Skip to main content
Log in

Designing Stable Finite State Machine Behaviors Using Phase Plane Analysis and Variable Structure Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper discusses how phase plane analysis can be used to describe the overall behavior of single and multiple autonomous robotic vehicles with finite state machine rules. The importance of this result is that we can begin to design provably stable group behaviors from a set of simple control laws and appropriate switching points with decentralized variable structure control. The ability to prove stable group behavior is especially important for applications such as locating military targets or land mines. In this paper, we demonstrate how phase plane analysis has been used to explain the behavior of a 16 cm3 autonomous line-tracking robot with four finite states. After which, the analysis is extended to include the design of a decentralized variable structure controller that guides multiple vehicles to a goal while avoiding each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkin, R. C.: Cooperation without communication: Multiagent schema-based robot navigation, J. Robotic Systems 9(3) (1992), 351–364.

    Google Scholar 

  2. Beni, G. and Liang, P.: Pattern reconfiguration in swarms – Convergence of a distributed asynchronous and bounded iterative algorithm, IEEE Trans. Robotics Automat. 12(3) (1996), 485–490.

    Google Scholar 

  3. Bozorg, M., Nebot, E. M., and Durrant-Whyte, H. F.: A decentralised navigation architecture, in: Proc. of the 1998 Internat. Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 3413–3418.

  4. Brooks, R. A. and Flynn, A. M.: Fast, cheap and out of control: A robot invasion of the solar system, J. British Interplanetary Soc. 42 (1989), 478–485.

    Google Scholar 

  5. Brooks, R. A.: A robust layered control system for a mobile robot, IEEE J. Robotics Automat. 2(1) (1986), 14–23.

    Google Scholar 

  6. Brumitt, B. and Hebert, M.: Experiments in autonomous driving with concurrent goals and multiple vehicles, in: Proc. of the 1998 Internat. Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 1895–1902.

  7. Brummitt, B. and Stentz, A.: GRAMMPS: A generalized mission planner for multiple mobile robots in unstructured environments, in: Proc. of the 1998 Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 1564–1571.

  8. Cao, Y. U., Fukunaga, A. S., and Kahng, A. B.: Cooperative mobile robotics: Antecedents and directions, in: Proc. of the 1995 IEEE/RSJ IROS Conf., pp. 226–234.

  9. Chen, Q. and Luh, J. Y. S.: Coordination and control of a group of small mobile robots, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Vol. 3, 1994, pp. 2315–2320.

    Google Scholar 

  10. DeCarlo, R. A., Zak, S. H., and Matthews, G. P.: Variable structure control of nonlinear multivariable systems, Proc. IEEE 76(3) (1988).

  11. Desai, J. P., Kumar, V., and Ostrowski, J. P.: Control of changes in formation for a team of mobile robots, in: Proc. of the 1999 Internat. Conf. on Robotics and Automation, Detroit, MI, May 1999, pp. 1556–1561.

  12. Desai, J. P., Ostrowski, J., and Kumar, V.: Controlling formations of multiple mobile robots, in: Proc. of the 1998 Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 2864–2869.

  13. Fukuda, T. et al.: Evaluation on flexibility of swarm intelligent system, in: Proc. of the 1998 Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 3210–3215.

  14. Fukuda, T., Mizoguchi, H., Sekiyama, K., and Arai, F.: Group behavior control for MARS (Micro Autonomous Robotic System), in: Proc. of the 1999 Internat. Conf. on Robotics and Automation, Detroit, MI, May 1999, pp. 1550–1555.

  15. Goldsmith, S., Feddema, J., and Robinett, R.: Analysis of decentralized variable structure control for collective search by mobile robots, in: SPIE 98, Proc. on Sensor Fusion and Decentralized Control in Robotic Systems, Boston, 1–6 November, 1998.

  16. Hougen, D. F., Erickson, M. D., Rybski, P. E., Stoeter, S. A., Gini, M., and Papanikolopoulos, N.: Autonomous mobile robots and distributed exploratory missions, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 221–230.

    Google Scholar 

  17. Hurtado, J. E., Robinett, R. D., Dohrmann, C. R., and Goldsmith, S. Y.: Distributed sensing and cooperating control for swarms of robotic vehicles, in: Proc. of IASTED Conf. on Control and Applications, Honolulu, Hawaii, 12–14 August 1998.

  18. Jennings, J. S., Whelan, G., and Evans, W. F.: Cooperative search and rescue with a team of mobile robotis, in: Proc. of IEEE Internat. Conf. of Advanced Robotics, Monterey, CA, 1997.

  19. Kaga, T., Starke, J., Molnar, P., Schanz, M., and Fukuda, T.: Dynamic robot-target assignment – Dependence of recovering from breakdowns on the speed of the selection process, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 325–334.

    Google Scholar 

  20. Kimoto, K. and Yuta, S.: Autonomous mobile robot simulator – A programming tool for sensorbased behavior, Autonom. Robots 1 (1995), 131–148.

    Google Scholar 

  21. Kosuge, K., Oosumi, T., Satou, M., Chiba, K., and Takeo, K.: Transporation of a single object by two decentralized-controlled nonholonomic mobile robots, in: Proc. of the 1998 Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 2989–2994.

  22. Kube, R. C. and Zhang, H.: Collective robotics: From social insects to robots, Adaptive Behavior 2(2), 189–218.

  23. Matthews, G. P. and DeCarlo, R. A.: Decentralized tracking for a class of interconnected nonlinear systems using variable structure control, Automatica 24(2) (1988), 187–193.

    Google Scholar 

  24. Molnar, P. and Starke, J.: Communication fault tolerance in distributed robotic systems, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 99–108.

    Google Scholar 

  25. Navarro-Serment, L. E., Paredis, C. J. J., and Khosla, P. K.: A Beacon system for the localization of distributed robotic teams, in: Proc. of the Internat. Conf. on Field and Service Robotics, Pittsburgh, PA, 29–31 August 1999.

    Google Scholar 

  26. Noreils, F. R.: Multi-robot coordination for battlefield strategies, in: Proc. of the 1992 IEEE RSJ Internat. Conf. on Intelligent Robots and Systems, Raleigh, NC, July 1992, pp. 1777–1784.

    Google Scholar 

  27. Noreils, F. R.: Toward a robot architecture integrating cooperation between mobile robots: Application to indoor environment, Internat. J. Robotics Res. 12(1) (1993), 79–98.

    Google Scholar 

  28. Orlov, Y. V. and Utkin, V. I.: Use of sliding modes in distributed system control problems, Automat. Remote Control 43(9) (1982), 1143–1148.

    Google Scholar 

  29. Parker, L. E.: Current state of the art in distributed autonomous mobile robotics, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 3–12.

    Google Scholar 

  30. Richter, S., Lefebvre, S., and DeCarlo, R.: Control of a class of nonlinear systems by decentralized control, IEEE Trans. Automat. Control 27(2) (1982).

  31. Roumeliotis, S. I. and Bekey, G. A.: Distributed multi-robot localization, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 179–188.

    Google Scholar 

  32. Schneider, F. E., Wildermuth, D., and Wolf, H.-L.: Motion coordination in formations of multiple robots using a potential field approach, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 305–314.

    Google Scholar 

  33. Simonin, O., Liegeois, A., and Rongier, P.: An architecture for reactive cooperation of mobile distributed robots, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 35–44.

    Google Scholar 

  34. Uchibe, E., Asada, M., and Hosoda, K.: Cooperative behavior acquisition inmulti mobile robots environment by reinforcement learning based on state vector estimation, in: Proc. of the 1998 Internat. Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 1558–1563.

    Google Scholar 

  35. Utkin, V. I.: Sliding Modes in Control Optimization, Springer, Berlin, 1981.

    Google Scholar 

  36. Utkin, V. I.: Variable structure systems with sliding modes, IEEE Trans. Automat. Control 22(2) (1977).

  37. Winfield, A.: Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots, in: L. E. Parker, G. Bekey, and J. Barhen (eds), Distributed Autonomous Robotic Systems, Vol. 4, Springer, Berlin, 2000, pp. 273–282.

    Google Scholar 

  38. Yamaguchi, H. and Arai, T.: Distributed and autonomous control method for generating shape of multiple mobile robot group, in: Proc. of the IEEE Internat. Conf. on Intelligent Robots and Systems, Vol. 2, 1994, pp. 800–807.

    Google Scholar 

  39. Yamaguchi, H. and Burdick, J. W.: Asymptotic stabilization of multiple nonholonomic mobile robots forming group formations, in: Proc. of the 1998 Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 3573–3580.

    Google Scholar 

  40. Yamaguchi, H.: A cooperative hunting behavior by mobile robot troops, in: Proc. of the 1998 Conf. on Robotics and Automation, Leuven, Belgium, May 1998, pp. 3204–3209.

    Google Scholar 

  41. Yoshida, E., Arai, T., Ota, J., and Miki, T.: Effect of grouping in local communication system of multiple mobile robots, in: Proc. of the IEEE Internat. Conf. on Intelligent Robots and Systems, Vol. 2, 1994, pp. 808–815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feddema, J.T., Robinett, R.D. & Driessen, B.J. Designing Stable Finite State Machine Behaviors Using Phase Plane Analysis and Variable Structure Control. Journal of Intelligent and Robotic Systems 36, 349–370 (2003). https://doi.org/10.1023/A:1023629602204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023629602204

Navigation