Skip to main content
Log in

Speech Dimensionality Analysis on Hypercubical Self-Organizing Maps

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The problem of finding the intrinsic dimension of speech is addressed in this paper. Astructured vector quantization lattice, Self-Organizing Map (SOM), is used as a projection space for the data. The goal is to find a hypercubical SOM lattice where the sequences of projected speech feature vectors form continuous trajectories. The effect of varying the dimension of the lattice is investigated using feature vector sequences computed from the TIMIT database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A., Hopcroft, J. and Ullman, J.: Data structures and algorithms. Addison-Wesley, 1983.

  2. Bauer, H. and Pawelzik, K.: Quantifying the neighborhood preservation of self-organizing feature maps, IEEE Transactions on Neural Networks, 3(4) (1992), 570–579.

    Google Scholar 

  3. Bauer, H. and Villmann, T.: Growing a hypercubical output space in a self-organizing feature map, IEEE Transactions on Neural Networks, 8(2) (1997), 218–226.

    Google Scholar 

  4. Bishop, C., Hinton, G. and Strachan, I.: GTM through time. Technical Report 005, Neural Computing Research Group, Aston University, Birmingham, UK, 1997.

    Google Scholar 

  5. Bishop, C., Svensén, M. and Williams, C.: GTM: the generative topographic mapping, Neural Computation, 10(1) (1998), 215–234.

    Google Scholar 

  6. Camastra, F. and Vinciarelli, A.: Intrinsic dimension estimation of data: an approach based on Grassberger-Procaccia's algorithm, Neural Processing Letters, 14(1) (2001), 27–34.

    Google Scholar 

  7. Demartines, P. and Hérault, J. Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, 8(1) (1997), 148–154.

    Google Scholar 

  8. Frisone, F., Firenze, F. and Morasso, P.: Application of topology-representing networks to the estimation of the intrinsic dimensionality of data. In Proceedings of ICANN'95, pages 323–327, Paris, France, 1995.

  9. Grassberger, P. and Procaccia, I.: Measuring the strangeness of strange attractors, Physica, 9D (1983), 189–208.

    Google Scholar 

  10. Hecht-Nielsen, R.: Replicator neural networks for universal optimal source coding, Science, 269(5232) (1995), 1860–1863.

    Google Scholar 

  11. Kaski, S. and Lagus, K.: Comparing self-organizing maps. In Proceedings of ICANN'96, pages 809–814, Bochum, Germany, 1996.

    Google Scholar 

  12. Kohonen, T.: Self-organized formation of topologically correct feature maps, Biological Cybernetics, 43 (1982), 59–69.

    Google Scholar 

  13. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (3rd extended ed. 2001), 1995.

    Google Scholar 

  14. Kokkonen, M.: Koartikulaatioilmiöiden mallittaminen itseorganisoituvan piirrekartan topologian avulla. Master's thesis, Helsinki University of Technology, Finland, 1991. In Finnish.

    Google Scholar 

  15. Lee, J., Lendasse, A. and Verleysen, M.: Curvilinear Distance Analysis versus Isomap. In Proceedings of ESANN'2002, pages 185–192, 2002.

  16. Linde, Y., Buzo, A. and Gray, R.: An algorithm for vector quantizer design, IEEE Transactions on Communications, 28(1) (1980), 84–95.

    Google Scholar 

  17. Martinetz, T. and Schulten, K.: Topology representing networks, Neural Networks, 7(3) (1994), 507–522.

    Google Scholar 

  18. Nix, D. and Hogden, J.: Maximum-likelihood continuity mapping (MALCOM): An alternative to HMMs. In Proceedings of NIPS'11, pages 744–751, 1999.

  19. Roweis, S.: Constrained hidden Markov models. In Proceedings of NIPS'12, pages 782–788, 2000.

  20. Sammon, J. Jr.: A nonlinear mapping for data structure analysis, IEEE Transactions on Computers, 18(5) (1969), 401–409.

    Google Scholar 

  21. Somervuo, P.: Time topology for the self-organizing map. In Proceedings of IJCNN'99, volume 3, pages 1900–1905, Washington D.C., 1999.

    Google Scholar 

  22. TIMIT. DARPA TIMIT acoustic phonetic continuous speech database. CD-ROM, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somervuo, P. Speech Dimensionality Analysis on Hypercubical Self-Organizing Maps. Neural Processing Letters 17, 125–136 (2003). https://doi.org/10.1023/A:1023646203167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023646203167

Navigation