Skip to main content
Log in

A Strongly Semismooth Integral Function and Its Application

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

As shown by an example, the integral function f :ℝn → ℝ, defined by f(x) = ∫a b[B(x, t)]+ g(t) dt, may not be a strongly semismooth function, even if g(t) ≡ 1 and B is a quadratic polynomial with respect to t and infinitely many times smooth with respect to x. We show that f is a strongly semismooth function if g is continuous and B is affine with respect to t and strongly semismooth with respect to x, i.e., B(x, t) = u(x)t + v(x), where u and v are two strongly semismooth functions in ℝn. We also show that f is not a piecewise smooth function if u and v are two linearly independent linear functions, g is continuous and g ≢ 0 in [a, b], and n ≥ 2. We apply the first result to the edge convex minimum norm network interpolation problem, which is a two-dimensional interpolation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Agrachev, D. Pallaschke, and S. Scholtes, “On Morse theory for piecewise smooth functions,” J. Dynam. Control Sys., vol. 3, pp. 449-469, 1997.

    Google Scholar 

  2. L.-E. Andersson and T. Elfving, “An algorithm for constrained interpolation,” SIAM J. Sci. Statist. Comput., vol. 8, pp. 1012-1025, 1987.

    Google Scholar 

  3. L.-E. Andersson, T. Elfving, G. Iliev, and K. Vlachkova, “Interpolation of convex scattered data in R3 based upon an edged convex minimum norm network,” J. Approx. Theory., vol. 80, pp. 299-320, 1995.

    Google Scholar 

  4. X. Chen, L. Qi, and D. Sun, “Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities,” Math. Comput., vol. 67, pp. 519-540, 1998.

    Google Scholar 

  5. F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons: New York, 1983. (Reprinted by SIAM, Philadelphia, PA, 1990.)

    Google Scholar 

  6. S.L. Dodd, D.F. McAllister, and J.A. Roulier, “Shape-preserving spline interpolation for specifying bivariate functions on grids,” IEEE Comput. Graph. Appl., vol. 3, pp. 70-79, 1983.

    Google Scholar 

  7. A.L. Dontchev and W.W. Hager, “Implicit functions, Lipschitz maps, and stability in optimization,” Math. Oper. Res., vol. 19, pp. 753-768, 1994.

    Google Scholar 

  8. A.L. Dontchev and B.D. Kalchev, “Duality and well-posedness in convex interpolation,” Numer. Funct. Anal. and Optim., vol. 10, pp. 673-689, 1989.

    Google Scholar 

  9. A.L. Dontchev, H.-D. Qi, and L. Qi, “Convergence of Newton's method for convex best interpolation,” Numer. Math., vol. 87, pp. 435-456, 2001.

    Google Scholar 

  10. A.L. Dontchev, H.-D. Qi, and L. Qi, “Quadratic convergence of Newton's method for convex interpolation and smoothing,” Constr. Approx., vol. 19, pp. 123-143, 2003.

    Google Scholar 

  11. A.L. Dontchev, H.-D. Qi, L. Qi, and H. Yin, “A Newton method for shapepreserving spline interpolation,” SIAM J. Optim., vol. 13, pp. 588-602, 2003.

    Google Scholar 

  12. F. Facchinei, A. Fischer, and C. Kanzow, “Regularity properties of a semismooth reformulation of variational inequalities,” SIAM J. Optim., vol. 8, pp. 850-869, 1998.

    Google Scholar 

  13. A. Fischer, “Solution of monotone complementarity problems with locally Lipschitzian functions,” Math. Prog., vol. 76, pp. 513-532, 1997.

    Google Scholar 

  14. M. Fukushima and L. Qi, “Reformulation: Nonsmooth, piecewise smooth, semismooth and smoothing methods,” Applied Optimization 22, Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  15. L.D. Irvine, S.P. Marin, and P.W. Smith, “Constrained interpolation and smoothing,” Constr. Approx., vol. 2, pp. 129-151, 1986.

    Google Scholar 

  16. H. Jiang and L. Qi, “Local uniqueness and Newton-type methods for nonsmooth variational inequalities,” J. Math. Analysis and Appl., vol. 196, pp. 314-331, 1995.

    Google Scholar 

  17. H. Jiang, L. Qi, X. Chen, and D. Sun, “Semismoothness and superlinear convergence in nonsmooth optimization and nonsmooth equations,” Nonlinear Optimization and Applications (Erice, 1995), 197-212, G. Di Pillo and F. Giannessi (Eds.), Plenum Publishing Corporation, New York, 1996.

    Google Scholar 

  18. C. Kanzow and H. Kleinmichel, “A new class of semismooth Newton-type methods for nonlinear complementarity problems,” Comput. Optim. Appl., vol. 11, pp. 227-251, 1998.

    Google Scholar 

  19. C.A. Micchelli, P.W. Smith, J. Swetits, and J.D. Ward, “Constrained L p approximation,” Constr. Approx., vol. 1, pp. 93-102, 1985.

    Google Scholar 

  20. C.A. Micchelli and F.I. Utreras, “Smoothing and interpolation in a convex subset of a Hilbert space,” SIAM J. Sci. Statist. Comput., vol. 9, pp. 728-747, 1988.

    Google Scholar 

  21. R. Mifflin, “Semismoothness and semiconvex functions in constrained optimization,” SIAM J. Control Optim., vol. 15, pp. 959-972, 1977.

    Google Scholar 

  22. G.M. Nielson, “A method for interpolating scattered data based upon a minimum norm network,” Math. Comp., vol. 40, pp. 253-271, 1983.

    Google Scholar 

  23. J.-S. Pang and D. Ralph, “Piecewise smoothness, local invertibility, and parametric analysis of normal maps,” Math. Oper. Res., vol. 21, pp. 401-426, 1996.

    Google Scholar 

  24. L. Qi, “Convergence analysis of some algorithms for solving nonsmooth equations,” Math. Oper. Res., vol. 18, pp. 227-253, 1993.

    Google Scholar 

  25. L. Qi and H. Jiang, “Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations,” Math. Oper. Res., vol. 22, pp. 301-325, 1997.

    Google Scholar 

  26. L. Qi and J. Sun, “A nonsmooth version of Newton's method,” Math. Prog., vol. 58, pp. 353-367, 1993.

    Google Scholar 

  27. L. Qi, D. Sun, and G. Zhou, “A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities,” Math. Prog., vol. 87, pp. 1-35, 2000.

    Google Scholar 

  28. L. Qi and P. Tseng, “An analysis of piecewise smooth functions and almost smooth functions,” Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, forthcoming.

  29. D. Ralph and S. Scholtes, “Sensitivity analysis of composite piecewise smooth equations,” Math. Program., vol. 76, pp. 593-612, 1997.

    Google Scholar 

  30. R.T. Rockafellar, “Some properties of piecewise smooth functions,” Comput. Optim. Appl., vol. 25, pp. 247-250, 2003.

    Google Scholar 

  31. J.A. Roulier, “A convexity preserving grid refinement algorithm for interpolation of bivariate functions,” IEEE Comput. Graph. Appl., vol. 7, pp. 57-62, 1987.

    Google Scholar 

  32. J.W. Schmidt, “Rational biquadratic C 1-splines in S-convex interpolation,” Computing, vol. 47, pp. 87-96, 1991.

    Google Scholar 

  33. S. Scholtes, “Introduction to piecewise differentiable equations,” Habilitation Thesis, Preprint No. 54/1994, Institut für Statistik und Mathematische Wirtschaftstheorie, University of Karlsruhe, Karlsruhe, Germany, 1994.

    Google Scholar 

  34. D. Sun and L. Qi, “Solving variational inequality problems via smoothing-nonsmooth reformulations,” J. Comput. Appl. Math., vol. 129, pp. 37-62, 2001.

    Google Scholar 

  35. N. Yamashita and M. Fukushima, “Modified Newton methods for solving semismooth reformulations of monotone complementarity problems,” Math. Prog., vol. 76, pp. 469-491, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Yin, H. A Strongly Semismooth Integral Function and Its Application. Computational Optimization and Applications 25, 223–246 (2003). https://doi.org/10.1023/A:1022969507994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022969507994

Navigation