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Editorial: Human and Machine Learning

The goals of machine learning

One can identify a number of different themes within the machine learning
community, each corresponding to central goals of its parent field, artificial
intelligence. For instance, many Al researchers are concerned with implementing
knowledge-intensive systems, but these often take man-years to construct. Machine
learning may provide methods for automating this process, promising consider-
able savings in time and effort. Similarly, many AI researchers view artificial
intelligence as a scientific discipline rather than an engineering one, and hope to
formulate general principles of intelligent behavior that hold across a variety of
domains. Since machine learning focuses on the acquisition of domain-specific
knowledge rather than the knowledge itself, it holds considerable potential for such
general principles.

Still other AI researchers are concerned with explaining human behavior,
viewing Al techniques as an ideal tool for stating complex theories of the human
information processing system. Since learning is a central phenomenon in human
cognition, these researchers evaluate machine learning methods in terms of their
ability to explain human learning. Although this is a minority opinion within
machine learning, below we present some reasons why more members of the field
should take this approach seriously.

Science as search

One of the central insights of Al is that intelligence involves search, and that
effective search is constrained by domain-specific knowledge. This framework can
be applied to problem solving, language understanding, and learning from
experience. One can even apply this search metaphor to machine learning as a field
of scientific study. In this framework, machine learning researchers are exploring a
vast space of possible learning methods, searching for techniques with useful
characteristics and looking for relations between these methods.

Expanding on this analogy, any domain-specific constraints that we can place on
this search should. ease our task considerably. In particular, our knowledge of
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human learning provides an important set of constraints on our models of learning.
Some of this knowledge is limited to specific areas, but other aspects (such as the
incremental nature of human learning) hold across domains. We will not argue that
all machine learning research should attempt to model human behavior, but we feel
the field as a whole would benefit by paying more attention to human learning
phenomena. We will see that, in many cases, there already exist empirical laws of
human learning that are waiting for process explanations. In turn, these results can
guide our search through the space of possible learning mechanisms.

Below we consider some examples of successful machine learning models of
human behavior. At least two senses of ‘success’ are relevant to our discussion. The
most obvious is that an Al system may account for well-established phenomena in
human learning, making it a useful computational theory. The second sense is more
subtle — the methods incorporated in the program may lead to other interesting Al
systems, whether or not they model human learning. We will see examples of both
types of success.

The elementary perceiver and memorizer

One of the earliest Al systems was Feigenbaum’s (1963) EPAM, a model of human
behavior on verbal learning and memory tasks. Experimental psychologists had
long studied human memory using nonsense syllables, and by the 1950s they had
converged on a number of robust empirical generalizations. These laws summarized
behavior in both paired associate tasks and serial learning tasks, and included
regularities such as the serial position effect and selective forgetting.

EPAM modeled these pheonmena, using a discrimination network to represent
associations and using the processes of discrimination and familiarization to modify
these networks. One might argue that experiments with nonsense syllables tell us
little about the human information processing system, since our memories handle
such abstract input only rarely. Despite this criticism, EPAM still stands out as the
first computational model that accounted for a large body of psychological data. As
such, it serves as a useful prototype for future attempts to model human learning
and memory.

However, EPAM’s effect on machine learning goes beyond its success as an
initial psychological model. The system’s use of discrimination nets influenced
Hunt, Marin, and Stone’s (1966) design of their CLS system, and this in turn led to
Quinlan’s (1986) well-known ID3 system for learning from examples. Feigenbaum’s
early work on EPAM has also impacted recent work on incremental models of
concept formation and conceptual clustering. For instance, both Lebowitz (1982)
and Kolodner (1983) represent memory for concepts as a sophisticated discrimin-
ation network, and employ extensions of EPAM’s methods to acquire these
memory structures.
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Production system models of learning

Research on production system models of human cognition provides another
success story. Newell (1967) originally proposed production systems as a model of
the human cognitive architecture, and listed as one attraction their ability to
account for the incremental nature of human learning. In fact, one of the earliest
implemented production system programs was Waterman’s (1970) poker player,
which learned from experience. After this initial work, most research on
production systems focused on performance until the late 1970s, when learning
again emerged as a central topic in Al and cognitive psychology.

Anderson and his colleagues used the ACT production system architecture to
model a variety of learning phenomena. In particular, Anderson (1982) has
described the process of knowledge compilation, which consists of transforming
declarative knowledge (propositions) into procedural form (production rules) and
gradually combining these rules into larger chunks. Knowledge compilation
accounts for general speedup effects observed in human learning. Anderson’s
theory also explains why sufficient practice eliminates the effects of set size in
short-term memory experiments, and how Einstellung arises from problem solving
experience.

Other researchers (Anzai & Simon, 1979; Langley, 1982; Ohlsson, 1983) have
also used production systems to model human learning. However, the ‘adaptive’
production system approach has also migrated outside the realm of cognitive
simulation. In fact, nearly all research on the task of learning search heuristics
(Mitchell, Utgoff, & Banerji, 1983; Langley, 1985; Laird, Rosenbloom, & Newell,
1986; Porter & Kibler, 1986) has been carried out within the production system
paradigm. Although few of these researchers were concerned with human
behavior, their work clearly benefited from earlier attempts to use production
systems as psychological models of learning.

Open areas in computational models of learning

Although machine learning research has contributed significantly to our under-
standing of human learning (and vice versa), much more remains to be done. Let
us consider some areas that seem ripe for computational theories of the learning
process. In each case, a number of solid empirical results exist, but few process
models have been proposed that address these results.

Perhaps the most obvious area is first language acquisiton. Experimental work
and diary studies have converged on a common picture of the major stages that
children traverse in learning their first language. Children begin their linguistic
careers saying one word at a time, then move into a multi-word stage in which
function words like the and ing are absent. They gradually master the nuances of
these function words and gradually recover from overgeneralizations such as foots
and runned. Only later do children acquire more complex forms like negation and
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passive constructions.

Although language acquisition has long been a major topic within machine
learning, only a few researchers have attempted to model first language learning in
humans (Selfridge, 1981; Langley, 1982; Hill, 1983). Undoubtedly, one problem is
that language development is a complex field in its own right. However, this field
would benefit greatly from computational models of the language learning process,
and machine learning would benefit in turn from careful attempts to account for the
child language data.

Unlike language acquisition, the domain of human motor learning has received
almost no attention within machine learning. However, this is another area in
which significant empirical results exist with no computational theory to explain
them. For instance, motor learning appears to involve a gradual shift from slower,
feedback-based ‘closed loop’ processing to faster ‘open loop’ behavior in which
little or no feedback is used. Also, there is considerable transfer between motor
skills involving the same basic structure but differing in speed and force, but little
transfer when the structure is altered. Methods from machine learning hold real
potential for explaining these phenomena, providing a solid theoretical framework
for future work on motor behavior. In turn, attempts in this direction might force
us to develop new learning mechanisms, influencing machine learning research in
other domains.

A third area involves the problem of concept formation. Although concept
learning has been a mainstay of the machine learning community, most research in
the area has ignored a number of well-established psychological phenomena. For
instance, few human concepts can be defined in terms of necessary and sufficient
conditions, and the evidence suggests that some form of prototype-based or
probabilistic scheme is necessary. Also, basic level categories (Rosch & Mervis,
1975) appear to have a special status in human memory, being retrieved more
quickly and being acquired earlier than other concepts. Finally, many human
concepts seem to be defined functionally, in terms of the procedures in which they
take part. Although some machine learning research has started to address these
issues, we need more work on concept formation that is constrained by our
knowledge of human concept learning. Such research would yield a better
understanding of human concepts and their acquisition, but it should also lead to
improved methods for nonhuman concept learning.

Summary

Although science can be characterized in terms of search, some search methods let
one explore multiple paths in parallel. We have argued that more machine learning
researchers should focus their efforts on modeling human behavior, but we have
not argued that the field should limit itself to this approach. For those interested in
general principles, the study of nonhuman learning methods is also necessary for
useful results. In terms of applications, some of machine learning’s greatest
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achievements have involved nonincremental methods that are clearly poor models
of human learning. Planes are terrible imitations of birds (and fly less efficiently),
but there are still excellent reasons for using aircraft.

However, we do believe that too little research has focused on results from the
literature on human learning, and that greater attention in this direction would
benefit the field as a whole. Science is a complex and bewildering process, and the
scientist should employ all available knowledge to direct his steps in useful
directions. This strategy seems especially important in young fields like machine
learning, in which conflicting views and methods abound. We encourage the reader
to join us in applying machine learning techniques to explain the mysteries of
human behavior, and in using knowledge of human behavior to constrain our
computational theories of learning.

Pat Langley
University of California, Irvine
Langley @ CIP. UCI. EDU
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