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We present two new qualitative reasoning formalisms, and use them in the construction of
a new type of filtering mechanism for qualitative simulators. Our new sign algebra, SR1*,
facilitates reasoning about relationships among the signs of collections of real numbers. The
comparison calculus, built on top of SR1*, is a general framework that can be used to qual-
itatively compare the behaviors of two dynamic systems or two excerpts of the behavior of
a single dynamic system at different situations. These tools enable us to improve the predic-
tive performance of qualitative simulation algorithms. We show that qualitative simulators can
make better use of their input to deduce significant amounts of qualitative information about
the relative lengths of the time intervals in their output behavior predictions. Simple tech-
niques employing concepts like symmetry, periodicity, and comparison of the circumstances
during multiple traversals of the same region can be used to build a list of facts representing
the deduced information about relative durations. The duration consistency filter eliminates
spurious behaviors leading to inconsistent combinations of these facts. Surviving behaviors
are annotated with richer qualitative descriptions. Used in conjunction with other spurious be-
havior elimination methods, this approach would increase the ability of qualitative simulators
to handle more complex systems.
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1. Introduction

The AI methodology of qualitative reasoning [17] is based on the principle of us-
ing “low-resolution” representations in models of systems whose component quantities
and relationships are only incompletely known. This ability to concisely represent and
use incomplete knowledge enables qualitative reasoners to solve entire families of equa-
tions “in one stroke”, and renders them useful for proving certain behavioral properties
collectively for large classes of systems with models sharing the same basic structure.

In this paper, we present two new qualitative reasoning formalisms, and use them
in the construction of a new type of filtering mechanism for qualitative simulators. The
manuscript is structured in two parts. The first part, comprising sections 2 and 3, de-
scribes the mathematical tools we developed for comparing functions represented in
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the qualitative format. We start by defining a new algebra named SR1*, whose domain
includes not only signs and real numbers, but arbitrary nonempty sets of reals. SR1* en-
ables us to reason about the relationships among the signs of collections of real numbers.
After that, we present a new comparison formalism, the comparison calculus, which is
built on top of SR1*. The comparison calculus is a general framework that can be used
to qualitatively compare the behaviors of two dynamic systems or two excerpts of the
behavior of a single dynamic system at different times.

In the second part of the paper, starting with section 4, we demonstrate a novel
technique for improving the predictive performance of qualitative simulators. Qualita-
tive simulation algorithms symbolically solve families of ordinary differential equations,
predicting a set of trajectory descriptions, such that any actual solution of the equations
in the input set is guaranteed to match one of these predictions in the output. Along
with qualitative descriptions of all possible behaviors that can be exhibited by systems
in the input model, qualitative simulators may produce spurious predictions, behavior
descriptions which no such system would exhibit. These spurious predictions limit the
usefulness of qualitative reasoners in applications like design and diagnosis [10]. There
is on-going research [10–13] that aims to improve qualitative simulation for reducing
the number of spurious behaviors in the algorithms’ output.

We show that qualitative simulation algorithms can make better use of their in-
put to deduce significant amounts of information about the relative lengths of the time
intervals in their output behavior predictions. Simple techniques employing concepts
like symmetry, periodicity, and comparison of the circumstances during multiple tra-
versals of the same interval can enable the reasoner to build a list of facts representing
the deduced information about duration comparisons. These facts are used by the new
duration consistency filter, which eliminates proposed spurious behaviors leading to in-
consistent duration data. Surviving behaviors are annotated with richer descriptions of
the qualitative properties of system variables, in addition to the extracted duration com-
parison information. We describe the incorporation of this approach to the “standard”
qualitative simulation algorithm QSIM [10]. The correctness guarantees of some of the
duration comparison fact extraction methods that we employ are based on properties
of the SR1* algebra and the comparison calculus proven in the first part of the paper.
Examples of the utility of the improved algorithm and an evaluation are presented.

PART I. MATHEMATICAL FOUNDATIONS OF FUNCTION COMPARISON

2. Sign algebras

Qualitative reasoning algorithms make heavy use of the sign representation for
quantities. In this section, a brief review of two sign algebras from the qualitative rea-
soning literature will be followed by a presentation of our extension, SR1*. This forms
the basis of the comparison calculus to be introduced in the next section.
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Table 1
Operator tables of multiplication and addition in S1.

· [+] [−] [0] [?] + [+] [−] [0] [?]
[+] [+] [−] [0] [?] [+] [+] [?] [+] [?]
[−] [−] [+] [0] [?] [−] [?] [−] [−] [?]
[0] [0] [0] [0] [0] [0] [+] [−] [0] [?]
[?] [?] [?] [0] [?] [?] [?] [?] [?] [?]

Definition 2.1 (Domain of signs). A sign is one of the following four subsets of R, the
set of real numbers:

[+] =def (0,+∞), [−] =def (−∞, 0), [?] =def (−∞,+∞), [0] =def {0}.
The set S ′ = {[−], [0], [ + ],[?]} is called the extended domain of signs.

Williams [19] defined a basic sign algebra called S1 on the set S ′ with the sign
addition and multiplication operators (table 1). For two signs s1 and s2, “s1 − s2” is
defined to be equivalent to “s1 + ([−] · s2)”. S1 formalizes commonsense statements
such as “The product of two negative numbers is a positive number” ([−] · [−] = [+]),
or “The sign of the sum of a positive number and a negative number can be anything”
([+] + [−] = [?]).

Here are some simple properties of S1 that we are going to use in the rest of the
paper:

Proposition 2.1 (Some simple properties of S1). For the signs s1, s2, s3 ∈ S ′
(i) s1 ⊆ s2 ↔ s1 = s2 if s2 �= [?],

(ii) s1 = s2 · s3 ↔ s1 · s2 = s3 if s2 �= [?], [0],
(iii) s1 �= [?] ∧ s2 �= [?] ↔ (s2 + s1 �= [?]) ∨ (s2 − s1 �= [?]).

Proof. These statements can be proven by testing them for all sign combinations. �

Williams’ SR1 [19] is an extension of S1 where real numbers are elements of the
domain in addition to signs of S ′. For example [+]+3 = [+] holds in SR1. Building on
SR1, we developed a new sign/real hybrid algebra called SR1* that enables us to reason
about the relationships among the signs of collections of real numbers. The domain of
SR1* is the set of all nonempty subsets of R. The following set operators are well-
defined on SR1*.

Definition 2.2 (Set operators used in SR1*). For A and B, two subsets of R, the follow-
ing set operators are used in SR1*:

(i) A+ B =def {a + b: a ∈ A, b ∈ B},
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(ii) −B =def {−b: b ∈ B},
(iii) A− B =def A+ (−B),
(iv) A · B =def {a · b: a ∈ A, b ∈ B},
(v) |A| =def {|a|: a ∈ A} (|a|: absolute value of a).

Just like SR1, SR1* contains all signs of S ′ and all real numbers1 as elements.
Moreover, S ′ is a subalgebra of SR1* as it is a subalgebra of SR1; that is, the operators
in SR1* work exactly as their counterparts in S1 for the signs in S ′. Unlike SR1, SR1*
contains arbitrary subsets of R as elements and although the domain of SR1 is a subset
of the domain of SR1*, SR1 is not a subalgebra of SR1*. For example, [+] + (−3) is
mapped to (−3,∞) in SR1*, while it is mapped to [?] in SR1, since (−3,∞) is not an
element of SR1. Nevertheless, SR1 operators can easily be defined in SR1* [8].

Proposition 2.2 (A set theoretical property of SR1*). Given A1, A2, . . . , An, B1, B2,

. . . , Bn ∈ SR1* such that A1 ⊆ B1, A2 ⊆ B2, . . . , An ⊆ Bn, and �, a formula writ-
ten using the binary and unary operators in definition 2.2, the following relationship
holds:

�(A1, A2, . . . , An) ⊆ �(B1, B2, . . . , Bn).

The sign abstraction operator [.] in SR1* is similar to its counterpart in SR1.
[A] is the smallest sign in S ′ that covers A. For example, the expressions [5] = [+],
[(0,+∞)] = [+], and [{−1,+1}] = [?] are valid in SR1*.

Definition 2.3 (Sign abstraction operator of SR1*). Given A ∈ SR1*, we define
[A] ∈ S ′ such that:

(1) A ⊆ [A],
(2) ∀s ∈ S ′ if A ⊆ s then [A] ⊆ s.

Definition 2.4 (Sign profile of an SR1* element). For A ∈ SR1*, we call SP(A) the
sign profile of A, the set of all signs the elements of A have.

For example, if A = {−5,+7} then we have SP(A) = {[−], [+]}, which we will
abbreviate as SP(A) = {−,+}. Table 2 depicts all possible sign profiles that may cor-
respond to each sign. We will use the concept of sign profiles in proving the following.
Although Williams [19] has given similar statements for the abstraction operator of SR1,
in SR1* they deserve a separate proof.

1 Real numbers are actually not in the domain of SR1*, but all singleton sets of reals are in the domain
and the real numbers are isomorphic to them. For example 3 + 2 = 5 can be considered to be an SR1*
expression, because {3} + {2} = {5} is one. Williams’ SR1 uses the same trick.
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Table 2
Signs versus possible corresponding sign profiles.

[A] SP(A)

[+] {+}
[−] {−}
[0] {0}
[?] {+,−}, {+, 0}, {−, 0}, {+,−, 0}

Proposition 2.3 (Abstraction properties in SR1*). For any A,B ∈ SR1*,

(i) [A+ B] ⊆ [A] + [B],
(ii) [A · B] = [A] · [B],

(iii) [−A] = −[A],
(iv) [A− B] ⊆ [A] − [B].

Proof. (i)

A+ B ⊆ [A] + [B] since A ⊆ [A], B ⊆ [B] (proposition 2.2),
[A+ B] ⊆ [[A] + [B]] since X ⊆ Y → [X] ⊆ [Y ],
[A+ B] ⊆ [A] + [B] since [A] + [B] ∈ S ′ and therefore

[[A] + [B]] = [A] + [B].
(ii) The equality is proven using table 3. Here, for each value of [A] and [B], we

generate all possible values for SP(A), SP(B) and SP(A · B) (in boxes). We observe
that in each case, a unique [A · B] corresponds to all possible SP(A · B) values and that
[A] · [B] = [A · B].

(iii) Using (ii), by inserting B = {−1}.
(iv) Similar to (i). �

Theorem 2.1 (General abstraction in SR1*). Given A1, A2, . . . , An ∈ SR1*, such that
A1 ⊆ �(A2, . . . , An) where � is a formula written using the operators {·,−,+}, the
following relation holds:

[A1] ⊆ �
([A2], . . . , [An]

)
.

Proof.

[A1] ⊆
[
�(A2, . . . , An)

]
since X ⊆ Y → [X] ⊆ [Y ]

⊆ �
([A2], . . . , [An]

)
using proposition 2.3 recursively.

We now start abstracting functions. In this paper, we assume that the domains of
all functions are subsets of R. �

Definition 2.5 (Abstraction of a function). Given a function f and F , the image of f
on a domain I, we call the sign valued expression [F ] the image abstraction of f on the
domain I and for a t ∈ I we call [f (t)] the point abstraction of f at t.
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Table 3
Sign multiplication with sign profiles.

Theorem 2.2 (Abstraction of functional relations). Given n functions f1, f2, f3, . . . , fn
and their images F1, F2, F3, . . . , Fn on a domain I, if it is the case that

f1(t) = �
(
f2(t), f3(t), . . . , fn(t)

) ∀t ∈ I

such that � is a formula written using the operators {·,−,+}, the following relations
hold:

(i) F1 ⊆ �(F2, F3, . . . , Fn),

(ii) [F1] ⊆ �([F2], [F3], . . . , [Fn]).

Proof. (i) Result of set theory.
(ii) By (i) and theorem 2.1. �

Proposition 2.4 (Abstraction of sign multiplication of functions). Given three functions
f, g, h and their images F,G,H on I such that ∀t ∈ I [f (t)] = [g(t)] · [h(t)], the fol-
lowing relation holds:

[F ] = [G] · [H ] if [G] �= [?] ∨ [H ] �= [?].
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Proof. Assuming [G] �= [?], we consider all possible values of [G]:
[G] = [+] → ∀t ∈ I [g(t)] = [+] → ∀t ∈ I [f (t)] = [h(t)] → [F ] = [H ],
[G] = [−] → ∀t ∈ I [g(t)] = [−] → ∀t ∈ I [f (t)] = −[h(t)] → [F ] = −[H ],
[G] = [0] → ∀t ∈ I [g(t)] = [0] → ∀t ∈ I [f (t)] = [0] → [F ] = [0].

In all cases, [F ] = [G] · [H ] is satisfied. (The proof is similar for [H ] �= [?].) �

3. The comparison calculus

This section introduces the comparison calculus, a general framework for com-
paring two incompletely known functions, or two portions of the same function over
different parts of its domain.

3.1. Comparison of real variables

Definition 3.1 (Real comparison variables). For two real numbers r1 and r2, we define
the real comparison variables �r,�r, and �|r| such that:

(i) �r =def r2 − r1,

(ii) �r =def r2 + r1,

(iii) �|r| =def |r2| − |r1|.

Definition 3.2 (Real comparison signs). Given two real numbers r1 and r2, the well-
defined sign expressions [�r], [�r], and [�|r|] are called the real comparison signs.
Specifically, [�|r|] is called the real magnitude comparison sign. Moreover, we call [r1]
and [r2] the simple sign constants and using them we define the compound sign constants
as: �[r] =def [r2] + [r1] and �[r] =def [r2] − [r1].

Theorem 3.1 (Real comparison conversion constraints). For two real numbers r1 and r2,

(i)(a) [�|r|] = [�r ·�r] = [�r] · [�r],
(i)(b) [�r] = [�|r|] · [�r] if [�r] �= [0] ,

(i)(c) [�r] = [�|r|] · [�r] if [�r] �= [0],
(ii) [�r] = �[r] if �[r] �= [?],

(iii) [�r] = �[r] if �[r] �= [?].

Proof. (i)(a)

[�|r|] = [|r2| − |r1|] =
[|r2|2 − |r1|2

] = [
r2

2 − r2
1

] = [
(r2 − r1) · (r2 + r1)

]
= [�r ·�r] = [�r] · [�r] using proposition 2.3(ii).

(i)(b) Using (i)(a) and proposition 2.1(ii) since �r is real and therefore [�r] �= [?].
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(i)(c) Similar to (i)(b).
(ii) [�r] = [r2 + r1] ⊆ [r2] + [r1] = �[r] using proposition 2.3(i). [�r] = �[r]

since [�r] ⊆ �[r], and �[r] �= [?] (proposition 2.1(i)).
(iii) Similar to (ii). �

Definition 3.3 (Some real features of functions). For two functions f1 and f2 on inter-
vals I1 = (tb1, te1) and I2 = (tb2, te2), we define the following real valued quantities (for
j = 1, 2):

• initial value of fj on Ij : fbj =def limt→tbj fj (t),

• final value of fj on Ij : fej =def limt→tej fj (t),

• change of fj on Ij : f�j =def fej − fbj ,

• duration of Ij : t�j =def tej − tbj ,

• average value of fj on Ij :

f̄j =def
1

t�j
·
∫ tej

tbj

fj (t) dt.

fbj and fej will also be called the end points of fj on Ij .

The quantity pairs defined above can be inserted into definitions 3.1 and 3.2 to
obtain expressions that are useful for making comparisons. For example for two time
intervals I1, I2 and their durations t�1, t�2, we get well-defined sign valued expressions
like [�|t�|] = [|t�2| − |t�1|]. Such expressions enable us to represent comparison facts
using algebraic formulas. For example, [�|t�|] = [−] means that the duration of the
second interval is smaller than the first one (|t�2| < |t�1|).

Let us compare the position (x1, x2) and velocity (v1, v2) graphs of two cars
given in figure 1 on the time intervals I1 = (tb1, te1) and I2 = (tb2, te2). We insert the
well-defined real quantities x�1, x�2, v̄1, and v̄2 obtained from these functions (def-
inition 3.3) into definition 3.1 and definition 3.2 to construct the comparison signs
[�|x�|] = [|x�2| − |x�1|] and [�|v̄|] = [|v̄2| − |v̄1|]. In this example, we observe
that [�|x�|] = [+], that is, the distance traveled by the second car in I2 is greater than
the distance traveled by the first car in I1 (|x�2| > |x�1|). Similarly, [�|v̄|] = [−]means
that the average speed of the second car is lower than the average speed of the first car
(|v̄2| < |v̄1|).

Although the values of time points tb1, te1, tb2, and te2 are not known, applying the
common sense rule

“It takes longer to traverse a longer path with a lower speed”

to these observations, we may conclude that the duration of the second interval is longer
(|t�2| > |t�1|), that is, [�|t�|] = [+]. The next theorem establishes a qualitative relation
between the “change-of-position” comparison [�|x�|], the average speed comparison
[�|v̄|], and the duration comparison [�|t�|].
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Figure 1. Position and velocity of two cars.

Theorem 3.2 (Qualitative average value constraint). Given a pair of functions x1, x2 and
their derivatives v1, v2 on the intervals I1 = (tb1, te1) and I2 = (tb2, te2), the following
holds:

[�|x�|] ⊆ [�|v̄|] + [�|t�|] if [v̄1] �= [0] or [v̄2] �= [0].

Proof. We assume [v̄1] �= [0] (the proof is similar for the case [v̄2] �= [0]):
�|x�| = |x�2| − |x�1| = |v̄2| · |t�2| − |v̄1| · |t�1|

= |v̄2| · |t�2| − |v̄1| · |t�2| + |v̄1| · |t�2| − |v̄1| · |t�1|
= (|v̄2| − |v̄1|

) · |t�2| + |v̄1| ·
(|t�2| − |t�1|

)
=�|v̄| · |t�2| + |v̄1| ·�|t�|.

Using �|x�| = �|v̄| · |t�2| + |v̄1| ·�|t�|, we get:

[�|x�|] ⊆ [�|v̄|] · [|t�2|] + [|v̄1|] · [�|t�|] (theorem 2.1).

We can further simplify this expression using:

[|v̄1|] = [+] since [v̄1] �= [0] and [|t�2|] = [t�2] = [+] since te2 > tb2

and we get:

[�|x�|] ⊆ [�|v̄|] + [�|t�|]. �

The precondition of this constraint checks that at least one of the x functions does
not return to its initial value at the end of its interval, and therefore has a non-zero average
derivative. Since this is clearly satisfied for figure 1, we can insert [�|x�|] = [+] and
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[�|v̄|] = [−] in the constraint above and we get [+] ⊆ [−] + [�|t�|], which is only
satisfied for [�|t�|] = [+], as expected.

It is important to note that we did not need the specific end values of the func-
tions to obtain this results. In section 6.3.1, we show how information extracted from
an incompletely described trajectory computed by a qualitative simulator can be used
in conjunction with the qualitative average value constraint to compare interval dura-
tions.

3.2. Pointwise comparison of functions

The constraints developed so far are useful for comparing real valued variables
such as time durations, functions at a single point, or changes of two functions in their
intervals. We now describe how entire collections of function values over given intervals
can be compared with each other. The discussion starts with two functions on a common
interval. This idea is then generalized to functions on different intervals.

3.2.1. Comparison on the same interval

Definition 3.4 (Comparison functions on the same interval). For two functions f1 and
f2 we construct the comparison functions �f,�f , and �|f | on a common interval I as
follows:

(i) �f (t) =def f2(t)− f1(t) (∀t ∈ I),

(ii) �f (t) =def f2(t)+ f1(t) (∀t ∈ I),

(iii) �|f |(t) =def |f2(t)| − |f1(t)| (∀t ∈ I).

Definition 3.5 (Comparison signs of functions on the same interval). Given two func-
tions f1, f2 and their comparison functions �f,�f , and �|f | on a common interval I, if
we let F1, F2,�F,�F , and �|F | be the images of these functions on I, the well-defined
sign expressions [�F ], [�F ], and [�|F |] are called the pointwise comparison signs.
Specifically, [�|F |] is called the pointwise magnitude comparison sign. Moreover, we
call [F1] and [F2] the simple sign constants and using them we define the compound sign
constants as: �[F ] =def [F2] + [F1] and �[F ] =def [F2] − [F1].

Proposition 3.1 (Trivial pointwise comparison constraints). Given two functions f1, f2

compared on a common interval I, the following constraints hold:

(i) (a) [F1] = [F2] = [0] ↔
(b) �[F ] = [0] ↔
(c) �[F ] = [0] ↔
(d) [�|F |] = [�F ] = [�F ] = [0].

(ii) [�F ] ⊆ �[F ].
(iii) [�F ] ⊆ �[F ].
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(iv)(a) [F1] �= [?] ∧ [F2] �= [?] ↔ �[F ] �= [?] ∨�[F ] �= [?].
(iv)(b) �[F ] �= [?] ∨�[F ] �= [?] → [�F ] �= [?] ∨ [�F ] �= [?].

Proof. (i) (a)↔ (b) and (a)↔ (c) are verified using the operator tables of addition and
subtraction on S ′ (∀t ∈ I).

(a)→ f1(t) = 0, f2(t) = 0 → �f (t) = �f (t) = �|f |(t) = 0 → (d).
(d)→ f2(t)− f1(t) = f2(t)+ f1(t) = 0 → f1(t) = f2(t) = 0 → (a).
(ii) �f (t) = f2(t)+ f1(t)→ [�F ] ⊆ [F1] + [F2] by theorem 2.2(ii).
(iii) Similar to (ii).
(iv)(a) Follows from proposition 2.1(iii).
(iv)(b) Follows from (ii), (iii). �

As two functions f1 and f2 are compared on I, the sign constants, [F1], [F2], and
therefore �[F ] and �[F ] can be computed by examining each function independently.
Specifically, in the qualitative simulation application to be presented in the second part
of the paper, these values will be trivially extractable from a partial trajectory. On the
other hand, information about the comparison signs is more difficult to obtain. The next
theorem establishes the relation between the comparison signs and the sign constants.

Theorem 3.3 (Pointwise comparison conversion constraints). Given two functions
f1, f2 compared on a common interval I,

(i) [�|F |] = [�F ] · [�F ] if �[F ] �= [?] ∨�[F ] �= [?],
(ii) [�F ] = �[F ] if �[F ] �= [?],

(iii) [�F ] = �[F ] if �[F ] �= [?],
(iv) [�F ] = [�|F |] ·�[F ] if �[F ] �= [?],
(v) [�F ] = [�|F |] ·�[F ] if �[F ] �= [?].

Proof. (i) For two real numbers r1 and r2, we know that[
�|r|] = [�r] · [�r] (theorem 3.1(i)(a)).

So for f1 and f2,∀t ∈ I letting r1 = f1(t) and r2 = f2(t) we get:[
�|f |(t)] = [

�f (t)
] · [�f (t)] (definitions 3.1 and 3.4).

�[F ] �= [?]∨�[F ] �= [?] implies that [�F ] �= [?]∨[�F ] �= [?] (proposition 3.1(iv)(b)).
Hence by proposition 2.4 we get:

[�|F |] = [�F ] · [�F ].
(ii), (iii) By proposition 3.1(ii), (iii), using proposition 2.1(i).
(iv) Assume �[F ] �= [?] (therefore [�F ] = �[F ] �= [?] by (iii)).
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Case 1. [�F ] = �[F ] = [0]. By proposition 3.1(i).
Case 2. [�F ] = �[F ] �= [0]. Since [�F ] = �[F ] �= [0], [?], we can convert (i)

using proposition 2.1(ii): [�|F |] · [�F ] = [�F ] and get: [�F ] = [�|F |] ·�[F ].
(v) Similar to (iv). �

If functions f1 and f2 are compared on intervals where they possess the same sign
uniformly ([F1], [F2] �= [?]), then it must be the case that

�[F ] �= [?] or �[F ] �= [?] (proposition 3.1(iv)(a)),

ensuring that the preconditions of clause (i), and one of the pairs (iii), (iv) or (ii), (v) in
theorem 3.3 are always satisfied. On the other hand, if one of the functions does not have
a uniform sign ([F1] �= [?] ∨ [F2] �= [?]), none of these constraints are satisfied. So we
focus on cases where the functions have uniform signs.

Next, we establish how comparison signs propagate over the derivative relation.

Theorem 3.4 (Abstraction of the integral of a function). Given a continuous function h

and its integral hI(t) =
∫ t

tb
h(s) ds on the interval [tb, te], if we name their images on

I = (tb, te) H and HI , we get:

(i) [hI (t)] ⊆ [H ] ∀t ∈ (tb, te],
(ii) [HI ] ⊆ [H ].

Proof. If [H ] = [?], both (i) and (ii) are trivial.

[H ] = [+]→ [h(t)] = [+] (∀t ∈ I)

→[hI (t)] =
[∫ t

tb

h(s) ds

]
= [+] (∀t ∈ (tb, te])

because t > tb and h is continuous, proving (i).
hI does not change sign on I, therefore [HI ] = [+], satisfying (ii). The cases for

the assignments [H ] = [−] and [H ] = [0] are similar. �

Theorem 3.5 (Qualitative fundamental theorem of calculus). For a function h with a
continuous derivative h′, if H and H ′ are their images on the interval I = (tb, te), the
following holds (hb = h(tb)):

[H ] ⊆ [hb] +
[
H ′].

Proof. Let us define h′I on I such that h′I (t) =
∫ t

tb
h′(s) ds and call its image H ′

I .
In this notation, the fundamental theorem of calculus is h(t) = hb + h′I (t), which

yields

[H ] ⊆ [hb] + [H ′
I ] by theorem 2.2(ii)

⊆ [hb] + [H ′] since we have [H ′
I ] ⊆ [H ′] by theorem 3.4(ii). �



T. Könik, A.C. Cem Say / Duration consistency filtering for qualitative simulation 281

Theorem 3.6 (Comparison propagation over derivative). For two functions f1 and f2

with continuous derivatives f ′1 and f ′2 on I = (tb, te), and their initial points fb1 =
f1(tb) and fb2 = f2(tb) on I such that using these three pairs, the comparison signs
[�F ], [�F ], [�F ′], [�F ′], [�fb], and [�fb] are well-defined, the following relations
hold:

(i) [�F ] ⊆ [�fb] + [�F ′],
(ii) [�F ] ⊆ [�fb] + [�F ′].

Proof. (i) We let h(t) = �f (t) and insert the following into theorem 3.5:

(a) [H ] = [�F ],
(b) [hb] = [�fb] (hb = �f (tb) = f2(tb)− f1(tb) = fb2 − fb1 = �fb),

(c) [H ′] = [�F ′] (h′(t) = d�f (t)/dt = f ′2(t)− f ′1(t)).

Moreover, h′ is continuous since f ′1 and f ′2 are.
(ii) Similar to (i). �

Although the above constraints are not written in terms of magnitude comparison
signs, they can be used in conjunction with theorems 3.1 and 3.3 to propagate magnitude
comparisons over derivative relations. For example, let us consider the simple case where
both the functions and their derivatives are always positive:

[F1] = [F2] = [fb1] = [fb2] = [F ′1] = [F ′2] = [+].
If we also know that the second function has larger initial magnitude, and pointwise
larger speed:

[�|fb|] = [+], [�|F ′|] = [+],
we get:

[�F ′] = [�|F ′|] ·�[F ′] = [+] since �[F ′] = [+] (theorem 3.3(v)),
[�fb] = [+] since �[fb] = [+] (theorem 3.1(ii)),
[�fb] = [�|fb|] · [�fb] = [+] since [�fb] = [+] (theorem 3.1(i)(c)),
[�F ] ⊆ [�fb] + [�F ′] = [+] → [�F ] = [+] (theorem 3.6(i)),
[�F ] = �[F ] = [+] since �[F ] = [+] (theorem 3.3(ii)),
[�|F |] = [�F ] · [�F ] = [+] since �[F ] = [+] (theorem 3.3(i)).

See [8] for the description of further constraints similar to theorem 3.6 that fa-
cilitate propagation of comparisons over the other modeling primitives of the qualitative
representation; namely, multiplication, addition, and monotonic functional relations. For
multiplication and addition, our constraints are provably optimal for the given informa-
tion.
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3.2.2. Comparison on different intervals
Our strategy for comparing two functions on different intervals will be to construct

a single comparison interval, and to shift the compared functions so that they are defined
on this interval.

Definition 3.6 (Minimum interval). Given two intervals I1 = (tb1, te1) and I2 = (tb2,

te2), we define the minimum interval of I1 and I2 as I= (0, t�), where t�=min(t�1, t�2).

Definition 3.7 (Directional functions). Given a pair of functions f1, f2 on the inter-
vals I1 = (tb1, te1), I2 = (tb2, te2), we define, for each fj (j = 1, 2), two functions,
the forward directional function f→j , and the backward directional function f←j as fol-
lows:

(i) f→j (t) = fj (tbj + t),

(ii) f←j (t) = fj (tej − t).

For a function fj , the function f→j starts at the initial point of fj and traces its
values in the forward direction for the duration of the minimum interval. Similarly, f←j
starts at the end point of fj and traces it backward. Figure 2 shows two functions f1 and
f2 with their corresponding directional functions.

By comparing each directional function of f1 with each directional function of f2,
we get four different sets of comparison functions and corresponding comparison signs.
To distinguish these, we use the directions as superscripts.

Figure 2. Constructing directional functions.
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Definition 3.8 (Directional comparison functions). Given a pair of functions f1, f2

well-defined on I1, I2, we define the directional comparison functions �f αβ(t),�f αβ(t)

and �|f |αβ(t) on the minimum interval I to be the comparison functions of the direc-
tional functions f α

1 and f
β

2 on I where α and β are two directions from the set {‘→’,
‘←’}:

(i) �f αβ(t) = f
β

2 (t)− f α
1 (t),

(ii) �f αβ(t) = f
β

2 (t)+ f α
1 (t),

(iii) �|f |αβ(t) = |f β

2 (t)| − |f α
1 (t)|.

For example, if we compare f←1 , the backward directional function of f1, with f→2 ,
the forward directional function of f2, we will get the outward comparison functions
�f↔, �f↔, and �|f |↔ using which, the outward comparison signs [�F↔], [�F↔],
and [�|F |↔] are constructed. The names and simplified superscripts of all comparison
signs are given in table 4. Figure 3 depicts the forward and inward comparison of the
functions f1 and f2 from figure 2.

The constraints proven earlier (theorems 3.3 and 3.6) for functions on a common
interval can help reasoning about different domains if we have a way of mapping di-
rectional expressions to the single-domain vocabulary. The next theorem bridges this
gap.

Table 4
Directional comparison signs.

Functions Name Superscript Comparison signs

f→1 f→2 forward “→” [�|F |→] [�F→] [�F→]
f←1 f←2 backward “←” [�|F |←] [�F←] [�F←]
f←1 f→2 outward “↔” [�|F |↔] [�F↔] [�F↔]
f→1 f←2 inward “→←” [�|F |→←] [�F→←] [�F→←]

(a) (b)

Figure 3. Directional comparison examples of f1 and f2 from figure 2: (a) forward comparison, (b) inward
comparison. (a) [�|F |→] = [−], [�F→] = [−], [�F→] = [+], (b) [�|F |→←] = [?], [�F→←] =

[?], [�F→←] = [+].
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Theorem 3.7 (Mapping directional functions to comparison constraints). Given two
functions v1 and v2, and their derivatives a1 and a2, if the directional functions of v1 and
v2 on I in the directions α1 and α2 are named f1 and f2, such that f1(t) = v

α1
1 (t), f2(t) =

v
α2
2 (t), then the following equalities hold (j = 1, 2):

(i) f ′j (t) =
{
a→j (t)

−a←j (t)

if αj = ‘→’,
if αj = ‘←’.

(ii) fbj =
{
vbj

vej

if αj = ‘→’,
if αj = ‘←’.

(iii) [�|F ′|] = [�|A|α1α2].
(iv) [Fj ] = [Vj ] if [Vj ] �= [?].

(v) [F ′j ] =
{[Aj ]
−[Aj ]

if αj = ‘→’ and [Aj ] �= [?],
if αj = ‘←’ and[Aj ] �= [?].

(vi) [�|V |α1α2] = [�|F |].
Proof.

(i) f ′j (t) =
{
v′j (tbj + t) = aj (tbj + t) = a→j (t)

v′j (tej − t) = −aj (tej − t) = −a←j (t)

if αj = ‘→’,
if αj = ‘←’.

(ii) fbj =
{
v→j (0) = vj (tbj ) = vbj

v←j (0) = vj (tej ) = vej

if αj = ‘→’,
if αj = ‘←’.

(iii) Since |f ′j (t)| = |aαjj (t)| by (i), we can construct the following chain:

�
∣∣f ′∣∣(t) = ∣∣f ′2(t)∣∣− ∣∣f ′1(t)∣∣ = ∣∣aα2

2 (t)
∣∣− ∣∣aα1

1 (t)
∣∣ = �|a|α1α2(t).

(iv) We have Fj = V
αj
j ⊆ Vj and use [Fj ] ⊆ [Vj ] (proposition 2.1(i)).

(v) Using (i) and [Aj ] �= [?] we get:

[
F ′j

] =
{[A→j ] = [Aj ] if αj = ‘→’,

−[A←j ] = −[Aj ] if αj = ‘←’.

(vi) By definition. �

The utility of this result in propagating directional comparisons over derivative
relations will be illustrated in section 6.3.2. These comparisons can be propagated over
multiplicative, additive, and monotonic functional relationships as well [8].

The main pointwise comparison constraint, which we will present shortly, uses
pointwise comparison signs such as [�|V |→] in a similar fashion to the way the quali-
tative average value constraint uses the average value comparison signs such as [�|v̄|].

We first explain the intuitive idea. Let us assume we observe two cars with posi-
tions x1, x2 and velocities v1, v2 on the intervals I1, I2. Assume that we know:
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• [�|V |→] = [+]: the speed of the second car is pointwise higher in the minimum
interval.

• [Vj ] �= [?], [0] for j = 1, 2: the velocities are either all-positive or all-negative uni-
formly in their intervals.

• [�|x�|] = [−]: the second car has traveled a shorter distance.

In [8], it is shown that the qualitative average value constraint is not sufficient to make a
duration comparison given the above information.

Nevertheless, we can use the following argument to compare the durations: The
second car has traveled more distance during the minimum interval I in the first part of
the comparison (since [�|V |→] = [+]). At the end of I, either I1 or I2 finishes. On the
other hand, the second car should travel less distance in total ([�|x�|] = [−]). Since
the cars cannot stop or change direction ([Vj ] �= [?], [0]), after the end of I, the first car
should have continued to travel for overcoming the distance traveled by the second car,
therefore I2 is shorter than I1, that is: [�|t�|] = [−].

Theorem 3.8 (Main pointwise comparison constraint). Given a pair of functions x1, x2

and their continuous derivatives v1, v2 on the intervals I1 = (tb1, te1), I2 = (tb2, te2),
such that [V1] �= [?], [0] and [V2] �= [?], [0], the following constraint holds for any two
directions α, β: [

�|x�|
] ⊆ [

�|V |αβ]+ [
�|t�|

]
.

Proof. t� = min(t�1, t�2) as in definition 3.6.

�|x�| = |x�2| − |x�1| =
∣∣∣∣
∫ t�2

0
v
β

2 (s) ds

∣∣∣∣−
∣∣∣∣
∫ t�1

0
vα1 (s) ds

∣∣∣∣
=

∫ t�2

0

∣∣vβ2 (s)∣∣ ds −
∫ t�1

0

∣∣vα1 (s)∣∣ ds

=
∫ t�

0

∣∣vβ2 (s)∣∣ ds +
∫ t�2

t�

∣∣vβ2 (s)∣∣ ds −
∫ t�

0

∣∣vα1 (s)∣∣ ds

−
∫ t�1

t�

∣∣vα1 (s)∣∣ ds (since [Vj ] �= [?]).

Combining the first and third terms using definition 3.8(iii):

�|x�| =
∫ t�

0
�|v|αβ(s) ds +

∫ t�2

t�

∣∣vβ2 (s)∣∣ ds −
∫ t�1

t�

∣∣vα1 (s)∣∣ ds.

Letting

ε =
∫ t�2

t�

∣∣vβ2 (s)∣∣ ds −
∫ t�1

t�

∣∣vα1 (s)∣∣ ds
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we get:

�|x�| =
∫ t�

0
�|v|αβ(s) ds + ε.

Let h(t) = �|v|αβ(t), hI (t) =
∫ t

0 h(s) ds (h is continuous like v1 and v2)

�|x�| = hI(t�)+ ε.

This is abstracted to: [
�|x�|

]⊆ [
hI (t�)

]+ [ε] (theorem 2.2(ii))

⊆ [H ] + [ε] (theorem 3.4(i))

hence: [
�|x�|

] ⊆ [
�|V |αβ]+ [ε].

We consider three possible values for [�|t�|] ([�|t�|] �= [?] because t�1 and t�2 are
reals).

Case 1. [�|t�|] = [+]. Then t�2 > t�1 = t�, therefore,

[ε] =
[∫ t�2

t�

∣∣vβ2 (s)∣∣ ds

]
= [+] (since [V2] �= [0], [?]).

Case 2. [�|t�|] = [−]. Then t�1 > t�2 = t�, therefore,

[ε] =
[
−

∫ t�1

t�

∣∣vα1 (s)∣∣ ds

]
= [−] (since [V1] �= [0], [?]).

Case 3. [�|t�|] = [0]. Then t�1 = t�2 = t�, therefore,

[ε] = [0].
Since [ε] = [�|t�|] holds in all cases, we conclude:[

�|x�|
] ⊆ [

�|V |αβ]+ [
�|t�|

]
. �

The result obtained in the example presented just before theorem 3.8 can be replicated
using this new constraint. Since the preconditions of the main pointwise compari-
son constraint are satisfied in the example situation, we can insert [�|V |→] = [+]
and [�|x�|] = [−] into that constraint to obtain [−] ⊆ [+] + [�|t�|], implying
[�|t�|] = [−] as expected.

The comparison calculus rules derived in this section play an important role in the
development of the new qualitative simulation filter to be presented in the remainder
of the paper. A comparison of this formalism and Weld’s differential qualitative (DQ)
analysis [16] technique, a method developed for comparing different behaviors of the
same function for perturbation analysis purposes, will be presented in section 9. See [8]
for a much more detailed presentation of the comparison calculus, and its applications
to other qualitative reasoning tasks.
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PART II. IMPOSING DURATION CONSISTENCY IN QUALITATIVE
SIMULATION

4. Qualitative simulation

In this section, we give a brief overview of the QSIM [10] qualitative simulation
algorithm’s aspects relevant to our work.

The variables of a system modeled in QSIM are continuously differentiable func-
tions of time. Each variable has a quantity space; a totally ordered collection of symbols
(landmarks) representing important real values that it can take. QSIM has the ability of
asserting new landmarks during simulation. The points and intervals in its quantity space
make up the set of possible qualitative magnitudes (denoted qmag) of a variable. The
qualitative direction (qdir) of a variable is defined to be the sign of its derivative. We
will also use the symbols “↑”, “↓” and “�” to denote, respectively, the values [+], [−],
and [0] for qualitative directions. A variable’s qualitative value is the pair consisting of
its qualitative magnitude and qualitative direction. For example, 〈(0,+∞),↑〉 describes
a variable with a positive increasing value. The collection of the qualitative values of a
system’s variables makes up its state.

The “laws” according to which the system operates are represented by constraints
describing time-independent relations between the variables. At each step of the sim-
ulation, QSIM uses a set of transition rules to implicitly generate all possible “next”
qualitative values of the variables. The combinations of these values are filtered so that
only those which constitute complete and legal states for the system remain. The con-
straints supply “checklists” during this filtering; every constraint must still be satisfied
by the newly proposed values of its variables.

There are seven “basic” types of constraints in QSIM: addition, constant function,
d/dt , M+,M−, minus, and multiplication. Each type of constraint imposes a different
kind of relation on its arguments. For example, if we have the constraint minus(x, y),
which just stands for ∀t (x(t) = −y(t)), then any combination of variable states in which
variables x and y have the same (nonzero) sign in their magnitudes or directions will be
filtered out. The monotonic function constraints M+ and M− are the ingredients that
make QSIM models correspond to infinitely many ordinary differential equations: An
M+ (M−) relationship between two variables z and w just indicates that we know the
existence of a function f , such that z = f (w), and f ′ is positive (negative) throughout
its domain.

QSIM generates a tree of system states to represent the possible solutions of the
model. The root of this tree is the initial state with time label t0. Every path from the
root to a leaf is a predicted behavior of the system. Time point and interval states appear
alternately in behaviors. If a state in which all variables have point magnitudes appears
twice in a behavior, simulation ends on that branch, since this corresponds to a “cycle”
that will repeat forever.

Spurious behaviors do not correspond to any solution consistent with the model
and the initial state. Faced with the inadequacy of the individual constraints in “locally”
filtering some spurious behaviors by looking only at the information in the current state,
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QSIM uses a set of global filters, which examine different mathematical properties of
the entire history of the variables to eliminate inconsistent candidate states.

5. Duration consistency filtering: The basic idea

Let us begin with an example showing the kind of spurious behaviors that we will
deal with. Consider a system (figure 4) consisting of two balls thrown upward from
ground level at the same moment. The simulator is set to stop extending a prediction
when either ball hits the ground, that is, at time-points where h1 or h2 has the value
〈0,↓〉.

The QSIM algorithm predicts 13 distinct behaviors in this simulation. Figure 5
depicts one of these predictions. (Only the height variables are shown.) It is easy to

Figure 4. The two-ball system.

Figure 5. A (spurious) prediction for the two-ball system.
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see that this is a spurious prediction, since it describes a behavior in which it takes the
balls the same time to reach their maximum heights, but then the first ball overtakes the
second ball in the next half of what is clearly a symmetric trajectory.

If a component that detects the symmetry of the trajectories and deduces |t0, t1| =
|t1, t2| from the behavior of the first ball, and |t0, t1| > |t1, t2| from the behavior of
the second one as a result were added to the algorithm, this spurious prediction could
be eliminated by noticing the inconsistency. This model generates five other similar
spurious predictions that can be eliminated in a similar way.

We define duration comparison facts as statements of the form “|ta, tb| = |tc, td |”,
or “|ta, tb| > |tc, td |” where ta, tb, tc, and td are QSIM time points. Duration compar-
ison facts can be described using duration comparison signs presented in the first part
of this paper. For example, by letting I1 = (ta, tb) and I2 = (tc, td), these statements
will translate to [�|t�|] = [0] and [�|t�|] = [−], respectively. In the next section, we
describe methods based on analysis of symmetry and periodicity, as well as the compar-
ison calculus, to extract duration comparison facts for a given QSIM model and partially
computed behavior. If these facts lead to an inconsistency, the spurious prediction can
be eliminated.

6. Extracting duration comparison facts in qualitative simulation

6.1. Symmetric functions

6.1.1. Theory
Symmetry is an important qualitative property. In the next subsection, we will de-

scribe how the equations in the input model can be used to deduce the existence of sym-
metric functions in a partial behavior. This section is an introduction to the terminology
and mathematics that will be employed during that procedure.

Definition 6.1 (Symmetric functions). If a continuous function f (t) has, for a given
point ti in its domain I = (tb, te), the property that

f (ti − s) = f (ti + s)

for all s such that ti − s ∈ I and ti + s ∈ I, then f is said to be even symmetric around
ti , denoted even(f, ti).

If a continuous function f (t) has, for a given point ti in its domain I, the property
that

f (ti − s) = −f (ti + s)

for all s such that ti−s ∈ I and ti+s ∈ I, then f is said to be odd symmetric around ti , de-
noted odd(f, ti). The positive legal range for s described above, namely, (0,min(ti − tb,

te − ti )), is called the symmetry radius around ti .



290 T. Könik, A.C. Cem Say / Duration consistency filtering for qualitative simulation

If a function f is (even or odd) symmetric around ti , ti is said to be f ′s symmetry
point. In the remainder of this section, all appearances of s are assumed to be universally
quantified over the symmetry radius around the symmetry point under discussion. Note
that the function x(t) ≡ 0 is both even and odd symmetric everywhere in its domain.

Theorem 6.1 (Propagation of symmetry in composition relation). Given y(t) =
f (x(t)),

(i) even(x, ti )→ even(y, ti ),

(ii) odd(x, ti) ∧ odd(f, 0)→ odd(y, ti ).

Proof.

(i) y(ti − s) = f
(
x(ti − s)

) = f
(
x(ti + s)

) = y(ti + s),

(ii) y(ti − s) = f
(
x(ti − s)

) = f
(−x(ti + s)

) = −f (
x(ti + s)

) = −y(ti + s). �

The following theorems establish the correctness of a set of rules used by the sym-
metry recognition procedure incorporated to QSIM.

Theorem 6.2 (Symmetry of constant functions). For a constant k, x(t) = k is even
symmetric around every point.

Theorem 6.3 (Propagation of symmetry in addition relation). Given x(t) = y(t)+z(t),

(1) if any two of x, y, and z are even symmetric around ti , then the third one is also even
symmetric around ti :

(i) even(y, ti) ∧ even(z, ti)→ even(x, ti ),

(ii) even(x, ti) ∧ even(z, ti)→ even(y, ti ),

(iii) even(x, ti) ∧ even(y, ti)→ even(z, ti);

(2) if any two of x, y, and z are odd symmetric around ti , then the third one is also odd
symmetric around ti :

(iv) odd(y, ti ) ∧ odd(z, ti)→ odd(x, ti ),

(v) odd(x, ti ) ∧ odd(z, ti)→ odd(y, ti ),

(vi) odd(x, ti ) ∧ odd(y, ti)→ odd(z, ti).

Proof. (i) x(ti − s) = y(ti − s)+ z(ti − s) = y(ti + s)+ z(ti + s) = x(ti + s).
(ii) y(ti − s) = x(ti − s)− z(ti − s) = x(ti + s)− z(ti + s) = y(ti + s).
(iii) Similar to the proof of (ii).
(iv) x(ti − s) = y(ti − s)+ z(ti − s) = −y(ti + s)− z(ti + s) = −x(ti + s).
(v) y(ti − s) = x(ti − s)− z(ti − s) = −x(ti + s)+ z(ti + s) = −y(ti + s).
(vi) Similar to the proof of (v). �
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Theorem 6.4 (Propagation of symmetry in multiplication relation). Given x(t) =
y(t) · z(t),
(1) if any two of x, y, and z are even symmetric around ti , then the third one is also even

symmetric around ti :

(i) even(y, ti) ∧ even(z, ti)→ even(x, ti ),

(ii) even(x, ti) ∧ even(z, ti)→ even(y, ti ) if z(t) �= 0 for t ∈ (tb, te),
(iii) even(x, ti) ∧ even(y, ti)→ even(z, ti) if y(t) �= 0 for t ∈ (tb, te);

(2) if any two of x, y, and z are odd symmetric around ti then the third one is even
symmetric around ti :

(iv) odd(y, ti ) ∧ odd(z, ti)→ even(x, ti ),

(v) odd(x, ti ) ∧ odd(z, ti)→ even(y, ti ) if z(t) �= 0 for t ∈ (tb, te),
(vi) odd(x, ti ) ∧ odd(y, ti)→ even(z, ti) if y(t) �= 0 for t ∈ (tb, te);

(3) if any one of x, y, and z is odd symmetric and another one is even symmetric
around ti , then the remaining one is odd symmetric around ti:

(vii) even(y, ti ) ∧ odd(z, ti)→ odd(x, ti ),

(viii) even(z, ti) ∧ odd(y, ti )→ odd(x, ti ),

(ix) even(x, ti ) ∧ odd(z, ti)→ odd(y, ti ) if z(t) �= 0 for t ∈ (tb, te),

(x) even(z, ti) ∧ odd(x, ti )→ odd(y, ti ) if z(t) �= 0 for t ∈ (tb, te),

(xi) even(x, ti ) ∧ odd(y, ti)→ odd(z, ti) if y(t) �= 0 for t ∈ (tb, te),
(xii) even(y, ti ) ∧ odd(x, ti)→ odd(z, ti) if y(t) �= 0 for t ∈ (tb, te).

Proof. (i) x(ti − s) = y(ti − s)z(ti − s) = y(ti + s)z(ti + s) = x(ti + s).
(ii) y(ti − s) = x(ti − s)/z(ti − s) = x(ti + s)/z(ti + s) = y(ti + s).
(iii) Similar to the proof of (ii).
(iv) x(ti − s) = y(ti − s)z(ti − s) = (−y(ti + s))(−z(ti + s)) = x(ti + s).
(v) y(ti − s) = x(ti − s)/z(ti − s) = −x(ti + s)/(−z(ti + s)) = y(ti + s).
(vi)–(xii) Similar to the above proofs. �

Theorem 6.5 (Propagation of symmetry in monotonic composition relation). Given
y(t) = f (x(t)), where f ∈ M+ ∪M−,

(i) even(x, ti )↔ even(y, ti ),

(ii) if odd(f, 0) (f (−x) = −f (x)) then odd(x, ti )→ odd(y, ti ).



292 T. Könik, A.C. Cem Say / Duration consistency filtering for qualitative simulation

Proof. If f ∈ M+ ∪M−, then f −1 ∈ M+ ∪M−, and we get the results using theo-
rem 6.1. �

Substituting s by (t−ti ) in definition 6.1, we see that a function f is even symmetric
around ti if and only if

f (t) = f (−t + 2ti ).

Similarly, odd symmetry around ti can be redefined with the equation

f (t) = −f (−t + 2ti ).

These alternative definitions will be useful in the proof of the next theorem.

Theorem 6.6 (Propagation of symmetry in derivative relation). Given x = dy/dt ,

(i) even(y, ti )↔ odd(x, ti),

(ii) odd(y, ti)↔ even(x, ti) ∧ y(ti ) = 0.

Proof. (i)(a) Assume even(y, ti ). Then we have y(t) = y(−t + 2ti ). Differentiating,
we obtain x(t) = −x(−t + 2ti ) meaning odd(x, ti ).

(b) Assume odd(x, ti). Letting v = −τ + ti and w = τ − ti ,

y(ti + s)− y(ti − s)=
∫ ti+s

ti−s
x(τ ) dτ =

∫ ti

ti−s
x(τ ) dτ +

∫ ti+s

ti

x(τ ) dτ

=−
∫ 0

s

x(ti − v) dv +
∫ s

0
x(ti + w) dw

=
∫ s

0
x(ti − v) dv +

∫ s

0
x(ti + w) dw

=−
∫ s

0
x(ti + v) dv +

∫ s

0
x(ti + w) dw = 0,

hence y(ti + s) = y(ti − s), therefore even(y, ti ).
(ii)(a) Assume odd(y, ti ). This means that y(t) = −y(−t + 2ti ). Differentiating,

one obtains x(t) = x(−t+2ti ), meaning even(x, ti ). Moreover, y(ti−s) = −y(ti+s)→
y(ti ) = −y(ti)→ y(ti) = 0.

(b) Assume even(x, ti ) and y(ti) = 0. Letting v = −τ + ti and w = τ − ti ,

y(ti − s)= y(ti )+
∫ ti−s

ti

x(τ ) dτ =
∫ ti−s

ti

x(τ ) dτ

=−
∫ s

0
x(ti − v) dv = −

∫ s

0
x(ti + v) dv,

y(ti + s)= y(ti )+
∫ ti+s

ti

x(τ ) dτ =
∫ ti+s

ti

x(τ ) dτ =
∫ s

0
x(ti + w) dw,

hence we get y(ti − s) = −y(ti + s), therefore odd(y, ti ). �
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How can symmetry information be exploited for comparing durations? Note that
the definition of a function x being even symmetric around ti entails that

x(ti − s) = k ↔ x(ti + s) = k

which, when translated to the QSIM representation, means the following: If we “see” x
to be at a landmark k at a time-point ta before ti , then x is “destined” to reach k again at
some point tc after ti (unless the simulation terminates for another reason.) Furthermore,
we can conclude that |ta , ti | = |ti , tc|, and, of course, |ta, ti | < |ti , tb| for any tb in which
x has not yet reached k after ti .

For example, assume that x, as illustrated in figure 6, has been discovered to be
even symmetric at time-point t6, and the list of landmarks crossed by x in [t0, t6) is
{xa, 0, xb, 0}. “xc” is a new landmark discovered at the symmetry point t6. In the con-
tinuation of this behavior, it is certain that x will cross the landmarks listed above in the
reverse order such as {0, xb, 0, xa}, also crossing xc along the way to xa . Whenever x
arrives at a landmark in this list, we will be sure that exactly the same amount of time
has elapsed from ti as it took x to reach the symmetry point from the corresponding
appearance of that landmark before the symmetry point.

For odd symmetric functions, zero crossings contribute duration comparison facts.
To see this, we consider the definition of odd symmetry around ti , that is: f (ti − s) =
−f (ti + s), which entails:

f (ti − s) = 0 ↔ f (ti + s) = 0.

Qualitative directions of odd symmetric variables are useful too. Since the deriv-
ative of an odd symmetric variable f will be even symmetric around the symmetry
point ti , it must be the case that

f ′(ti − s) = 0 ↔ f ′(ti + s) = 0,

which means that the qualitative direction of x becoming steady s units before ti forces
a “mirror-event” where x stops again s units after ti .

Figure 6. An even symmetric variable.
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The next subsection illustrates the algorithm for extracting the duration comparison
facts related to symmetric functions in more detail.

6.1.2. Recognizing and using symmetries in qualitative simulation
The theorems in the previous subsection describe the ways in which symmetry

information about functions can be propagated through a model. The only way of ob-
taining symmetry information from “scratch”, as it were, is provided by theorem 6.2.
In our modifications which enable QSIM to recognize symmetric variables, the results
of theorems 6.2–6.6 are used as rules which add new symmetry data whenever they are
able to “fire” in a given state.

We will describe the working of the symmetry recognition procedure using our in-
troductory example about the two-ball system (figure 4). Before the simulation starts, a
preprocessor marks variables with constant value to use the rule in theorem 6.2 for de-
ducing symmetry information about the variables. A newly derived piece of information
of that kind can cause other rules to fire and the firing of rules continues until no new
conclusions can be drawn. At this stage, a, the only constant function in the model, is
found to be even symmetric (everywhere) by an application of that rule and no other rule
fires. This single item of symmetry information is placed into the symmetry list, a struc-
ture that will be inherited by all behaviors that are continuations of this state. New rules
can only fire if new information is added to the system. The only dynamic information
that can start a new rule-firing event is the value of a variable reaching zero during the
simulation. If a variable reaches the value zero at a time point ti and if the derivative
of that variable is even symmetrical at that point, the rule of theorem 6.6(ii) fires in the
backward direction and this may cause a chain of firings. Since the starting of new fir-
ings is only possible at time-points where a variable has the value zero, we can make
maximum use of the symmetry derivation rules if we run them just for each completed
time-point state. Our modified algorithm therefore submits each time-point state to the
set of symmetry rules, and any new symmetry information obtained as a result is added
to the symmetry list associated with the current behavior.

In our example for the behavior in figure 5, the state t1 causes the reasoning steps
described in table 5 to be performed. Further simulation of this model does not lead to
the discovery of any new symmetry information.

Each candidate time-point state is examined by our algorithm to see if it contributes
any new duration comparison facts due to previously discovered symmetries. For this
purpose, we make use of the fact that the behavior of a symmetric variable up to the

Table 5
Derivation of new symmetry information from the state at t1.

Trigger Fired rule Conclusion

a is even everywhere and v1(t1) = 0 theorem 6.6(ii) backwards v1 is odd around t1
a is even everywhere and v2(t1) = 0 theorem 6.6(ii) backwards v2 is odd around t1

v1 is odd around t1 theorem 6.6(i) backwards h1 is even around t1
v2 is odd around t1 theorem 6.6(i) backwards h2 is even around t1
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symmetry point determines a prefix of that variable’s future behavior, as explained in the
previous subsection.

Our algorithm performs that reasoning to assert new duration comparison facts.
Each symmetric variable past its symmetry point can contribute one such fact at each
time-point. For the even symmetric variable of figure 6, when the symmetry is discov-
ered at t6, the behavior history of the variable is traced and for each time point ti < t6
where the variable is at one of its landmarks li , the tuple 〈li , ti〉 is pushed in a stack
such that the tuples with newest time points are at the top of the stack. In this case, the
stack created at the symmetry point will look like {〈xa, t0〉, 〈0, t1〉, 〈xb, t2〉, 〈0, t3〉} where
〈0, t3〉 is the top element of the stack. As the simulation continues, the qualitative values
of the variable are compared with the stack to extract duration comparison facts. At t7,
the first global time point after the symmetry point, the simulation does not reach the
expected landmark 0 at the top of the stack and as a result, it extracts the duration fact
|t3, t6| > |t6, t7|. At t8, the simulator detects that it has reached the expected landmark 0,
and extracts the duration fact |t3, t6| = |t6, t8|. Since the expected landmark is reached,
the tuple 〈0, t3〉 is pulled from the stack and the simulation continues with the expected
landmark xb.

Odd symmetric functions, which contribute useful duration information when they
cross zero and/or “stop”, as explained in the previous subsection, are treated using a
variant of the procedure described above.

Symmetries of “non-analytic” functions, which stay at the same landmark value
for a finite time interval during their behavior (figure 7) are handled in a somewhat more
sophisticated way. In this case, only the end points of constant regions such as (t2, t3)
and (t5, t7) are considered, so that premature and wrong results such as |t2, t3| = |t5, t6|
are avoided.

Returning to our two-balls example, the duration fact extraction procedure works as
follows when it is called during the creation of state t2 of figure 5: Variable h1 is known
to be even symmetric around t1, and its “before” stack indicates that it is supposed to
reach zero exactly |t1 − t0| time units after t1. The proposed magnitude of zero for h1

causes the assertion of |t0, t1| = |t1, t2| to the duration comparison fact list. A similar
reasoning about h2 adds |t0, t1| > |t1, t2| to the same data structure.

Figure 7. A non-analytic odd symmetric function.
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6.2. Periodicity

The QSIM algorithm already has a cycle detection feature which lets it decide
that a branch of the state tree corresponds to a periodic behavior and therefore need
not be expanded any more. For instance, figure 8 depicts the behavior of the position
x in the spring-mass model [10,14] in figure 9. If the entire system consists of these
three variables, QSIM will perform simulation only up to time point t4, noticing that the
current state represents a point identical to state t0 in the phase space. It is then inferred
that the rest of the behavior consists of infinite repetitions of the segment between these
two points. Clearly, this lets us conclude that

|t0, t1| = |t4, t5| = |t8, t9| = · · · ,
|t1, t2| = |t5, t6| = |t9, t10| = · · · ,

and so on.
Now assume that this three-constraint set is “embedded” in a bigger model, con-

taining other variables and constraints. Since the values of the other variables will prob-
ably be different at t0 and the state corresponding to figure 8’s t4, the two global system
states will not be identical at these points, and the simulation will continue. But it is
clear that the variables x, v, and a will behave periodically throughout all possible be-
haviors of the overall system. If all three do not have the value 〈0,�〉 at t0, this “clock”
subsystem will “tick” at time-points where either v or both x and a reach their zeros.

Figure 8. Behavior of a non-linear spring.

Figure 9. Spring-block system. (This constraint set forms a “clock” subsystem in any greater model.)
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This property can be exploited for our purposes. A preprocessor would scan the
constraint model for subsets known to cause periodic behavior to see if any embed-
ded clock subsystem can be identified. (These sets, and the behavior segment–duration
equality patterns associated with them, can be manually added to a “periodicity library”
if an explicit periodicity proof, such as the ones in [10,14] for the spring-block model, is
available. Alternatively, QSIM itself may be used as the “mathematician”: Whenever it
detects a cycle during a simulation, the model under consideration and the starting state
of the cycle can be automatically asserted to the library as a new kind of clock.) If such
a clock were found during preprocessing, its variables would be noted for future use.
During the global filtering of each time-point state, the current behavior prefix would be
examined to see if one of the noted variables has “ticked”, contributing a new duration
comparison fact to be used by the duration consistency filter.

Our present implementation of periodicity checking is limited to using, for each
clock subsystem, partial qualitative state descriptions called periodicity templates, which
are known to be repeated periodically. During simulation, each time-point state is exam-
ined to see whether it satisfies a periodicity template (of which there may be more than
one). If the state at time tk satisfies a template and if ti and tj are the last two time points
that have satisfied it before, |ti , tj | = |tj , tk| is added to the list of duration comparison
facts. For each matching template-subsystem pair in memory, only the time points of
the last two matching states are stored and whenever a new state satisfies a template, a
duration comparison fact is created without examining the entire history of the behavior.

For the case where the subsystem is a spring-block equivalent such as the one in
figure 9, we may use the periodicity template {qmag(x) = [0], qmag(v) = [+]} and we
obtain (for a behavior like figure 8):

|t0, t4| = |t4, t8| = · · · .
Similarly, {qmag(x) = [0], qmag(v) = [−]} asserts:

|t2, t6| = |t6, t10| = · · ·
{qmag(x) = [+], qmag(v) = [0]} asserts:

|t1, t5| = |t5, t9| = · · ·
and finally {qmag(x) = [−], qmag(v) = [0]} asserts:

|t3, t7| = |t7, t11| = · · · .
6.3. Multiple traversals of the same interval

In section 3, we developed two comparison calculus rules (theorems 3.2 and 3.8)
which can be used for comparing the lengths of time intervals I1 and I2, given com-
parison information about the changes of two “position” variables x1 and x2, and their
“speeds” |v1| and |v2|, over these intervals. These prerequisites can be unambiguously
computed from a partially built QSIM behavior when x1 and x2 are the same variable,
say, x, and the landmark interval spanned by x in one of I1 and I2 is a subset of the
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other one (which forces v1 and v2 to be a single “velocity” variable v as well). So we
can compare the durations of two traversals of the same landmark interval by the same
variable.

6.3.1. Applying the qualitative average value constraint
Let us recall the qualitative average value constraint. Given functions x1, x2 and

their derivatives v1 and v2:[
�|x�|

] ⊆ [
�|v̄|]+ [

�|t�|
]

if [v̄1] �= [0] or [v̄2] �= [0].
Comparison of the average speeds in two intervals can be performed via ordinal

comparisons on upper and lower bounds. For example, if we know that the velocity
is positive in both I1 and I2, and all values attained by it during I2 are greater than
all of its values during I1, we will say that the magnitude of v2 in I2 is totally greater
than the magnitude of v1 in I1. This information entails that |v̄2| > |v̄1|, and hence
[�|v̄|] = [+].

For instance, consider the QSIM behaviors of a variable x and its derivative v in fig-
ure 10. If we let I1 = (t0, t1) and I2 = (t4, t5), we get [�|v̄|] = [+]. This can be detected
since qmag(v, I2) = (+v0,+∞) is greater than qmag(v, I1) = (0,+v0). On the other
hand, the change of x in both intervals is the same. We can detect this by comparing the
end points of the two intervals, and we get [�|x�|] = [0]. As a result, the qualitative
average value constraint lets us conclude that [�|t�|] = [−], i.e.: |t4, t5| < |t0, t1|.

The method we used above for making an average value comparison needs a very
strong condition that one velocity is totally greater than the other. In the situation
shown in figure 11, although this condition is not satisfied, one can still conclude that
[�|v̄|] = [+].

If the “distance” functions are known to have linear velocities, (which requires that
a further pair of “acceleration” variables be present in the model, and remain constant for
the time intervals in question,) the average value comparison sign can be computed by

(a) (b)

Figure 10. x traverses the same interval with higher speed in I2: (a) position, (b) velocity.
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Figure 11. Comparison of linear velocities.

Figure 12. Comparison of average values using linearization.

comparing the end points of the velocities. In figure 11, since ve2 > vb1 and vb2 > ve1,
and since the velocities are linear, we get:

ve2 + vb2

2
>

ve1 + vb1

2
therefore v̄2 > v̄1

and since all velocities are positive, we have [�|v̄|] = [+].
We can generalize this approach to perform average value comparison between

some nonlinear velocity functions. Given the velocities v1 and v2 in figure 12, we con-
struct the linearized functions vL1 and vL2 by joining the endpoints of v1 and v2 with
straight lines. Using the same argument we have used for figure 11, we can compare
the average values of the linearized functions, and since all functions are positive at all
times in this problem, we get |v̄L2| > |v̄L1|. Considering the monotonicity (which can
be detected from qualitative direction) and the signs of the curvatures (which are just the
qualitative directions of the acceleration variables) of v1 and v2, we get |v̄L1| > |v̄1| and
|v̄2| > |v̄L2|. Using these, we can derive |v̄2| > |v̄1|, which means [�|v̄|] = [+]. See
[8] for the constraint and sign patterns that enable this kind of deduction under different
situations.

6.3.2. Pointwise comparison at change of direction
We can extract more duration comparison facts by observing the time intervals

where the variables change direction. Consider the system in figure 13, depicting an
upward thrown ball in an elevator with increasing upward acceleration. Figure 14 shows
the behaviors of the position x, velocity v and the acceleration a of the ball with respect
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Figure 13. Upwards thrown ball in elevator with increasing acceleration.

Figure 14. Comparison at change of direction.

to the reference frame of the elevator. (To keep the model simple, we have assumed a
constant value for a′, but the only important thing for our calculation is that a is de-
creasing during the compared intervals.) In this problem, we should be able to deduce
|t1, t2| < |t0, t1|.

This result cannot be obtained using the methods described in previous subsection.
It is easy to check that the change in position is the same in both intervals, but how
should we compare the average speeds? The speeds are clearly not “totally comparable”
since it is not the case that the speed at all points in one of the intervals is greater than the
speed at all points in the second interval. Moreover, it is shown in [8] that the linearized
average value comparison technique cannot be used here to obtain an average speed
comparison.

If we superpose the behaviors of two imaginary balls starting at time t1 at the
maximum height with zero velocity and moving according to the graph in figure 14, one
backward in time and the other forward, we observe that the ball moving forward in time
will have higher speed at each corresponding time point, since its acceleration is greater
in magnitude at each corresponding time point. Consequently, we can conclude that the
imaginary ball in the forward direction will hit the ground in a shorter time compared to
the one in the backward direction, therefore |t1, t2| < |t0, t1|.

This idea can be realized using the tools developed in section 3.2, by comparing
the functions x, v, a on the two intervals I1 = (t0, t1) and I2 = (t1, t2) in the outward
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direction, so that time is “running backwards” in the first interval, and forwards in the
second one.

The following quantities can be extracted from the partial QSIM behavior in a
straightforward way by examining the qualitative magnitudes of the variables throughout
the interval [t0, t2]:

[ve1] = [vb2] = [v(t1)] = [0], [V1] = [+], [V2] = [−],
[A1] = [−], [A2] = [−].

Moreover, [�|A|↔] = [+] is easy to detect, because the magnitude of the acceler-
ation in the second interval is totally greater than the magnitude of the acceleration in the
first interval, and this fact can be extracted from a QSIM behavior by ordinal comparison
of the endpoints of a.

We apply the mapping in theorem 3.7 by letting (α1, α2) = (←,→) such that
f1(t) = v←1 (t), f2(t) = v→2 (t) and we get:

[fb1] = [ve1] = [0], [fb2] = [vb2] = [0] (theorem 3.7(ii)),[
�|F ′|] = [�|A|↔] = [+] (theorem 3.7(iii)),

[F1] = [V1] = [+], [F2] = [V2] = [−] (theorem 3.7(iv)),[
F ′1

] = −[A1] = [+], [F ′2] = [A2] = [−] (theorem 3.7(v)).

Using these values we can apply the constraints derived in section 3, and the signs prop-
agate as depicted in table 6.

The result is translated back to directed comparison as [�|V |↔] = [�|F |] = [+]
(theorem 3.7(vi)). Since we also know that the distances traveled in the two intervals are
the same ([�|x�|] = [0]) and since the precondition of theorem 3.8 is satisfied, we can
use the constraint [�|x�|] ⊆ [�|V |↔] + [�|t�|] to deduce [�|t�|] = [−]. This leads to
the addition of the appropriate duration comparison fact |t1, t2| < |t0, t1| to the list.

To calculate the comparison sign [�|V |↔], we have used the comparison sign
[�|A|↔] and the sign constants [ve1], [vb2], [V1], [V2], [A1], and [A2]. In general, the
sign constants can be extracted easily from a QSIM behavior. A pointwise comparison
sign is either calculated from a total comparison as in the case of [�|A|↔], or as in the

Table 6
Derivative pointwise comparison rules firing example.

Fired rule Reason Result

Definition 3.5 [fb1] = [fb2] = [0] �[fb] = [0]
Theorem 3.1(ii) �[fb] = [0] [�fb] = [0]
Definition 3.5 [F ′1] = [+] and [F ′2] = [−] �[F ′] = [−]
Theorem 3.3(iv) [�|F ′|] = [+] and �[F ′] = [−] [�F ′] = [−]
Theorem 3.6(ii) [�fb] = [0] and [�F ′] = [−] [�F ] = [−]
Definition 3.5 [F1] = [+] and [F2] = [−] �[F ] = [−]
Theorem 3.3(iii) �[F ] = [−] [�F ] = [−]
Theorem 3.3(i) [�F ] = [−] and [�F ] = [−] [�|F |] = [+]
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case of [�|V |↔], comparison information can propagate over the derivative relation, by
application of the comparison theorems (theorems 3.1, 3.3 and 3.6) together with the
mapping described in theorem 3.7. It is also possible for a pointwise comparison sign
to be computed from its higher order derivatives using the above scheme in a recursive
way. Moreover, [8] contains further constraints that can be used to propagate pointwise
comparison over the other QSIM relations of addition, multiplication and monotonic
functions.

When we use the comparison calculus in QSIM to compare durations, an important
issue is how to select which intervals are going to be compared. Theoretically, one
could create comparison signs for all pairs of intervals that could be formed by picking
ordered (but not necessarily adjacent) pairs of time points from the partial behavior,
compute unambiguous comparison signs for the pairs for which this is possible, generate
all possible sign assignments for the remaining pairs, and eliminate the assignments
that fail to satisfy all constraints. The duration comparison signs that have a single
possible assignment remaining would be marked as the obtained results. Obviously, this
algorithm has a significant time cost.

Comparing intervals at extreme points in the outward direction as in the previous
example seems to be an important special case that could return duration comparison
facts in many simulations (figure 15). Könik [8] describes how the kind of deriva-
tion exemplified above can be obtained as the result of a general rule-based constraint
propagation scheme. Finding other useful special cases is an interesting research direc-
tion.

Figure 15. Other examples for comparison at change of direction.
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7. Using the duration comparison facts

7.1. The duration consistency filter

The duration comparison facts accumulated as a result of the application of the
methods explained in the previous section are in one of two forms: “|ta, tb| = |tc, td |”, or
“|ta, tb| > |tc, td |”. Checking the consistency of a list of these facts can be viewed as a
problem of the determination of the satisfiability of a set of linear inequalities as follows:
Each interval in the comparison facts is rewritten as a subtraction of its endpoints, and
the natural ordering between time-points occurring in the facts is reflected by additional
inequalities, such that ti < tj , where i < j . The resulting system of inequalities is fed to
a complete consistency analyzer such as [4], and the last states of behaviors seen to lead
to inconsistencies are eliminated by the filter.

In our two-balls example of section 5, the duration comparison facts available dur-
ing the generation of state t2 are, once again, |t0, t1| = |t1, t2| and |t0, t1| > |t1, t2|. The
implied set of linear inequalities, namely,

t1 − t0 = t2 − t1, t1 − t0 > t2 − t1, t0 < t1 < t2,

is easily found to be inconsistent, and figure 5 is eliminated from the output.

7.2. Richer behavior descriptions

Our modified simulator annotates the output predictions with the additional in-
formation about variables and intervals that it extracts during the computation of each
behavior. Table 7 illustrates this for one of the seven surviving predictions for the two-
balls system. (Once again, only the behaviors of the height variables have been shown
in the table.)

Table 7
A rich prediction description for the two-balls system.

Time h1 h2

t0 0, ↑ 0, ↑
(t0, t1) (0,∞),↑ (0,∞),↑
t1 h1 max,� (0,∞),↑

(t1, t2) (0,h1 max),↓ (0,∞),↑
t2 (0, h1 max),↓ h2 max,�

(t2, t3) (0, h1 max),↓ (0, h2 max),↓
t3 <∞ 0, ↓ (0, h2max),↓

Symmetry information: Interval lengths:
a is even symmetric everywhere. |t0, t1| > |t1, t2| (due to even symmetry of h1).
v1 is odd symmetric around t1. |t0, t1| = |t1, t3| (due to even symmetry of h1).
v2 is odd symmetric around t2. |t0, t2| > |t2, t3| (due to even symmetry of h2).
h1 is even symmetric around t1.
h2 is even symmetric around t2.
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One application of qualitative reasoning to monitoring and diagnosis of contin-
uously running dynamic systems [6] requires qualitative simulation predictions to be
matched automatically with streams of quantitative observations. The information on
relative interval lengths supplied by our technique may help eliminating some additional
qualitative behaviors from the tracking set, leading to increased usefulness of the overall
procedure.

8. An evaluation of the duration consistency filter

8.1. Correctness

Using QSIM with the duration consistency filter is a good idea only if the following
is true:

(i) when the duration consistency filter is used, the algorithm does not predict some of
the spurious behaviors that pure QSIM predicts, and

(ii) the duration consistency filter is a conservative filter [10], i.e. it only eliminates
provably inconsistent states.

(i) has already been proven by demonstration in the previous section. As for (ii), the
proofs of sections 3 and 6 show that each duration comparison fact is a mathematically
justified conclusion that can be drawn from the information depicted by the correspond-
ing model and qualitative behavior. Since the consistency checker only marks provably
inconsistent combinations of such facts, the duration consistency filter is conservative.

8.2. Performance

We ran our implementations of both versions of the algorithm (with and without
the duration consistency filter) on various input systems; famous examples from liter-
ature, and those of our own. No performance difference was registered when duration
comparison facts cannot be extracted from the simulation output.

To measure the overheads and advantages brought by duration consistency filter-
ing, we prepared the following experimental setup: Qualitative models of n-ball systems
(where n ∈ {2, 3, 4, 5}) based on the model of figure 4 were simulated both with the
filter turned on and off. Figures 16–18 contain the results of the experiments. Models
with six or more balls produce unacceptably long execution times, regardless of whether
the filter is on or off.

Figures 16 and 17 show the improvement in predictive performance brought by the
application of our filter. In the 5-ball simulation, 30330 of the 32461 behaviors predicted
by the previous version of the algorithm are found to be spurious! As the figures indicate,
this particular family of models leads to an exponential relation between the number of
balls and the number of predictions in the simulation output, both in the presence and
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Figure 16. Number of predicted behaviors vs. number of balls in n-ball system.

Figure 17. Number of generated states vs. number of balls in n-ball system.

absence of duration consistency filtering. The number of successfully eliminated behav-
iors also increases exponentially with the number of balls. Note that every eliminated
state can potentially be the root of a sizable subtree of the behavior tree, and therefore
each additional deletion of a spurious state is a significant contribution to the eventual
utility expected from the simulation output.

The additional time requirement accrued when the filter is turned on (figure 18) is
mainly due to the inefficiency of the extremely simplistic inequality analyzer employed
in our implementation. The main contribution provided by our inequality extraction
method is to the predictive correctness, rather than time performance, of qualitative sim-
ulation.
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Figure 18. Simulation duration vs. number of balls in n-ball system.

9. Related work and conclusion

We have presented two new qualitative reasoning formalisms, SR1* algebra and
comparison calculus, and used them in the construction of a new type of filtering mech-
anism, duration consistency filtering, for eliminating a class of spurious predictions from
the output of qualitative simulators. Predictions of this class are identified by inconsis-
tencies in the sets of conclusions which can be drawn about the relative lengths of the
time intervals that they contain. Duration comparisons of this nature can be soundly
based on several mathematical properties of the simulated functions, including symme-
try and periodicity. The symmetry recognition and analysis procedure, the periodicity
template processor, and the duration consistency filter itself have been implemented and
tested in our Prolog version of QSIM.

A more detailed treatment of SR1* and the comparison calculus, including a gen-
eral mathematical framework for analyzing the completeness of comparison calculus
constraints, is presented in [8].

Weld’s differential qualitative (DQ) analysis [16] technique involves conceptually
comparing two behaviors of the same variable for purposes of perturbation analysis.
DQ analysis and comparison calculus use different representations for similar concepts.
In DQ analysis, the statements are defined in terms of propositional symbols, while
the basic symbols in the comparison calculus are variables or sets. For example, the DQ
proposition F⇑ is equivalent to the statement [�|F |→] = [+] and “DISTANCE-BYX⇓”
is equivalent to [�|x�|] = [−]. Some theorems and concepts of DQ analysis are special
instances of what we have in the comparison calculus, and some are complementary to
the theorems proven here. Specifically, DQ analysis does not deal with comparison in
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different directions (i.e. like [�|V |↔] in figure 14) and with comparison of quantities
having different signs. In [8], Könik shows how the comparison calculus can solve a
perturbation analysis problem that DQ analysis cannot solve. More research is required
for a possible unification of DQ analysis and comparison calculus.

Struss [14] uses symmetry arguments in phase space to infer that the spring/block
system has periodic behavior.

Time interval comparison fact extraction was first implemented by Çivi [5], who
presents a postprocessor which annotates QSIM outputs with deduced temporal interval
comparisons using some fixed model templates. Çivi’s work does not deal with spurious
behaviors noticeable due to comparison information.

Some of the simulations improved by the duration consistency filter involve oc-
currence branching [15], in which multiple branches are added to the behavior tree to
represent different possible time-orderings of two “unrelated” variables reaching their re-
spective landmarks. “History”-based reasoners like Williams’ TCP [18] were designed
with the purpose of eliminating this phenomenon. Recently, there has been work on
the model decomposition front [3] to modify the QSIM framework in this direction.
The DecSIM algorithm [2] takes a user-specified partitioning of the model variables,
along with the standard QSIM input items, at the start of its execution. Each partition
is interpreted as a different component (subsystem) of the model, and simulated almost
independently from the other components using QSIM. Our approach would be useful in
cases where the distinctions created by the “global state”-based branching mechanisms
are relevant from the user’s point of view, and incorrect predictions in this format need
to be minimized.

Since the introduction of “pure” QSIM in [9], several other global filters [10–13]
have been added to the repertory, dealing with different classes of spurious predictions.
The duration consistency filter eliminates a new class (namely, the set of predictions
from which inconsistent conclusions about duration comparison facts can be drawn)
which improves the predictive performance of the overall simulator, and increases the
average level of complexity of the set of systems that can be reasoned about.

Hybrid qualitative–quantitative reasoners [1,7] enable the association of real-
bounded intervals with the time-points and other landmarks in the qualitative simulation
output. Comparing durations in this representation is a matter of utilizing this partial
information through interval arithmetic. Our work shows that such comparisons are
possible and useful in pure qualitative simulation as well. Since many of these hybrid
simulators [10] are built around a “pure core”, applying the quantitative information for
pruning a behavior tree produced by a qualitative engine, our contribution here may be
useful for such a system as well. A thorough comparison, and a study of the feasibility
of a possible unification of the pure and hybrid methods are on our research agenda.

It might be possible to achieve symmetry propagation, as described in section 6.1,
within the framework of comparison calculus. even(f, ti) on I = (tb, te) might be de-
scribed as [�F↔] = [0] for the intervals I1 = (tb, ti) and I2 = (ti , te), and odd(f, ti)
may be described as [�F↔] = [0] on the same intervals. It is an interesting exercise to
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try to obtain a set comparison calculus constraints that will cover all symmetry propaga-
tion rules.

Once we derived the comparison calculus constraints, we have obtained our results
by propagation of sign values in these constraints. An alternative is to solve compar-
ison calculus constraints by simplification. Techniques from [19], possibly with some
extensions to cover SR1* algebra, could be used for that purpose.

Just as multiple traversals of the same landmark interval leads to conclusions about
temporal length comparisons, duration comparison information can be used for compar-
ing the “distances” among various landmark pairs in the same quantity space. This can,
in turn, lead to the detection and elimination of a class of spurious behaviors containing
inconsistencies involving landmark distances. We plan to extend the power of the filter-
ing mechanism described here in this manner, so that qualitative simulators with even
greater predictive performance and applicability can be built.

Availability of the program

The Prolog source code of our implementation of QSIM with the duration
consistency filter is available to interested researchers. Contact e-mail address
konik@umich.edu.
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