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Abstract

Although a variety of techniques have been developed for content-based image retrieval (CBIR), automatic image
retrieval by semantics still remains a challenging problem. We propose a novel approach for semantics-based im-
age annotation and retrieval. Our approach is based on the monotonic tree model. The branches of the monotonic
tree of an image, termed as structural elements, are classified and clustered based on their low level features
such as color, spatial location, coarseness, and shape. Each cluster corresponds to some semantic feature. The
category keywords indicating the semantic features are automatically annotated to the images. Based on the
semantic features extracted from images, high-level (semantics-based) querying and browsing of images can be
achieved. We apply our scheme to analyze scenery features. Experiments show that semantic features, such
as sky, building, trees, water wave, placid water, and ground, can be effectively retrieved and located in im-
ages.
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1. Introduction

With the advance of multimedia technology and growth of image and video collections,
content-based multimedia (image/video) retrieval has been an active research area in
the last ten years. Image retrieval can be based on low-level visual features (such as
color [8,17,21], texture [6,15,16], and shape [13,14,22]), high-level semantics [5,23], or
both [26]. Retrieving images via low-level features has proven unsatisfactory. Automatic
image retrieval by semantics still remains a challenging problem due to the difficulty in
object recognition and image understanding. It is an urgent need to build image retrieval
systems which support high-level (semantics-based) querying and browsing of images.
Keyword indexing is a common scheme used by many picture libraries. For example,
Getty Images [3] used over 10,000 keywords to index their collection of contemporary
stock photographs. Current image indexing by keywords can only be done manually. Ac-
cording to [4], the process of manual indexing suffers from two significant drawbacks.
Firstly, it is inherently very labor-intensive. Secondly, manual indexing does not appear
to be particularly reliable as a means of subject retrieval of images. In recognizing the
existing problems in the CBIR field, we believe that research efforts are needed to bridge
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the gap between the high-level semantics users are interested in and the low-level features
that can be extracted.
The semantics of images can be classified into two levels:

e Local semantic level. Local semantic features describe the presence of individual objects
in images. Two examples of queries by local semantic features are “find pictures with a
bridge” (object of a given type) and “find pictures with sky and trees” (combination of
objects).

o Thematic level (or global semantic level). Thematic features describe the global mean-
ings or topics of images. Two examples of queries at this level are “find pictures of a
Chinese garden” and “find pictures of an earthquake.”

The thematic features of an image are based on all objects in the image along with their
spatial relationships. High-level reasoning is needed to derive the global meaning of all
objects in the scene and to determine the topic of the image.

The difficulty of detection and recognition of general objects presents a significant chal-
lenge to the development of a CBIR system which can extract general semantic features
from images. However, if we restrain ourselves to specific domains, we can have a quick
success. Among all objects in a natural image, it is quite common that a foreground object
(or a group of foreground objects) indicates the theme of the image, while the background
objects provide contextual and complemental information. Needless to say, successfully
recognizing background objects in an image is a necessary step in determining the theme
of the image. In addition, the contextual information provided by background objects helps
and in many cases is necessary in recognizing foreground objects in two aspects:

e it can narrow down the possible types of foreground objects and make foreground object
recognition more efficient; and
e it can be used to resolve the ambiguity in recognizing foreground objects.

Thus, finding effective ways to recognize common background objects will be a mile-
stone in solving the problem of image understanding. In outdoor pictures, scenery features
such as sky, trees, ground, and water are common types of background objects.

In this paper, we will introduce a novel approach for semantics-based image annotation
and retrieval. We choose scenery features as a testbed for our approach, which can be
generalized to analyze other features, though. Our approach is based on the concept of
monotonic tree [19], a derivation of contour tree for use with discrete data. Branches
(subtrees) of the monotonic tree are termed as a structural elements if their areas are within
a given scale. The structural elements are classified and clustered based on their low level
features such as color, spatial location, harshness, and shape. Each cluster corresponds
to some semantic feature. The category keywords indicating the semantic features are
automatically annotated to the images. Based on the semantic features extracted from
images, high-level (semantics-based) querying and browsing of images can be achieved.

The body of this paper is organized as follows. Section 2 introduces the concept of
the monotonic tree. In Section 3, techniques are described for extracting semantics and
annotating images. Section 4 presents case studies of scenery features, while Section 5
introduces semantics-based image querying. Section 6 offers a performance evaluation of
the proposed approach. A summary and concluding remarks appear in Section 7.



AUTOMATIC ANNOTATION AND RETRIEVAL OF IMAGES 211

2. Monotonic tree

Contour trees [7,12,24] have been used in geographic information systems (GIS) and med-
ical imaging to display scalar data. For example, the elevation in the landscape can be
modeled by scalar data over the plane, where a contour (also called an isoline) is a line
along which the elevation function assumes the same value. Contours are only defined
for continuous functions. For discrete data, a continuous function is first defined as an
interpolation of the data. Then the contour tree is defined on this continuous function.

In computer imaging, the discreteness of image data is one main aspect which makes
image processing and understanding so difficult. The discreteness of image data itself is a
research topic. So we introduced the concept termed monotonic tree [19], which retrieves
similar structures as the contour tree does while reserving the discreteness of image data.
Monotonic tree is used as a hierarchical representation of image structures.

Corresponding to a positive/negative contour line [7], an outward-falling/climbing
monotonic line of an gray image is a boundary where the image assumes higher/lower
values in the pixels adjacent' to the boundary from inside than those from outside. All
monotonic lines in an image form a rooted tree, called monotonic tree. A maximal se-
quence of uniquely enclosing monotonic lines is called a monotonic slope. All monotonic
slopes in an image form the fopological monotonic tree. A monotonic slope is called
outward-falling/climbing if all monotonic lines in it are outward-falling/climbing (see Fig-
ure 1). For a color image, the monotonic tree and topological monotonic tree are con-
structed on its gray copy.

For computation of monotonic trees, a top-down algorithm is available. The algorithm
begins with the root monotonic line, browsing the private region of the root to find all child
monotonic lines. The private region of a monotonic line is a region enclosed by the line
and excluding the regions of the child monotonic lines. This process is repeated at each
internal node to find its children. When all monotonic lines are found, they are stored in
the monotonic tree. The algorithm is based on the properties of monotonic trees. For a
detailed discussion of the algorithm and the properties of monotonic trees, readers may
refer to [18].

For a natural image of size 300 x 200, the size (the number of monotonic lines) of its
monotonic tree is around 10,000, mainly depending on the number of objects and their
texture in the image. To demonstrate the monotonic trees of natural images, we will show
their structures on several selected scales. Given a scale threshold ¢, a maximal branch b
of the monotonic tree at this scale is a branch such that (1) Area(b) < t and (2) there is no
other branch &’ such that Area(b’) < t and Region(b) C Region(b), where Region(b) is the
region in the image covered by branch b and Area(b) is the area of Region(b). At scale ¢, we
decompose the image by removing all maximal branches at this scale. Figure 2 shows how
to decompose an one-dimensional function at one scale, where a maximal branch at scale ¢
is a maximal peak (or valley) such that the length of its base is no more than 7. There are
two types of maximal branches: upward and downward. Given a sequence of increasing
scales, we can decompose the image scale by scale and get a multi-scale decomposition of
the original image (see Figure 3).
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Figure 1. (a) An outward-falling monotonic line (the solid line in the figure), (b) a set of monotonic lines,
(c) the monotonic tree, (d) the topological monotonic tree.
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Figure 2.  Decomposition of an one-dimensional function at one scale.
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Figure 3. Multi-scale decomposition.
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An example is shown in Figures 4-6. The original image is decomposed at two scales 50
and 150. The upward and downward maximal branches are shown in white and black,
respectively. The second example is given in Figure 7, where the image is decomposed
at three scales 10, 50, and 300. In this example, the noise part is mainly extracted in the
maximal branches at scale 10, while the concentric characteristics of the texture is captured
at scales 50 and 300.

The third example is shown in Figure 8. In this example, the stars in the US flag form
very regular texture. Each star appears in an upward maximal branch. The characteristic
features (such as eyes, nose, mouth) in the face are also retrieved as maximal branches.
From these examples we can see that the monotonic tree models the structures of an image
at all scales. Semantics extraction and image annotation can be achieved by analyzing the
shape of these structures and their spatial relationship. A detailed discussion is given in the
following sections.

3. Semantics extraction and image annotation

Our feature extraction scheme is based on the topological monotonic tree. We use the
branches of the topological monotonic tree to model the basic structures in an image,
which are termed as structural elements. Structural elements have low-level features such
as color, shape, harshness, and spatial location. They are clustered to form high-level fea-
tures.

Feature extraction consists of four consecutive steps: (a) classifying structural elements;
(b) clustering structural elements; (c) rendering semantic regions; and (d) annotating the
input image (see Figure 9).

3.1. Classifying structural elements

Each branch (a subtree) of the topological monotonic tree is called a structural element
if its covered area is no more than a threshold, which gives the scale in which we are
interested. A structural element is called positive/negative if its root (root of the sub-
tree) is outward-falling/climbing (see Figure 10(a)). Positive/negative elements are like
peaks/valleys. For a positive/negative element, we define its Altitude to be the absolute
value of the average altitude of all its pixels above/blow the highest/lowest pixels adjacent
to the structural element (see Figure 10(b)). The Harshness of a structural element is de-
termined by the number, area and altitude of its subelements.”> We define the harshness of
an element ¢ by

> beSubElementserr) Altitude(b) x Area(b)
Area(t)

Harshness(t) =

’

where SubElementSet(t) is the set of subelements of ¢, Altitude(b) is the altitude of b and
Area(b) is the area of the region covered by b.
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Figure 5. Decomposition of the image in Figure 4 at scale 50: (a) the maximal branches, (b) the smoothed
image.

Figure 6. Decomposition of the image in Figure 4 at scale 150: (a) the maximal branches, (b) the smoothed
image.
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Figure 7. (a) Original image of size 330 x 236, (b) maximal branches at scale 10, (c) maximal branches at
scale 50, and (d) maximal branches at scale 300.

Figure 8. (a) Original image of size 148 x 204, (b) the smoothed image at scale 80, (c) the maximal branches
(in black-white) at scale 80, and (d) the maximal branches (in gray colors) at scale 80.

A structural element can be classified by its (1) color (the average color of all pixels
in this element), (2) altitude, (3) harshness, and (4) shape (the shape of its covered re-
gion). By shape, we can classify elements as: (a) bars, (b) polygons, (¢) irregular elements,
(d) boundary-smooth elements, and (e) others. For a bar element, the ratio of its length to
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Figure 10. (a) Positive/negative structural elements; (b) the altitude of a pixel in a structural element.

its width is high. A polygon element is a structural element whose boundary mainly con-
sists of line segments. For a smooth-boundary element, its boundary is a smooth curve.
The irregular elements are those whose boundaries are irregular. Figure 11 shows different
cases of elements.

The semantic features of scenery images are characterized by the categories of structural
elements. Three examples of the categories are polygon elements (for building), horizon-
tal bar elements (for wave), and green harsh irregular elements (for tree) (see Figures 12
and 13).
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Figure 11. (a) A bar element, (b) a polygon element, (c) an irregular element, and (d) a smooth-boundary
element.

Figure 12.  Animage of building (in the left) and the polygon elements (in the right) in it. The polygon elements
are shown in black and white.

Figure 13.  Animage of river (in the left); and (a) green harsh irregular elements (shown in green or dark green),
(b) horizontal bar elements (shown in black and white).

3.2.  Clustering structural elements

Given an image, for each category of structural elements we are interested in, we apply
clustering algorithms to find the clusters.

For a given category, we first find the set of qualified elements (i.e., the elements belong
to this category). For two qualified elements, if they overlap,® then the one with lower
qualifying score* is removed. This process is called element sifting. After sifting, we
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Figure 14. (a) Some element pattern; (b) the neighboring graph of the pattern.

reduce multi-level elements of the image into one level elements, which all belong to the
given category. The elements after sifting form some element pattern in the 2D plane.

For the element pattern, we construct its Delaunay graph, which is the neighboring graph
of the element pattern (see Figure 14). We then apply clustering algorithms on the neigh-
boring graph to find the clusters in the element pattern. In our implementation, the clus-
tering algorithm is based on the minimal spanning tree of the neighboring graph. The
main idea of clustering by the minimal spanning tree is as follows. Let V be the vertex
set of the graph, and D be the distance threshold. Then V is grouped into disjoint sets by
joining all edges in the minimal spanning tree whose lengths (or weights) are less than or
equal to D. Each set obtained this way is said to be a cluster at level D. Reference on
pattern processing by neighboring graph can be found in [1,2]. Reference on clustering by
minimal spanning tree can be found in [25].

3.3. Rendering semantic regions

Given a cluster of structural elements, the region rendering process consists of three steps:
(1) element connecting; (2) hole filling; and (3) boundary smoothing. At the first step, we
connect all elements in the cluster by line segments whose lengths are within a threshold.
At the second step, we fill the holes whose areas are less than an area threshold. At the
last step, we smooth the boundary of the region by removing those irregular angles and
branches. Figure 15 shows an example of these steps.
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Figure 15. (a) A cluster of structural elements, (b) element connecting, (c) hole filling, and (d) boundary smooth-
ing.

3.4. Annotating the input image

For the regions rendered in the last subsection, we measure their qualifying scores to de-
termine their semantics and annotate the corresponding keywords to the input image.

In general, qualifying scores must be established for structural elements, regions, and
images. The qualifying score of a structural element measures the degree to which the
element is considered to belong to a given category of elements. Qualifying scores for
different element categories are determined in different ways.

Similarly, the qualifying score of a region with respect to a semantic feature measures
the degree that the region manifests this particular feature. For a region generated from a
cluster, its qualifying score is determined by the qualifying scores of the elements in the
cluster and the area of the region. For example, a wave region is rendered from a cluster of
horizontal bar elements. Let the input image be defined on the domain €2 and R be a wave
region generated from a cluster S of horizontal bar elements. The qualifying score for R
with respect to wave is defined as

Y ies Scoreppar(t)  Area(R)
Uyave Area(2)’

Scoreygye(R) =

where Scoreppqr(t) is the qualifying score for ¢ to be a horizontal bar element, and oyyqye 1S
a parameter to scale the qualifying score.
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Figure 16. Data structure of feature vector.

In contrast, sky and ground regions are not generated from clusters. As will be discussed
in the next section, we will assume that these regions are smooth. Coarse regions are
identified first; the smooth regions are then the complement of the coarse regions. The
qualifying score of a smooth region is determined by the smoothness, color, and area of
the region. As with the harshness of a structural element, the smoothness of a region is
determined by the area and altitude of the structural elements intersecting this region:

Area(R)
> i cElemenises Allitude(t) * Area(Region(t) N R)’

Smoothness(R) =

where ElementSet is the set of all structural elements of the input image and Region(t) is
the region covered by 7. The qualifying score for a region R to be considered a sky region
is defined as’

Smoothness(R)  Area(R)

Scoregy(R) = - * Area() * SkyColorRatio(R),

where o,y is a parameter to scale the qualifying score and SkyColorRatio(R) is the ratio
of sky-colored pixels in R.® The qualifying scores for ground and placid-water regions are
defined similarly.

For a region rendered in the last subsection, its qualifying score with respect to a seman-
tic feature is measured; if the score exceeds a threshold, then the region is considered to
have this particular feature and a corresponding keyword is annotated to this region.

An input image may have several regions which manifest a specific feature. The qualify-
ing score for the input image with respect to this feature is defined as the sum of qualifying
scores of these regions. For example, let / be the input image and Ry, R», ..., R, be the
tree regions found in this image. The qualifying score of I with respect to “tree” is

n
Scoregree(1) = Z Scoregee(R;).
i=1

If an input image contains no regions which manifest a specific feature, then the qualifying
score for the image with respect to this feature is zero. The features of the input image
are extracted and stored in a feature vector. A feature vector is an array which records
the qualifying scores for all semantic features. Figure 16 illustrates the data structure of a
feature vector.

Several sample images and their annotated copies are provided in Figure 27 (in Sec-
tion 6).
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Figure 17. An example of sky and its annotation.

4. Case study of semantic features

In this section, we discuss the identification of high level scenery features: sky, building,
tree, water wave, placid water, and ground. Water wave and placid water have different
structures in images, thus, they are treated with different schemes. The ground feature in
images can be further split into snow, lawn and other kinds of ground.

4.1. Sky

Without clouds, a sky region is a homogeneous region consisting of blue pixels. In natural
images, clouds tend to change smoothly at pixel level, due to their physical properties. In
location, there is usually no other object above a sky region. To retrieve sky regions, we
make three simple assumptions:

e (sky.al) a sky region is smooth;
e (sky.a2) a sky region occupies an upper part of the image; and
e (sky.a3) the color of sky regions is either blue or the color of clouds.

For our current implementation, we assume that the color of clouds is gray.’

To find the sky regions, we first find the smooth regions in the image. The smooth
regions are the complement of the harsh regions, which is characterized by intensity peaks
and valleys. Under monotonic tree, the intensity peaks and valleys are modeled as small
structural elements whose altitudes are high. Thus, we detect the harsh regions of the
image by clustering the small elements whose altitudes are high, as we discussed in the
last section. When we get the harsh regions, we also get the smooth regions. Then we
check the location and color of the smooth regions to find the sky regions.

Figure 17 shows an example of sky and its annotation.

4.2.  Ground and placid water

We make three assumptions about ground regions.

e (ground.al) a ground region is smooth;
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Figure 19. An example of snow ground and its annotation.

e (ground.a2) a ground region is in the lower part of the image; and
e (ground.a3) in a ground region, micro-structures are more horizontal than vertical.

When scenery pictures are taken, the direction of projection is usually horizontal or
nearly horizontal. Thus, as the natural scene is projected to the image plane, the structures
on the ground appear more horizontal than vertical, which is the reason why we make the
third assumption.

Similar to detecting background regions, we first find the smooth regions in the image.
Then for each smooth region, we check if the last two assumptions hold or not. For the
last assumption, we count the horizontal and vertical elements in the smooth region. The
last assumption holds if the horizontal elements are more than the vertical elements in the
region.

A ground region found this way could be lawn, snow, or other kinds of ground. We
distinguish these kinds of regions by their colors. We assume that lawn regions are green,
snow regions white.

For placid water, we make four assumptions. The first three are the same as the three
assumptions of ground. Besides, we assume that the color of placid water is blue.

Figures 18 and 19 show examples of ground regions. Figure 20 shows an example of
placid water.
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Figure 20. An example of placid water and its annotation.

Figure 21. An example of image with big wave.

4.3. Wave

Small water waves have very regular patterns. When the small waves projected to a picture,
they appear to be horizontal bars if the projecting direction is nearly horizontal. See the
image in Figure 13. Wild waves have complicated structures. In the images with wild
waves, we usually can detect a piece of surface consisting of parallel bar structures. See
the image in Figure 21. We assume that a wave region is a region consisting of horizontal
bar elements. We detect wave regions by clustering horizontal bar elements in the image.

4.4. Green tree

If we look at the tree region in the Figure 13 carefully, we can find that the micro structures
in the region are very irregular. Based on this observation, we assume that a tree region is
a region consisting of green® harsh, irregular elements. The tree regions in an image are
found by clustering the green, harsh irregular elements in the image.

4.5. Building

The shapes of most buildings are characterized by the line segments inside them. We
assume that a building region in an image is a region consisting of polygon elements. To
check whether a structural element is a polygon element, we first partition its boundary
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Figure 22.  An example of sky, building and tree.

into line segments and other kinds of segments. A structural element is a polygon element
if its boundary mainly consists of line segments. Reference on curve partitioning can be
found in [9-11]. Figure 22 shows an example of sky, building, and tree.

All of the above cases can be viewed in our demo system located at

http: //monet.cse.buffalo.edu: 8888/

5. Image querying

Our demo system, named SceneryAnalyzer, has three main components: (1) image data-
bases, (2) feature extraction, and (3) image querying. The feature extraction is done off-
line. During feature extraction, each image is processed to generate semantic features,
which are stored in a feature vector. The semantic features are automatically annotated in
the gray copy of the original image. All feature vectors are stored in a vector base.

Figure 23 illustrates the interface for image querying. To retrieve images, users can
select any combination of the listed features. After the query is submitted, the icons of
images with the selected features are output in pages (Figure 24). The output images are
sorted by their qualifying scores with respect to the submitted list of semantic features.
The qualifying score of an image with respect to a list of semantic features is the product
of the qualifying scores of that image with respect to the features in that list. If users click
an icon, a window is pop up with the original and annotated images. Users can also try
with images from the Internet or their local machines. After an image is uploaded, it is
analyzed in the server side, and its semantic features are reported to the user. Then the user
can submit the list of these semantic features as an image query.

6. Experiments
We conducted experiments to compare the performance between our approach and tradi-

tional CBIR techniques including keyblock model [27], traditional color histogram [21],
color coherent vector [8], and wavelet (Haar and Daubechies) texture techniques [16,20].
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SceneryAnalyzer: Image Retrieval By Monotonic Tree

Search by features
Choose image bases:

W COREL (31646 images) W PhotoDisc (1444 images)
Choose features (we are adding more ...):
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Ptess] to upload the image.

Figure 23. Interface of SceneryAnalyzer.

Table 1. The statistics of scenery features in 6776 COREL images.

Feature Sky Building Tree Wave  Placid Ground

water Lawn Snow Other

Images 2369 1920 1479 161 882 298 68 659

The comparison is made by the precisions and recalls of each method on six scenery fea-
tures: sky, building, tree, wave, ground, and placid water.

We used 6776 COREL images in the experiments. They are selected from CD7 and CD8
of COREL Gallery 1,300,000. The COREL images can be split into two parts: scenery and
nonscenery parts. There are 4125 scenery images, which are pictures taken at countries all
around the world. The nonscenery part has 2651 images, which cover a large variety,
including different kinds of textures, marine fishes, molecules, space scenes, and insects.
Table 1 shows the statistics of the scenery features in the COREL images (each entry shows
the number of images with some feature).
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Image Retrieval By Monotonic Tree

Features selected: sky traefgrass building
203 images retrieved (page 1)

|___|Nmm UP HOME

Figure 24. Retrieval results.

For each scenery feature, to show the performance of SceneryAnalyzer, we calculate the
precisions and recalls of first n/30, 2n/30, 3n/30, . . ., and n images retrieved by Scenery-
Analyzer with this feature, where n is the total number of images retrieved by Scenery-
Analyzer.

Traditional CBIR techniques accept only queries by examples. Let us take an example
to show how we choose query sets and calculate the precision-recall for these methods.
The example is about keyblock on sky feature. There are 2369 COREL images with sky
regions. For each sky image, we use it as a query on the COREL database to select top
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Figure 25. Performance of (a) SceneryAnalyzer, (b) keyblock model, (c) color coherent vector, (d) color his-
togram, (e) Daubechies wavelet, and (f) Haar wavelet on COREL images.
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Figure 26.  Average precision—recall on six features: sky, building, tree, wave, ground, and placid water.

100 images by the keyblock approach, and count the number of sky images in this retrieved
set. Then we sort the 2369 sky images descendingly by the numbers of sky images in their
corresponding retrieved sets. Let the sorted list be SKYLIST. Then we select the first 5%,
i.e., 118 images of SKYLIST as the query set, which is denoted as QUERYSET. Then for
each COREL image I, we calculate its distance to QUERYSET — {7} by the keyblock
approach. The COREL images are sorted ascendantly by this distance. Top 2369 COREL
images® are retrieved. Based on the retrieved images by keyblock, we calculate and plot
the precision-recall of keyblock on sky, as we did for SceneryAnalyzer.

The result is in Figure 25. By comparing the graphs in Figure 25, we can see that
our method outperforms all the others on each feature. To see the comparison clearly,
we calculate the average precision—recall on the six scenery features, which is shown in
Figure 26. From these comparisons, we can see that our method is much better than the
traditional techniques on scenery features.

Figure 27 provides sample images and their copies as annotated by SceneryAnalyzer.

7. Conclusion

In this paper, we used a model termed monotonic tree to model high-level scenery features.
Based on the monotonic tree representation, primitive elements of low-level features such
as color, shape, harshness, and spatial location can be easily identified, clustered and com-
bined to form semantically meaning regions (or features) for images. Thus, images can be
automatically annotated with category keywords, including sky, building, tree, wave, lawn,
water, snow, and ground. With this annotation, high-level (semantics-based) querying and
browsing of images can be supported.

In future work, we intend to extend the proposed approach to categories other than
scenery images. It may be cumbersome to provide a hand-crafted strategy for the iden-
tification of structural elements for each semantic feature. It will therefore be necessary
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Figure 27. Examples of scenery images and their annotated copies.
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for us to use machine-learning techniques to assist in the process of identifying structural
elements for general semantic features.

Publisher’s note

This article is based on the original conference paper published by Kluwer Academic Pub-
lishers in Visual and Multimedia Information Management, edited by Xiaofang Zhou and
Pearl Pu. ISBN: 1-4020-7060-8. © 2002 by International Federation for Information
Processing.

Notes

1. In[19], an image on the square grid is first transfered to the hexagonal grid, where monotonic lines and hence
the monotonic tree are defined.

2. An element is a branch of the topological monotonic tree. All subbranches of this branch are subelements.

3. By the definition of monotonic tree, when two elements overlap, then the covered region of one element is a
super set of the covered region of the other.

4. For a given category, the qualifying score of an element indicates how qualified the element is to belong to
this category.

5. Region R should first be examined to ascertain that it satisfies our assumptions about sky regions.

6. We assume that the sky color is either blue or gray (the color of clouds). These assumptions will be discussed
in the next section.

7. Clouds can have more colors. In the following discussion, we also make some simple assumptions about the
colors of trees, water and snow. More comprehensive color patterns of sky, trees, water, and snow can be
integrated into our system, which is not the focus of this paper.

8. Again, we make a simple assumption about the color of trees.

9. This is the number of COREL images with sky.
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