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Socially Conscious Decision-Making

Alyssa Glass
Xerox Palo Alto Research Center
Palo Alto, CA 94304 USA
aglass@parc.xerox.com

ABSTRACT

For individually motivated agents to work collaboratively
to satisfy shared goals, they must be able to make decisions
about actions and intentions in the context of commitments
to group activities. This paper examines the role of social
consciousness in the process of reconciliation of intentions to
do group-related actions with other, conflicting intentions.
We define a measure of social consciousness; describe its
incorporation into the SPIRE experimental system, a simu-
lation environment that allows the process of intention rec-
onciliation in team contexts to be simulated and studied;
and present results of several experiments that investigate
the interaction in decision-making of measures of group and
individual good. In particular, we investigate the effect of
varying levels of social consciousness on the utility of the
group and the individuals it comprises. A key finding is that
an intermediate level of social consciousness yields better re-
sults than an extreme commitment. We suggest preliminary
principles for designers of collaborative agents based on the
results.

1. INTRODUCTION

In many situations, agents must interact with other systems
and with people to accomplish tasks, and for many appli-
cations, it is necessary to form teams that comprise peo-
ple and computer agents to work collaboratively to satisfy
a shared goal. As rational agents, individual team mem-
bers must be able to make individually rational decisions
about their commitments and plans [13]. They must also,
however, be responsible to the teams in which they partici-
pate. Agent designers need to be able to construct computer
agents that include a sense of group commitment in their
reasoning about actions and plans.

Various possibilities arise for externally influencing agents
to act in the group’s interest, including the imposition of
sanctions on agents that default. In this paper, we address
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a different possible influence on decision-making, one that is
internally motivated. We examine the design of agents that
incorporate a notion of social consciousness that influences
the ways they measure benefit and maximize individual out-
come. In informal terms, these socially conscious agents may
make decisions that are locally, individually suboptimal, be-
cause doing so engenders a society that is globally better
off. Castelfranchi has argued for such social consciousness
in agents [2]. As we discuss after presenting the model of
social consciousness, this notion differs from the notions of
benevolence in prior multi-agent work. We aim to specify
ways agent designers can create optimally socially conscious,
individually rational agents.

We first describe SPIRE (SharedPlans Intention-Reconcila-
tion Experiments), a simulation system that enables investi-
gation of the effectiveness of different decision-making strate-
gies under various environmental conditions [19]. We then
provide a method for assigning a measure to social con-
sciousness in collaborative agents and define a model in
which non-monetary social factors play a role in how agents
make decisions about their intentions. We show how this
measure of social consideration can be made compatible with
monetary considerations to create agents whose level of so-
cial commitment can be altered and studied using SPIRE.

The paper presents the results of several experiments in
which the level of social consciousness is varied and the ef-
fect on different measures of group income is determined.
The experiments also consider environments with different
densities of tasks to be accomplished by the group. Con-
trary to expectations, we find a maximal, intermediate level
of social consciousness. We provide suggestions for creating
agents that maximize group income while remaining indi-
vidually rational.

2. INTENTION RECONCILIATION
2.1 The Problem

The experiments we describe in this paper extend previous
work [6, 7, 14, 18, 21] by addressing the need for collabo-
rative agents to manage plans and intentions in multi-agent
contexts, reasoning jointly about commitments to individual
plans and commitments to group activities. Our investiga-
tion focuses on the problem of intention reconciliation which
arises because rational agents cannot adopt conflicting in-
tentions [1, 6]. If an agent has adopted an intention to do



some action  and is presented the opportunity to do an-
other action -y that would in some way preclude its being
able to do 3, then the agent must decide between doing [
and doing ~: it must reconcile intentions.

We will use an example from one of our application domains,
Systems Administration [19, 8] to illustrate the problem of
intention reconciliation in the context of group activities and
to motivate our experiments. In this domain, teams of peo-
ple and computer systems work together to maintain a clus-
ter of workstations. Their overall group activity (which we
will refer to as a) comprises many substasks (3;) includ-
ing such actions as upgrading hardware, restoring files from
backups, checking system security, and maintaining print-
ers. The need for intention reconciliation would arise, for
instance, if an agent that intends to perform an operating
system upgrade as part of its commitment to «, is subse-
quently offered an opportunity to attend a lecture by a No-
bel Prize winner at the same time. The agent must decide
whether to remain committed to the group or to renege on
its original intention in favor of attending the lecture.

Because the agent is a member of a team, its income, and
therefore its utility, depends not just on the completion of
its own subtasks but also on the completion of the subtasks
of other team members. Similarly, the utility of the other
team members depends on the actions of this agent. To rec-
oncile intentions in a group context, an agent must have a
method of reasoning about future utility and the influence
of social consciousness as well as about current utility. The
agent must consider how other group members will view its
failure to honor its commitment. It must reason about fu-
ture utility and consider the costs it may incur as a result
of the group’s reaction to its defaulting on a group-related
task. For instance, if the agent reneges on its task assign-
ment, it may receive less valuable task assignments in the
future, decreasing its overall utility. The focus of this paper
is on another component of the agent’s calculations: in addi-
tion to monetary utility from income earned, the agent may
receive utility simply from being a “good guy” and honoring
its commitment to the group. Depending on the level of so-
cial consciousness that the agent has, it may assign different
weights to this “good guy” factor in its utility calculation.

2.2 The SPIRE Framework

The SPIRE system [19] enables manipulation of various agent
properties and environmental conditions and the examina-
tion of the effect of different decision-making strategies un-
der those conditions. In SPIRE, a team of agents (G, ..., Gy)
work together on group activities, called GroupTasks, each
of which consists of doing a set of tasks (task instances).
Each task instance is of one of the types fi,..., B, and oc-
curs at one of the times 71, ..., T),. For example, a Group-
Task in the Systems Administration domain might consist
of a week’s work (with the times T; being the hours of the
work week) doing various tasks ;. Some task types may
have only one instance in the week (e.g., printer mainte-
nance); others may have multiple instances (e.g., running
backups). Agents receive income for the tasks they do, and
this income can be used in determining an agent’s current
and future expected utility.

A SPIRE simulation consists of a sequence of GroupTasks.
To simplify the simulations and the analysis, the same Group-
Task is done repeatedly by the same group, although the
individual tasks within the GroupTask will not necessarily
be done by the same agent each time. SPIRE considers a
given GroupTask to consist of a set of tasks with time con-
straints on the tasks and capability requirements for agents
doing the tasks. To simplify the description that follows,
we assume that a GroupTask maps to a weekly task sched-
ule. A simulation then consists of activity over a sequence
of weeks.

A weekly task schedule (WTS) is a set of pairs (task;, time;)
where task; is to be done at time;, and a weekly task schedule
assignment (WTSA) is a set of triples (task;, time;, agent;)
where task; is to be done at time; by agent;. Each agent
has a set of task capabilities and a set of available times that
constrain the assignment of tasks in the WTS to produce a
WTSA. An agent can only be assigned tasks for which it
has the needed capabilities and the time availability.

To model the need to reconcile intentions, a sequence of out-
side offers is generated. These offers correspond to actions
that an agent might choose to do apart from the Group-
Task. Each outside offer v conflicts with some task 3 in the
WTSA; to accept an outside offer, an agent must default on
one of its assigned tasks. The central question we investi-
gate is the ways in which different levels of social conscious-
ness and thus intention reconciliation strategies influence the
rates at which agents default and their individual and col-
lective incomes, given a particular group time horizon and
configuration of environmental factors.

Each week, agents, chosen randomly, are offered the oppor-
tunity to do some 7y that conflicts with a task 3 in the con-
text of doing « that it has been assigned in the WTSA. The
income value of + is also chosen randomly from a distribu-
tion with approximately the same shape as the distribution
of task values in the WTS, allowing the distribution itself to
be varied without altering the comparative values of group
tasks and outside offers. To provide an incentive to default,
the distribution of outside offers is shifted so that it has a
mean value that exceeds the mean value of the WTS tasks.
If the agent chooses the new opportunity, it defaults on the
task (8 with which v conflicts. If there is an agent that is
available and capable of doing 3, the task is given to that
agent; otherwise, 8 cannot be completed by the group, and
therefore goes undone.

The group as a whole incurs a cost whenever an agent de-
faults, and this cost is divided equally among the group’s
members. The cost of a particular default depends on its im-
pact on the group. At a minimum, it equals a baseline value
that represents the cost of finding a replacement agent. If
no replacement is available and so the task will not be done,
the cost is increased by an amount proportional to the value
of the task.

Currently in the SPIRE system, the group’s reaction to
an agent defaulting on its commitment is represented by a
“social-commitment policy” [19] that constrains assignment



of tasks to agents. Each week, agents are assigned a portion
of their tasks based on how responsible they have been thus
far in the simulation. Each agent has a rank that reflects
the total number of times it has defaulted, with the impact
of past weeks’ defaults diminishing over time. The higher an
agent’s relative rank, the more valuable the tasks it receives.
Because there is a greater impact on the group when tasks
go undone, an agent’s rank is reduced by a larger amount if
it defaults when no one can replace it.

To assign group tasks to agents, SPIRE makes use of an
omniscient scheduler that has total information about all of
the agents’ ranks and history of defaults.! It is important
to note, however, that while the central scheduler has com-
plete information about all of the agents, each individual
agent does not have access to this knowledge. Thus, it must
estimate the behavior of other agents based on publicly-
available information, as described in the next section.

3. DECISION-MAKING IN SPIRE

3.1 Estimating Monetary Utility

In deciding whether to default on a task 3 and accept an out-
side offer v, an agent can weigh the impact of the choice on
three factors, the first two of which are essentially monetary:
current income (CT) and future expected income (FET). CI
only considers the income from the task or outside offer in
question, as well as the agent’s share of the group cost should
it default. For the F'EI calculation, an agent approximates
the value of the tasks it will receive the following week, both
if it defaults on 3 and if it does not default. By comparing
the value of these two task sets, the agent can approximate
the impact that defaulting will have on its income in the
following week. The agent then extrapolates beyond the
following week to make a more complete estimation, dis-
counting its estimates of subsequent weeks’ income by an
uncertainty factor § < 1. Mathematical definitions of each
of these factors can be found in Sullivan et al. [19].

The original FEI calculation assumed an agent knows the
number of weeks the group will continue to work together.
In some situations, however, agents will only have indefinite
information about how long they will form teams. These
situations resemble group activity in an infinite time horizon
because, without knowledge of a final week, agents are forced
to treat every week as an intermediate week, equally far from
the start as the finish [5]. To simulate this infinite horizon,
the F'EI calculation can be modified so that it is an infinite
sum. If F is the original estimate of the following week’s
income, and 4 is the uncertainty factor, FEI in an infinite

!This central scheduler is used only for convenience. Many
domains requiring cooperative agents would most likely not
rely on a central scheduler in this way but would instead ne-
gotiate each week’s schedule based on (possibly incomplete)
information about each agent. Since this negotiation is be-
yond the intended scope of the current SPIRE system, and
we wish to study aspects of group-commitment scenarios
which come after the initial schedule is made, we simplified
this aspect of the problem for these experiments.

time horizon is:

FEIlnflnlte(F) = 6F+62F+63F+
é
- (H)r

Once CI and FEI have been calculated, they are combined
into a total estimated income (T'EI) to provide a way of
measuring total utility from these monetary measures. TET
in week ¢ of the simulation in the default and no-default
cases is:

TElics(8,7,1) Clacs(B,7) + FEI(Facy,1)
TEInofdef(/gyi) Clnofdef(/g) +FEI(Fnofdef;i)
where Fycs and Fro_qer are the agent’s estimates of its in-

come for the following week if it does and does not default,
respectively.

3.2 Utility from Brownie Points

In addition to considering monetary factors, agents may be
socially conscious “good guys,” that is, willing to sacrifice
short-term personal gain for the good of the group. We have
developed a model in which monetary factors and social non-
monetary utility are weighed during decision-making. In
this brownie point model, good guy agents who make socially
conscious decisions earn brownie points (BP) each time they
choose not to default. In addition, an agent loses brownie
points when it does default. This loss models an agent’s
disappointment in itself for failing to be the kind of agent it
wants on its teams, i.e., failing to live up to its commitment
to the group. The number of brownie points an agent gains
or loses at each decision point depends on the value of the
task that it is considering defaulting on (3) and the value of
the outside offer that it is considering (7).

To represent an agent’s concern with its historical reputa-
tion, its utility from brownie points is also dependent on the
total number of brownie points that it has stored up over
time. If an agent has remained faithfully committed to the
group for a long time, it will not punish itself as much for
defaulting, because it has already stored up a lot of brownie
points.

We define the BP value in the default and no-default cases
as follows:

2
BPycs (8,7, currentBP) = currentBP — value(B)
value(y)

BP,o—acf(B,7,currentBP) = currentBP + %ZE;;

where currentBP is the total number of brownie points that
the agent has accumulated thus far in the simulation, based
on some initial amount allocated at the beginning of the
simulation.

These definitions have several important properties. First, if
an agent does not default, its B P value increases as value(3)
goes down or value(vy) rises, reflecting an agent’s greater
pride in turning down highly valued outside offers, and in
committing itself to less-valued tasks for the good of the



group. Second, if an agent defaults on some task [ in favor
of , its BP value decreases as value(3) goes up or value(y)
goes down. This factor thus reflects an agent’s greater will-
ingness to forgive itself for defaulting in favor of a highly
valued outside offer or a less-valued (3 task, and vice versa.
For example, an agent will punish itself more for neglecting
to check for security breaks than it would for not putting
toner in the printer. Alternatively, an agent will more read-
ily forgive itself for defaulting on its group commitment in
order to do a highly-valued activity like attend to a sick
family member than it would for defaulting in order to at-
tend a baseball game. In addition, BP.;(83,~, current BP)
changes quadratically in value(3), rather than linearly as
in the no-default case. This change guarantees an adequate
base deduction in BP even for small value(3), since the
average value(f3) is smaller than the average value(y). In
addition, a quadratic change in value(3), as opposed to any
type of linear change, provides desirable percent changes in
BP over time, punishing agents for defaulting even at the
beginning of a simulation when their initial BP level is still
quite high. Thus, because BP is not just a constant measure
over time but rather is a variable metric based on the situa-
tion faced by both the group and the specific agent, it is not
just a measure of individual persistence. Furthermore, by
taking into account both group benefit and individual gain
in the long-term, BP differs from notions of benevolence
that are concerned with helping other agents and increasing
their utility [11; 3, inter alia].

3.3 Social Consciousness in Decision-Making
For experiments in this paper, an agent’s intention-reconcili-
ation strategy takes into account the three factors just de-
scribed: current income (CT); future expected income (FET);
and good guy stature in the community (BP). CTI and FEI
have been aggregated to form TEI. To combine these fac-
tors into a single utility function, we use an approach from
multi-attribute decision-making [22]. First, since TEI is in
monetary units and BP is not, both factors are normalized
using linear normalization so that they can be combined
without unit differences unexpectedly giving more weight to
one than the other. In this method of normalization, each
factor is divided by the maximum of the two possible values
for that factor.

For instance, since BPyo—acf(8,7, current BP) >
BPyc;(8,7, current BP) in all cases, normalized BP in each
case is:

normBPpo_gef() =1

normBPyc (8,7, current BP) =

BPg.(B,y,currentBP)
BPpo—des(B,v,currentBP)

An analogous calculation is used to normalize TEI, although
no similar assumptions can be made concerning whether
TEIis(B,7,1) or TEI,, q4c5(3,1) is larger.

Once these factors have been thus normalized, they are
weighted relative to each other, allowing varying emphasis
to be placed on each factor. The impact of these relative
weights is empirically analyzed and discussed in Section 4.

The SPIRE system thus uses the following formulas for the
utility an agent receives from defaulting and from not de-
faulting in week i of the simulation:

Uier (8,7, 1, current BP) =
TEIweight x normT Elq.r(3,v,1)+
BPuweight x normBPy.; (83,7, current BP)

Uno—des (B,1) =
TETweight x normT El,o_qe(83,1)) + BPweight x 1

where T'ETweight and BPwetght can be adjusted to create
agents with varying levels of social consciousness. Agents
default when:

Uier (8,7, 1, current BP) > Upo—gef (53, 1).

4. SOCIALLY CONSCIOUS AGENTS

In earlier work [19] we were able to show that agents default
less often and increase their individual and group income
when more tasks are assigned based on rank or more weight
is given by the agents to future income. We also showed
a complex relationship between the number of tasks sched-
uled concurrently (task density) and agent default behavior
and income. In this section, we present several experiments
that examine various aspects of socially conscious decision-
making. Base values for important SPIRE parameters in the
majority of experiments are given in Figure 1; any depar-
tures from these values are noted in individual experiment
descriptions. These experiments all have the simplifying as-
sumption that the agents are homogeneous; we have begun
to relax this assumption [20]. To maximize the contrast be-
tween socially conscious and socially unconcerned agents,
SPIRE parameters for these experiments were set to make a
relatively large number of outside offers and to impose rel-
atively large rank deductions and group costs when agents
default.

52 weeks per simulation

12 agents

20 task types (values = 5, 10, 15, ..., 100)
40 time slots per week

10 tasks per time slot = 400 tasks per week

10 tasks per agent per week, assigned based on the agent’s
rank; the rest assigned randomly

250-350 outside offers per week

¢ weighting factor for FEI = 0.8

TEIweight = 0.5

BPweight = 0.5

Figure 1: Default SPIRE settings. Departures from
these values are noted in experiment descriptions.

The results presented below are averages of 30 runs that used
the same parameter settings but had different, randomly-
chosen starting configurations (the values of the tasks in the
WTS, and the possible values of the outside offers). In each
run, the first ten weeks serve to put the system into a state
in which the agents have different ranks; these weeks are not
included in the statistics that SPIRE gathers.
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4.1 Varying Time Horizons

To provide a basis for further experiments, we investigated
the effect of different time horizons on the average number
of defaults over the course of a MWS. We compared two
sets of runs: one with a known finite horizon of 52 weeks
and one with an infinite horizon. The two differed in their
FEI calculations: the finite horizon runs used FEIfinite
with M = 52; the infinite horizon runs used F EI;yfinite-

For the early weeks of an MWS, when there are many weeks
left, FEIfinite and FEI;nfinite are very close in value. The
values diverge as the finite horizon approaches, because
FElIfinite becomes much smaller than FEI;yfinite. This
change reflects the fact that agents have less to lose by de-
faulting in later weeks, when there is little time left during
which they can be punished for their defaulting on their
commitment to the group. As a result, in our experiments,
during the first several weeks of the MWS the two default
rates coincide, but later they diverge.

In particular, for our experiments, the number of defaults
in both the finite and infinite cases appears to generally in-
crease until about week 25, when it reaches a plateau. After
this initial upward trend, the infinite case appears to reach
a steady number of defaults, while the finite case continues
with an increasingly upward trend. The major divergence in
number of defaults occurs at week 41 (i.e., about 10 weeks
from the end of the simulation). By the last week, the num-
ber of defaults in the finite case is nearly three times higher
than in the infinite horizon.

The plateau phenomenon may be explained in terms of an
adjustment of brownie point level. At the beginning of the
simulation, agents are initialized with a starting BP level.
Different values for BPweight, however, dictate a different
BP equilibrium level for the agent. The initial rise in de-
faults indicates a period of time in which the agents are
gradually moving toward this stable BP level. The plateau
occurs when this stable level is reached.

To provide more background data on this plateau effect, we

also investigated the effect of increasing BPweight in a finite
horizon. We found that, for high values of BPweight, the
number of defaults does not “plateau” as it does for lower
values, and as was noted above. As BPuweight decreases,
this plateau slowly becomes more and more pronounced,
starting earlier in the simulation and continuing for more
weeks.

This result reflects the relative weight of different factors
in the utility function over time and the resulting effect on
default equilibrium. Thus, in addition to altering average
number of defaults overall, manipulating BPweight allows
us to alter agent behavior over time in a finite horizon en-
vironment.

4.2 Optimal Group Commitments

While altering behavior with respect to number of defaults
is useful to agent designers in some domains, in many other
domains the number of defaults will be of less interest than
the actual income earned by the agents. Our next set of
experiments examined this income effect in the infinite time
horizon case, where BPweight has a more steady influence.
The results in Figure 2 show how average group-only income
varies as BPweight is increased. In this figure, and subse-
quently in the paper, incomes are normalized with respect
to the income that would have been earned if the originally
assigned tasks had all been completed. Group-only income
is the income earned from [-tasks assigned by the group,
minus the penalties incurred by the group from defaults. It
does not include income earned by agents for any outside
offers () that they complete. As expected, the results show
that group-only income strictly increases as BPweight in-
creases and agents thus default less often.

In contrast to group-only income, total income is an agent’s
income from group-assigned tasks and outside offers accepted.
When we examine total income, we find rather surprising re-
sults (Figure 3). Instead of strictly increasing with increased
BPweight, as with group-only income, total income reaches
a maximum at BPweight = 0.3 (although differences be-
tween this BPweight value and a few surrounding values
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Figure 3: Effect of BPweight on mean total group income.

are within error) and then begins to drop. This result con-
tradicts our original hypothesis, which was that the optimal
number of defaults for maximizing total income would cor-
respond with a high BPweight, near 1. Instead, this result
shows that the optimal number of defaults actually occurs
when BPuweight is less than 1, which corresponds to ap-
proximately 61 defaults each week.

On further analysis, this result can be explained based on
task density and the range of values of outside offers avail-
able in a given WTS. As explained in Section 2.2, the mean
value of the outside offers exceeds the mean value of the
group-assigned tasks. Thus, when deciding between 3 and
v, it is possible that an agent may be deciding between
jobs that vary widely in value. When BPweight is low, an
agent’s decisions are driven mainly by TEI. For compar-
atively high outside offers, then, the current income (CT)
gained by defaulting will be much bigger than the potential
loss in future income (FEI). Thus, the agent will default.

When BPuweight is too high and social factors are being
weighted very heavily in the agent’s utility function, the
brownie point factor in the agent’s utility function may over-
come this potential gain in income. As a result, the agent
may give up some very lucrative outside offers in order to
stay committed to the group. In these cases, value(vy) is
actually high enough to offset any group penalties suffered
from the default, but the agent is, in a way, blinded to this
fact by its unusually strong conscience.

In addition, with a very high density of group tasks as-
signed each week, the effect on future income of defaulting
is decreased [19]. In these situations, when defaulting has
a very small effect, brownie point considerations may tend
to over-emphasize this effect. When combined with a high
BPuwetght, then, the agent may not default even when it is
truly beneficial to do so. Thus, it seems that “good guys”
do not finish first. Rather, communities made up of less
socially conscious, more balanced agents actually do better.

4.3 Optimality Across Different Environments
Our final set of experiments extends this finding by vary-
ing an environmental factor and observing the effect on
the income-maximizing number of defaults. In these ex-
periments, the number of tasks scheduled in each time slot
(task density) was varied. As was shown in previous work
[19] varying task density has a complex relationship with the
number of defaults. To overcome the problems discussed in
that paper, as we varied the task density in these experi-
ments, we also varied the number of tasks assigned based
on rank so that the percent of rank-based tasks was con-
stant across different task densities. In these experiments,
the number of rank-based tasks was kept to approximately
30 percent of the total group tasks, as was also the case in
the other experiments. The results are shown in Figure 4.

Given the results from the previous section, these results
are unexpected. While at the highest task density studied
in this paper? (10) there is a local maximum for total group
income for a BPweight value greater than 0, this result does
not hold for lower task densities. Instead, a pattern emerges
in which a large range of values for BPweight greater than 0
provides a total group income which is approximately equal
for a given task density. For example, for a task density
of 2, the total group incomes associated with the range of
BPuwetght values from 0.1 to 0.7 are all roughly the same,
within error ranges.

This result points to an interesting conclusion. While we
have shown that BPweight has a large and consistent effect
on the average number of defaults and on group task in-
come, Figure 4 shows that it does not have this same effect
on total income. Thus, when creating cooperative agents,
designers do not have to be as concerned about total group
income as they are about these other factors. Instead, within
a fairly large range of BPweight values, agents can be de-

*In previous experiments [19] the highest possible task den-
sity, in which all agents are busy all of the time, proved to
be a special case, and thus was not experimented with here.
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Figure 4: Effect of BPweight on mean total group income across various task densities.

signed with utility functions that optimize for number of
defaults or group task income, with the assurance that total
group income will remain near its maximum.

This conclusion does not hold, however, if one considers to-
tal income when BPweight is 0. Figure 4 appears to show
that income is maximized at this lowest value for BPweight.
It is unlikely, however, that this is the behavior that would
actually be desired in collaborative agents. Agents with low
BPuweight default much more frequently than more socially
conscious agents. Furthermore, Figure 2 shows that group
task income is at its lowest for this value of BPweight. Since
most agent designers would attempt to optimize all of these
factors, keeping defaults low and all measures of income
high, this extreme behavior would be undesirable despite
the apparent payoff as measured by total group income.

The seemingly inconsistent change in total income as
BPweight initially rises from 0 to 0.1 remains an open ques-
tion. A similar “jump” over this same interval in an other-
wise smooth curve can also be observed in Figure 2, although
to a lesser extent. While we suspect that this behavior
reveals the large effect that adding brownie points at any
weight has on agent behavior, the exact cause has not been
isolated. This result seems to indicate that agents with no
social consciousness (i.e., brownie points do not factor at all
into their utility functions) have radically different behavior
from even mildly socially conscious agents. Analysis into
this behavior is an area for future investigation.

S. RELATED WORK

Kalenka and Jennings [12] propose several “socially respon-
sible” decision-making principles and examine their effects
in the context of a warehouse loading scenario. Our work dif-

fers from theirs in that their policies are domain-dependent
and not decision-theoretic and they do not look at conflicting
intentions but rather at whether or not agents choose to help
each other. Sen [16] considers decision-making strategies
that encourage cooperation among self-interested agents, but
his work focuses on interactions between pairs of individual
agents. Sen’s “philanthropic” agents take the good of the
group into account, but do not always necessarily do what
is best for the group.

There is a significant body of economics literature on ra-
tional choice and intention reconciliation. Iannaccone [10]
examines social policies that alter individual utility func-
tions to encourage group commitment. While these policies
are similar in spirit to the social-commitment policies that
SPIRE incorporates, they are aimed at group formation, not
at conflicting intentions. Additionally, that approach is not
applicable to agents that face multiple decision points over
time. Hoéllander [9] studies incentives for encouraging group
commitment and cooperation under a more limited defini-
tion of cooperation, in which an agent is required to incur
a personal cost in order to cooperate. His model considers
“emotional” cooperation within this limited definition, but
assumes a rigid standard shared by all players, a requirement
that we relax.

The social-commitment policies in SPIRE also differ from
Shoham and Tennenholtz’s [17] social laws. Social laws
constrain the ways agents perform actions whereas social-
commitment policies constrain decision-making. Social laws
are by their nature domain specific; they constrain domain
actions. In contrast, social-commitment policies affect decis-
ion-making across domains and tasks. The conventions Rosen-
schein and Zlotkin [15] present play a role in negotiation sim-



ilar to the role social-commitment policies play in SPIRE.

Cooper et al. [4] examine social consciousness in an ap-
proach similar to the brownie point model, referred to as
the “warm glow” model, in which agents receive a constant
amount of added utility when they do the “right thing.”
Our approach differs from this warm glow model in that an
agent’s utility from brownie points is task-value dependent
and depends not just on the number of points gained for a
given task but also on the total number of brownie points
that it has stored up over time.

6. CONCLUSIONS

The brownie point model provides a framework in which
non-monetary social factors can be effectively considered
alongside monetary ones in agent decision-making. By con-
sidering not just the default itself but also task value and
agent history in the calculation of brownie points, this model
realistically emulates expected behavior. Additionally, be-
cause this system measures social consciousness over time
and allows it to play a variable role in utility functions, the
effect of social consciousness on the behavior of the group
as a whole can be studied. Current work is extending these
findings to heterogeneous societies in which agents have dif-
ferent levels of social consciousness [20].
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