rather
that it find a concept description that handles all of the most common cases. There
are two kinds of errors that the learning program could make: (a) incorrectly labeling
a positive example as negative (type 2 error) and (b) incorrectly labeling a negative
example as positive (type 1 error). Valiant says that a program has learned a concept
when the total probability of making a type 1 error is less than 1/h and the total prob-
ability of making a type 2 error is also less than 1/h, for some positive constant h.
He is interested in algorithms for finding such concepts in time polynomial in h and
in t (the number of descriptors in the concept language). In his paper at IJCAI, he
describes extensions to his algorithms that (a) handle existentially quantified DNF ex-
pressions and (b) handle modest amounts of noise (but not both). He also sketches
how to implement an approximate version of his basic algorithm as a connectionist
model. Finally, Valiant presents some results concerning the learnability of "rules
of thumb" - that is, concept descriptions that handle only half of the examples. He
shows this to be very difficult in general.

The second paper of a theoretical nature is Segen's discussion of learning in the
presence of noise or exceptions. Segen is proposing a "bias" for resolving the
tradeoff between correctness and generality in noisy learning situations. This bias,
based on Kolmogorov complexity, views all concept descriptions as Turing machine
programs. Each such program is completely consistent with the data. Some programs
may achieve this consistency by using a lookup table containing all of the training
instances that have been observed. Other programs might consist of general rules that
cover all of the data. Still other programs will use a combination of a general rule
and a table of exceptions. This is the approach that Segen advocates. His bias prefers
the shortest program consistent with the training instances. He sketches a method for
constructing the "general rule" part of such a program as a conjunction of features.
The features are selected incrementally to satisfy the property of ultimately pro-
ducing the shortest program.

Specific learning tasks. Thus far in our review, we have classified the IJCAI papers
according to their learning methods. However, for inductive learning, the number
and diversity of methods makes this very difficult. In this section, we instead resort
to classifying the papers according to the learning tasks they are addressing.

Concept learning. This is one of the oldest areas of machine learning, and only one
paper was presented that described a practical algorithm for concept learning. Arbab
and Michie describe a modification to Bratko's AODCL (itself an extension of
Quinlan's ID3 system) to improve the efficiency of the descriptions that it produces.
IDS is one of the most successful induction algorithms, and it tends to produce con-
cept descriptions (in the form of decision trees) that can be evaluated very efficiently.
Unfortunately, these decision trees are very difficult for people to understand.
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Bratko observed that "linear" trees - that is, trees in which every node has at most
one child that is not a leaf node - are much easier to understand. He defined an in-
dex of linearity and modified ID3 to construct decision trees of maximum linearity
(subject to the constraint of consistency with the data, of course). Arbab and Michie
show that sometimes there are several trees of maximal linearity, and they augment
the algorithm to prefer the most efficient of these maximal trees.

Conceptual clustering. Two papers discussed methods of conceptual clustering.
Fisher and Langley present a nice review of approaches to this learning task. They
identify three (interdependent) tasks that must be addressed in conceptual clustering
methods: aggregation, characterization, and formation of hierarchies. Aggregation
is the task of partitioning the training instances into sets of disjoint clusters of similar
items. This step is unique to clustering. Characterization is the problem of finding
compact, general descriptions of the items in a cluster. This is very similar to the
problem of learning a single concept from examples. And many algorithms address
a third task of constructing a hierarchy of clusters according to their mutual similari-
ty. Fisher and Langley point out that most clustering methods do not solve these three
problems independently. Rather, most methods employ strategies - such as top-
down discrimination and characterization - that accomplish all three tasks-simul-
taneously. The paper describes these various strategies and explores other important
aspects of clustering algorithms.

The second paper, by Phelps and Musgrove, describes a domain-specific approach
to clustering two-dimensional binary images of people and animals. The method is
interesting because it gives additional weight to image features that occupy more
space in the image. Thus, it prefers to compare the "torsos" of people and animals
first, because this occupies the most area in the image. Then, it will compare the head
and limbs, and so on. The result is a classification hierarchy of objects that parallels
the size hierarchy of body parts.

Search heuristics. Ever since the first presentation of Mitchell, Utgoff, and
Banerji's LEX system (at IJCAI-81), there has been a significant amount of attention
devoted to the learning of search heuristics in forward-searching problem solvers.
IJCAI-83 saw the presentation of at least five papers describing such systems. Now,
the flurry of interest seems to have died down. There is only one paper at IJCAI-85
on this topic-that of Neves. Neves' ALEX system learns operators and search
heuristics for simple algebraic problem solving by analyzing worked-out problems in
textbooks. In this sense, it is like VanLehn's Sierra system, which learned to subtract
as well as to solve simple algebraic equations. ALEX is much simpler, however. It
begins with a set of operators for the physical manipulation of equations (e.g.,
adding and deleting single terms). By analyzing worked-out problems, it learns (a)
legal operators (e.g., add something to both sides of an equation), (b) recognizers for
the legal operators (rules that compare the before and after equations and decide
which operator was applied), and (c) search heuristics for operators. The learning
process is unusual in that it is a non-incremental one-shot process. A fixed sequence
of generalizing transformations is applied to generalize a specific example of an
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operator-application to obtain a search heuristic. Once constructed, these search
heuristics are never modified. The generalization transformations appear to be very
domain-specific.

Expressions (function induction). One view of the general problem of induction
is that the learner is given a set of training examples, each of which specifies the values
for a set of variables. The task of the learner is to notice systematic patterns relating
the variables. Ideally, the relations are highly constraining, so that, given the values
for some of the variables, values can be predicted for the other variables. In concept
learning, one of the variables indicates the "class" of the training instances, and the
task is to predict its value given the values of the remaining variables. In the work
of Langley and his colleagues on the BACON system, the task was to find functional
relationships among numerically-valued variables. Functional relationships can be
represented as arithmetic expressions, so it makes sense, in such domains, to search
a space of arithmetic expressions. Brian Falkenhainer at this IJCAI described work
which extends the work of Langley et al. in two directions. First, he describes two
heuristics (proportionality graph and units analysis) that are useful for constraining
the search of expressions. Second, he presents a method for learning piece-wise func-
tional relations (i.e., the overall function is made up of an exclusive disjunction of
separate functions over different regions of the instance space).

Control systems. Another area of long-time interest in AI is learning control
systems. These are real-time control systems that have some kind of adaptive capabil-
ities. Three papers related to this topic were presented at the conference. Selfridge
and Sutton describe a system that learns to control a simple robot cart running be-
tween two stops (in one dimension). The task is to balance an upright pole on the
cart and avoid touching the stops. The cart is controlled through the application of
a constant force in either of the two directions of movement. The learning task in-
volves learning when to apply these forces as a function of the position of the cart,
the angle of the pole to the vertical, the velocity of the cart, and the rate of change
of the angle. The "concept" is represented as a vector of weights that is applied to
the vector of the observable input values. The learning algorithm adjust these weights
in response to feedback from the environment whenever the pole falls or the cart
strikes one of the stops. The overall learning task is quite difficult, because of the
sparseness of the feedback. However, the authors show how learning can be ac-
celerated by first teaching the system a simple task (e.g., balancing on a longer track,
with a heavier pole, etc.) and then presenting it with increasingly more difficult tasks.
There is significant transfer from one task to the next, and overall learning time of
the final task is shortened.

The other two papers describe learning systems based on the genetic algorithm, a
general search method created by John Holland. The papers summarize Ph.D.
dissertations; they provide a good introduction to this flavor of machine learning
research. One paper, by Goldberg, describes an application to the control of a natural
gas pipeline. The other paper, by Schaffer and Grefenstette does not deal exclusively
with control, but since it also employs the genetic algorithm, we have included it here.
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When the genetic algorithm was first adapted to work with rule-based systems by
John Holland in 1978, it searched a space of rules. Beginning with the work of Smith
in 1980, several researchers have investigated searching the space of production
system programs (sets of rules). For this latter case, Schaffer and Grefenstette have
discovered that on multi-objective problems, such as pattern classification with more
than two pattern classes, the search does not converge to an adequate program. Cor-
recting this problem is shown to require the use of multidimensional measures of pro-
gram fitness by the learning critic. Modifications to the genetic algorithm to allow
this are described.

Goldberg applies a learning classifier to gas pipeline control and inertial object
control. His system uses the genetic and bucket brigade algorithms to apportion
credit among rules. The bucket brigade is an analog to an internal service economy
with bidding and action. It was also developed by Holland and is as important an
idea as the genetic algorithm itself. This paper does not extend the theory of genetic
or bucket brigade algorithms, but it does provide a convincing example of their
effectiveness.

Scientific theory formation. Thagard and Holyoak describe an application of
machine learning methods to issues in the history and philosophy of science. The
specific case in question is the discovery of the wave theory of sound. Thagard and
Holyoak have developed and implemented a reconstruction of the process by which
this theory might have been discovered. Four processes are involved: (a) instance-
based generalization (a simple form of concept learning in which rules of the form
' 'All A's are Bs' are learned from examples of A's that are B's), (b) condition-based
generalization (simple generalization of the left-hand sides of implication rules), (c)
abduction (backward chaining from observed effects to infer causes), and (d) concep-
tual combination (defining a new concept by combining aspects of existing concepts
and resolving conflicts). Of these, conceptual combination is the most interesting. It
is used to construct the concept of "sound wave" by combining properties of "sound"'
(e.g., spreads spherically, reflects) with the concept of "wave" (e.g., reflects, spreads
in 1 or 2 dimensions). Conceptual combination differs from simple conjunction of two
concepts because conflicts (like spherical vs. 1 or 2 dimensions) must be resolved.

Episodic memory. An interesting induction system is Salzberg's Handicapper,
which predicts the results of horse races. Handicapper has an episodic memory of
previous horse races, and it applies a set of four basic heuristics to generalize these
memories in response to prediction failures. The heuristics are (a) blame attributes
about which you know very little (unusualness, lack of knowledge), (b) blame incon-
sistent features, (c) prefer gradual modifications (avoid blaming attributes that would
entail major changes to the memory), and (d) prefer explanations involving spatio-
temporal proximity. The system starts with a weak causal model of horse racing. It
learns rules that relate some conjunction of features of a horse to the probability that
it will win when raced against horses with different features. The system out-performs
the published predictions of experts in the Daily Racing Form.

Forming new terms. The new term problem is, of course, a central problem of in-
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duction. At IJCAI, four papers presented new work on this problem. Judea Pearl's
paper presents a method for proposing new random variables to simplify the descrip-
tion of a set of binary random variables. The basic idea is as follows. You are given
several .training instances, each of which specifies the values for a vector of binary
random variables. In order to simplify the description of this data, you propose that
whenever two variables appear to be correlated, there are "hidden variables" that
are "causing" the observed correlation. Pearl shows how to work backward from
the observed variations to define these hidden variables in such a way that the ob-
served variables are conditionally independent (i.e., once the values of the hidden
variables are known, no unexplained observable correlation remains). Pearl shows
that any set of random variables can be "explained" in this manner by a tree of
hidden variables, and he presents an algorithm for uniquely reconstructing this tree.

Heeffer describes the results of a method for learning good descriptive terms in
chess. The method first analyzes each available primitive descriptor for its "satisfac-
tion factor" - the degree to which it is satisfied by the training data. New terms are
built by combining primitive terms under guidance from the user. The new terms are
evaluated by an unusual method in which the program (using the terms) attempts to
reconstruct a complete chess position by asking binary questions. Terms (i.e.,
predicates) that are commonly satisfied are converted to binary questions and asked
before less commonly satisfied predicates.

Rendell also addresses the problem of finding good descriptive terms in chess. He
applies a method that starts by comparing the discriminating power of primitive
features with respect to the overall learning task (e.g., discriminating won from lost
positions). Features with similar discriminating power are assumed to be related in
some way. Rendell's method assumes that the feature values are at least ordinal and
that they are comparable (i.e., they range over the same value set). Features that ap-
pear to be similar are "superimposed" (i.e., merged and checked for combined
discriminating power) to assess their similarity. The result is a grouping of features
into sets of features with similar discriminating power. Conjunctive pairs of features
are formed by taking the cross products of two feature sets with different dis-
criminating power. The superposition method is again applied to evaluate the dis-
criminating power of these conjunctive pairs. This yields a set of pairs called a' 'struc-
tural pattern class". This class is then extended by considering translations and rota-
tions (on the chess board) that map one element of the class into another. In this way
patterns such as "pair of diagonal supporting pawns" are constructed. This some-
what complicated method has been tested on the 15 puzzle.

Fu and Buchanan present a method for generating intermediate concepts (and
associated rules) in a hierarchial knowledge base of production rules. For example,
if the knowledge base contains the rules LI => M, LI => M, LI => HI, and L2 =>
HI (where LI and L2 are "low level" observables, HI is a "high level" conclusion,
and M is an intermediate concept), then their system will propose a new rule M =>
HI if it does not lead to a contradiction. New intermediate concepts are proposed
by naming conjunctions. If the rule base contains LI => H1, L2 => H1, LI => H2,



NEWS AND NOTES 237

and L2 => H2, then this can be re-expressed as L1 => H1 A H2, L2 =» H1 H2. A
new term (say G0001) is created for HI A H2, and the rules are reformulated as L1
= G0001.L2 => G0001.G0001 =» and GOOOl =» H2. All of these rules have con-
fidence factors attached, so the new rules are not necessarily deductive consequences
of the old rules. Indeed, the new rules may out-perform the old. The method has been
tested in an expert system for diagnosing Jaundice. The new intermediate conclusions
have been associated directly with existing medical concepts, and they lead to better
understandability and improved explanation generation.

One point that strikes the reader of these papers on new term creation is that they
are very difficult to understand. At present, we lack good words for describing the
specific term-formation tasks and methods. Any attempts to clarify the current
muddle would be a valuable contribution to the field.

Learning by experimentation. A major problem with existing inductive learning
methods is that they necessarily rely on a large set of training examples. These must
be gathered and classified by a teacher. Research into experimentation explores the
benefits and problems of having learning systems gather their own training examples.
Rajamoney and DeJong describe some beginning work in this area. Their system
discovers "osmosis" by placing two solutions in adjacent reservoirs separated by
what turns out to be a permeable membrane. The system notices that the concentra-
tions of the solutions change over time, and it attempts to figure out why. It knows
about five fundamental physical processes and their preconditions, and it uses these
to generate possible explanations by questioning the correctness of these precondi-
tions. Discrimination experiments are constructed to determine which of the possible
preconditions is being violated in the current situation. These experiments are quan-
titative rate experiments - that is, the physical apparatus is modified so that the
relative rates of alternative processes (corresponding to alternative hypotheses) are
modified to enhance one and reduce the others. Then the rate of the osmosis is
measured. This isolates the correct hypothesis. The work demonstrates one particular
method of hypothesis formation and experiment design. There are, of course, many
other methods that need to be investigated before we obtain a good understanding
of the role of experimentation in machine learning.

5.2.2 Deductive learning systems

Learning macro operators. Two very similar papers on learning macro operators
were presented at this IJCAI. Both papers address the problem of when to save an
operator sequence as a macro move. When macros are saved and considered in the
problem solving process just like any other operator, problem solving can be slowed
because of the cost of checking all of the available macros. Clever indexing schemes
can lessen this problem to some extent, but the need to index the macro both by the
starting state and by the desired goal state (or region) makes this very difficult.
Minton's system saves macros in two different situations. First, so-called "S-
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macros" are constructed whenever a given sequence of operators has been used
twice. Operator sequences are always saved, but they aren't converted into macros
until the same sequence is encountered a second time. Once they are converted into
macros,.they are maintained in a pool of macros of fixed size, with macros being
replaced according to an LRU discipline. The second situation in which macros are
saved is when the macro encodes a "trick" - that is, a sequence of operators that
overcomes a local maximum in the value of the static evaluation function (i.e., by
taking a few "bad" moves to get to an even better state). These "T-macros" are
always created, and they are never forgotten. Minton demonstrates the value of his
macros on a synthetic robot planning problem.

Iba independently discusses what he calls the "peak-to-peak" heuristic, which
amounts to creating "T-macros" that span local "valleys" in the values of the static
evaluation function. Iba shows the power of these macros for solving the "HI-Q"
puzzle.

Explanation-based learning. There has lately been a significant wave of interest in
explanation-based learning (EBL). In this paradigm, the learning system observes
some unusual or surprising event. It proceeds to construct an explanation for the
event, and then it generalizes this explanation so that it covers an entire class of
similar events. In most of the current work, the "explanation" is actually a proof,
based on prior knowledge, that the unusual event should have occured. Hence the
system already knew, in principle, that the event would occur, and the goal of
explanation-based learning is to make that knowledge explicit and efficiently-
applicable. At IJCAI, six different papers were presented that focused on
explanation-based learning.

Two papers focused on learning by reading and explaining stories. Dolan and Dyer
describe an explanation-based learning system that learns "morals" by reading
fables. Their representation for "morals" views them as heuristics about planning
errors to be avoided. For example, in the famous fable about The Fox and the Crow,
the Fox tricks the Crow into dropping a piece of cheese that it is holding in its mouth.
The Fox does this by appealing to the Crow's vanity-he praises the Crow's voice
and asks it to sing. The author's learning system acquires the concept of being
SUCKERED (i.e., the planning failure of allowing someone else to take advantage
of your dormant goals by providing one of the missing enablement conditions on that
goal) by combining the existing concepts of CONF-ENABLE (failing to maintain
a goal of possessing something by attempting to achieve a second goal) and
ULTERIOR (failing to detect an ulterior motive in an ordinary request). The new
concept is generalized by analyzing the constraints inherited from ULTERIOR and
CONF-ENABLE. Constants are variablized, subject to the inherited constraints.

DeJong is one of the originators of the explanation-based learning paradigm. He
and Mooney give a comprehensive description of their system for acquiring new plan-
ning schemata by reading stories. Their favorite example - learning the concept of
kidnapping - involves combining existing concepts of theft and bargaining. They
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give a clear and detailed description of the methods by which their system attempts
to understand a new story about kidnapping. The understanding process is virtually
a theory-formation process in which the system searches for motives for the actors.
Preexisting plan schemata are employed to find these motives, and the resulting
structure is then analyzed and generalized. The generalization process is similar to
the "lifting" process employed in STRIPS. First, all constants are turned to
variables. Then, the various constraints attached to the preexisting schemata are re-
imposed. Only those constraints needed to maintain the causal connections between
the schemata and the well-formedness of the final concept are included.

Two other papers explored EBL in the context of learning about electronic circuits.
Mahadevan describes the methods employed to learn goal/subgoal refinement rules
for the learning apprentice of the Rutgers VLSI expert system VEXED. In this learn-
ing situation, the learning apprentice has observed the expert perform a refinement
that it has never seen before. The learning system starts by attempting to prove that
this refinement will actually work (i.e., verify the refinement step). If this proof suc-
ceeds, then the proof is generalized by a process of goal regression. A generalized ver-
sion of the goal of the circuit is regressed through the proof to obtain a generalized
version of the corresponding subgoals. After some additonal steps, this yields a
generalized goal/subgoal refinement operator. Examples are given for refining
(AND (OR a b) (OR c d) in terms of (NOT (OR (NOT (OR a b)) (NOT (OR c d))))
and for reducing an integral of a sum to the sum of two integrals. Mahadevan iden-
tifies some problems with the goal regression approach. The weakest precondition
(which is normally computed by goal regression) is too weak to be useful in this do-
main (i.e., it usually is a disjunction). He uses the particular example to select one
of the disjunctions. Also, the quality of the resulting goal/subgoal rule is determined
by the generality of the proof that was developed to prove the correctness of the ex-
pert's refinement.

In a closely related paper, Ellman describes an EBL method that learns design
methods in the domain of sequential logic circuits. The method is illustrated
generalizing a circular shift register, supplied by the expert, into a general circuit
schema capable of computing any permutation of the input bits. Ellman's circuits
are described in a high level language of multiplexers and registers, in contrast to the
work of Mahadevan, which works at the gate level. As above, the first step involves
applying a theory of how all of the circuit components work to verify that the circuit
satisfies the given functional specification. Then, the functional specification is
generalized by replacing constants, such as "timel" with variables, to form an over-
general specification. The specification is constrained by regressing it (back-
propagating it) through the proof tree. The shortcomings of the proof-based
paradigm are apparent in Ellman's example, because, although it does generalize the
circuit substantially, it is not able to generalize the four-stage shift register to an "n"-
stage shift register. This is because the proof was not sufficiently general.

Shavlik describes yet another EBL system. This one models the process of learning
about conservation of momentum in physics class. The system initially has a power-
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ful mathematical problem solving capacity and knowledge of Newton's laws of mo-
tion. Problems are presented to the system, which it attempts to solve. Upon failure
(which is always due to search constraints, not lack of basic knowledge), the system
prompts the teacher for a worked solution, which is analyzed to prove that it is cor-
rect, and then generalized and remembered for future use. The system departs
somewhat from the basic EBL framework described in the previous four papers in
the way that it constructs the proof of correctness of the teacher's solution. The
system has a kind of qualitative theory of equation solving that includes such notions
as "cancellation". It observes that the teacher needs to cancel the quantity that we
call the momentum. The teacher employs an instance of the equation for conserva-
tion of momentum (i.e., that the total momentum of the system is unchanged over
time) in order to obtain the needed quantity for cancellation. Hence, the system
focuses its efforts on verifying the equation of conservation of momentum. It is able
to do this by reference to Newton's laws. By analyzing the proof tree, it is then able
to determine that the equation is valid for any number of bodies and in the presence
of external forces.

The final paper on explanation-based learning reviews one of the basic
mechanisms involved: goal regression. Most of the five previous papers can be view-
ed as employing goal regression to generalize the specific proof that has been
developed. The task of goal regression can be described as follows. Given a sequence
of operators (S) and a goal (G), determine the weakest precondition (P) of the goal
with respect to the operators. In other words, determine the minimum conditions (P)
that must be satisfied prior to the application of the operator sequence (S) in order
that the goal (G) will be achieved.

Porter and Kibler review this task and describe two methods for performing it. The
first method is analytic constraint back-propagation. For each operator OP in the
operator sequence S, a regression operator OPr is defined. Each regression operator
maps intensional descriptions of goal states into intensional descriptions of weakest
preconditions for operator OP. For example, if OP is the STRIPS operator "unstack
(x, y)'', which unstacks block x from on top of block y, and G is the goal clear (C),
then the regression operator OPr maps clear (C) into the weakest precondition (y =
C) V clear (C). Given regression operators for each operator in the sequence S, it is
easy to compute the weakest precondition P with respect to the goal G. We simply
apply the regression operators in reverse order, progressively back-propagating G
until we arrive at the start of the operator sequence, where we obtain P.

Porter and Kibler point out several important conditions that must be met in order
for analytic constraint back-propagation to be feasible. First, it is necessary to obtain
regression operators for each operator in the sequence 5. This can either be ac-
complished by providing such regression operators to the learning system or by
having the learning system automatically derive them by analyzing the definitions of
the forward operators. In LEX-2, for example, Utgoff provided the system with the
necessary regression operators. Porter and Kibler discuss in detail the problem of
automatically deriving the regression operators. For operators represented as
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STRIPS rules (and similar representations, such as the authors' relational models),
this can be accomplished fairly easily. However, if the operators are represented as
arbitrary procedures, it is a very difficult (if not impossible) task.

The second requirement for performing analytical constraint back-propagation is
that the goals be represented in some explicit, relational form. The authors mention
this in passing, but it is certainly true that if the goal G is only represented as a
recognition procedure, then it will be almost impossible to analytically back-
propagate it through the operator sequence.

The third requirement discussed by Porter and Kibler is that the representation
language for describing goals must be closed over the set of regression operators. In
other words, it must be possible to regress an arbitrarily chosen goal through any se-
quence of regression operators and still be able to capture the resulting weakest
precondition within the representation language. They demonstrate that the
representations employed by Utgoff in LEX-2 and by Minton in his Gomoku system
both lacked this property, which places limits on the generality of those systems.

The second method for accomplishing the task of goal regression is empirical goal
regression. Porter and Kibler describe their method, which works by applying the
operator sequence S in the forward direction (to selected starting states) to gather
training examples of its behavior. The learning system then classifies these training
examples depending on wether or not they lead to the desired goal G. The positive
training examples are then generalized (via ordinary inductive inference) to obtain
an approximate description of the weakest precondition P for achieving the goal G.
This method avoids all three of the requirements listed above for the analytical con-
straint back-propagation method. Regression operators are not needed, the goal G
can be represented by an opaque procedure, and the representation language need
only be capable of representing a "useful partial characterization" of the weakest
precondition, rather than a completely accurate one.

Their method does have one important requirement of its own, however. It must
be possible for the learning system to construct representative starting states to which
it can apply the operator sequence S. Porter and Kibler describe their method of
"perturbations" which solves this problem by taking a teacher-supplied example and
perturbing it in various (pre-specified) ways to obtain additional training examples.

It is worth noting that this empirical goal regression is closely related to the method
employed in LEX by Mitchell, Utgoff, and Banerji. The problem generator in LEX
employs two fairly sophisticated methods for generating starting states. These star-
ting states are then processed to yield positive (and negative) examples of the suc-
cessful application of a single operator. The examples are generalized, via the version
space algorithm, to construct heuristics that recommended when the single operator
in question should be applied. The chief difference between LEX and the Porter and
Kibler approach is that the heuristics learned by LEX are not "weakest precondi-
tions" but rather stronger statements that say not only when application of the
operator will lead to a solution, but also when the operator will lead to a solution
more quickly than any other operator.
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In summary, the paper by Porter and Kibler raises important points about the
method of constraint back-propagation and describes an interesting alternative
method. They call for further study of methods that combine analytical and em-
pirical goal regression.

One important terminological point arises in reading the paper by Porter and
Kibler. When they speak of regression operators, they employ the term "inverse
operator." Previous papers in this area (e.g., Utgoff, 1983) have used this term as
well, but it is very misleading. If an operator OP maps elements of a domain set D
into a range set R, then the inverse operator, OP -1 , maps elements of R into D. This
is very different from a goal regression operator, which maps intensional descriptions
of subsets of R into intensional descriptions of subsets of D. In fact, it is possible
to construct regression operators for operators that lack true inverses. In his disserta-
tion, Utgoff began using the term "backwards operator" to refer to regression
operators. Unfortunately, this term has already been used by Nilsson (1980) to
describe backward-chaining production rules. In this review, we have employed the
term "regression operator," which is consistent with Waldinger's (1977) use of the
term "regression rule" to describe his mechanism for computing weakest precondi-
tions. The study of regression operators and their relationship to other logical and
algebraic rules of inference is an important area for future research.

3.3 Concluding remarks

This concludes our review of the sessions on learning and knowledge acquisition at
IJCAI-85. As the preceding pages show, research in machine learning has been
vigorous and fruitful, and we can look forward to a continuation of good work in
this area.

References

Bennett, J.S. (1985). ROGET: A knowledge-based system for acquiring the conceptual structure of a
diagnostic expert system. Journal of Automated Reasoning, 1, 49-74.

Davis, R., & Lenat, D. (1982). Knowledge-based systems in artificial intelligence, McGraw-Hill.
Mostow, D. J. Toward better models of the design process. AI Magazine, 6(1), 44-57.
Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga Press.
Utgoff, P.E. (1983). Adjusting bias in concept learning. Proceeding of the International Workshop on

Machine Learning, University of Illinois.
Waldinger, R. (1977). Achieving several goals simultaneously. In E.W. Elcock & D. Michie, (Eds.),

Machine Intelligence 8. New York: Halstead and Wiley.


