Skip to main content
Log in

Key issues in the computational simulation of GPCR function: representation of loop domains

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Some key concerns raised by molecular modeling and computational simulation of functional mechanisms for membrane proteins are discussed and illustrated for members of the family of G protein coupled receptors (GPCRs). Of particular importance are issues related to the modeling and computational treatment of loop regions. These are demonstrated here with results from different levels of computational simulations applied to the structures of rhodopsin and a model of the 5-HT2A serotonin receptor, 5-HT2AR. First, comparative Molecular Dynamics (MD) simulations are reported for rhodopsin in vacuum and embedded in an explicit representation of the membrane and water environment. It is shown that in spite of a partial accounting of solvent screening effects by neutralization of charged side chains, vacuum MD simulations can lead to severe distortions of the loop structures. The primary source of the distortion appears to be formation of artifactual H-bonds, as has been repeatedly observed in vacuum simulations. To address such shortcomings, a recently proposed approach that has been developed for calculating the structure of segments that connect elements of secondary structure with known coordinates, is applied to 5-HT2AR to obtain an initial representation of the loops connecting the transmembrane (TM) helices. The approach consists of a simulated annealing combined with biased scaled collective variables Monte Carlo technique, and is applied to loops connecting the TM segments on both the extra-cellular and the cytoplasmic sides of the receptor. Although this initial calculation treats the loops as independent structural entities, the final structure exhibits a number of interloop interactions that may have functional significance. Finally, it is shown here that in the case where a given loop from two different GPCRs (here rhodopsin and 5-HT2AR) has approximately the same length and some degree of sequence identity, the fold adopted by the loops can be similar. Thus, in such special cases homology modeling might be used to obtain initial structures of these loops. Notably, however, all other loops in these two receptors appear to be very different in sequence and structure, so that their conformations can be found reliably only by ab initio, energy based methods and not by homology modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Visiers, I., Ballesteros, J.A. and Weinstein, H., Meth. Enzymol., 343 (2002) 329.

    PubMed  Google Scholar 

  2. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, A., Fox, B.A., LeTrong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and Miyano, M., Science, 289 (2000) 739.

    PubMed  Google Scholar 

  3. Ballesteros, J.A., Shi, L. and Javitch, J.A., Mol. Pharmacol., 60(1) (2001) 1.

    PubMed  Google Scholar 

  4. Shi, L. and Javitch, J.A., Annu. Rev. Pharmacol. Toxicol. 42 (2002) 437.

    PubMed  Google Scholar 

  5. Almaula, N., Ebersole, B.J., Zhang, D., Weinstein, H. and Sealfon, S., J. Biol. Chem., 271 (1996) 14672.

    Google Scholar 

  6. Ebersole, B.J., Visiers, I., Weinstein, H. and Sealfon, S., Mol. Pharmacol., (2002), In press.

  7. Chalmers, D.T. and Behan, D.P., Nature reviews-Drug Discovery, 1 (2002) 599.

    PubMed  Google Scholar 

  8. George, S.R., O'Dowd, B.F. and Lee, S.P., Nature reviews-Drug Discovery, 1 (2002) 808.

    PubMed  Google Scholar 

  9. Visiers, I., Ebersole, B.J., Dracheva, S., Ballesteros, J., Sealfon, S.C. and Weinstein, H., Intl. J. Quantum. Chem., 88 (2002) 65.

    Google Scholar 

  10. Prioleau, C., Visiers, I., Ebersole, B.J., Weinstein, H. and Sealfon, S., J. Biol. Chem., 277 (2002) 36577.

    PubMed  Google Scholar 

  11. Visiers, I., Hassan, S.A. and Weinstein, H., Prot. Eng., 14 (2001) 409.

    Google Scholar 

  12. Huang, P., Visiers, I., Weinstein, H. and Liu-Chen, L.-Y., Biochemistry, 40 (2001) 13501.

  13. Hassan, S.A. and Mehler, E.L., Int. J. Quant. Chem., 83 (2001) 193.

    Google Scholar 

  14. Schaefer, M., Bartels, C. and Karplus, M., J. Mol. Biol., 284 (1998) 835.

    PubMed  Google Scholar 

  15. Mohanty, D., Elber, R., Thirumalai, D., Beglov, D. and Roux, B., J. Mol. Biol., 272 (1997) 423.

    PubMed  Google Scholar 

  16. Ma, B. and Nussinov, R., PROTEINS: Structure, Function, and Genetics, 37 (1999) 73.

    Google Scholar 

  17. Fanelli, F., J. Mol. Biol., 296 (2000) 1333.

    PubMed  Google Scholar 

  18. Chilmonczyk, Z., Cybulski, M., Iskra-Jopa, J., Chojnacka-Wójcik, E., Tatarczyska, E., Kodziska, A., Les, A., Bronowska, A. and Sylte, I. Il. Farmaco., 57 (2002) 285.

    PubMed  Google Scholar 

  19. Bronowska, A., Chilmonczyk, Z., Les, A., Edvardsen, O., Østensen, R. and Sylte, I., J. Comp. Aid. Mol. Des., 15 (2001) 1005.

    Google Scholar 

  20. Hovelmann, S., Hoffmann, S.H., Kuhne, R., ter Laak, T., Reilaender, H. and Beckers, T., Biochemistry, 41 (2002) 1129.

    PubMed  Google Scholar 

  21. Pierce, K.L., Premont, R.T. and Lefkowitz, R.J., Nature reviews-Mol. Cell Biol., 3 (2002) 639.

    Google Scholar 

  22. Hassan, S.A., Mehler, E.L. and Weinstein, H., In: Schlick, T. and Gan, H.H. (Eds.), Lecture Notes in Computational Science and Engineering, Vol. 24., Springer Verlag, New York, pp. 197–231 (2002).

    Google Scholar 

  23. Higo, J., Collura, V. and Garnier, J., Biopolymers, 32 (1992) 33.

    PubMed  Google Scholar 

  24. Carlacci, L. and Englander, S.W., J. Comp. Chem., 17(8) (1996) 1002–1012.

    Google Scholar 

  25. Baysal, C. and Meirovitch, H., J. Comp. Chem., 20(15) (1999) 1659.

    Google Scholar 

  26. Nakajima, N., Higo, J., Kidera, A. et al., J. Mol. Biol., 296 (2000) 197. 853

    PubMed  Google Scholar 

  27. Kidera, A., Proc. Natl. Acad. Sci. U.S.A., 92 (1995) 9886.

    PubMed  Google Scholar 

  28. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  29. Hassan, S.A., Guarnieri, F. and Mehler, E.L., J. Phys. Chem., B104 (2000) 6478.

    Google Scholar 

  30. Vasmatzis, L., Brower, R. and Delisi, C., Biopolymers, 34 (1994) 1669.

    PubMed  Google Scholar 

  31. Zheng, Q., Rosenfeld, R., Delisi, C. and Kyle, D.J.,Protein Sci., 9 (1994) 493–506.

    Google Scholar 

  32. Fiser, A., Kinh Gian Do, R. and Sali, A., Protein Science, 9 (2000) 1753.

    PubMed  Google Scholar 

  33. Berendsen, H.J.C., van der Spoel, D. and van Drunen, R., Comp. Phys. Comm., 91 (1995) 43–56.

    Google Scholar 

  34. van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Huenenberger, P.H., Krueger, P., Mark, A.E., Scott, W.R.P. and Tironi, I.G., HochschulverlagAG an der ETH Zuerich.: (1996) Zuerich.

  35. Darden, T., York, D. and Pederson, L., J. Chem. Phys., 98 (1993) 10089.

    Google Scholar 

  36. Okada, T., Fujiyoshi, Y., Silow, M., Navarro, J., Landau, E.M. and Shichida, Y., PNAS, 99 (2002) 5982.

    PubMed  Google Scholar 

  37. Teller, D.C., Okada, T., Behnke, C.A., Palczewski, K. and Stenkamp, R.E., Biochemistry, (2001) 7761.

  38. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  39. MacKerell, J., A. D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, I., W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. and Karplus, M., J. Phys. Chem. B, 102 (1998) 3586.

    Google Scholar 

  40. Hassan, S.A., Guarnieri, F. and Mehler, E.L., J. Phys. Chem., B104 (2000) 6490.

    Google Scholar 

  41. Ehrenson, S., J. Comp. Chem., 10 (1989) 77.

    Google Scholar 

  42. Bucher, M. and Porter, T.L., J. Phys. Chem., 90 (1986) 3406.

    Google Scholar 

  43. Webb, T.J., J. Am. Chem. Soc., 48 (1926) 2589.

    Google Scholar 

  44. Debye, P. and Pauling, L., J. Am. Chem. Soc., 47 (1925) 2129.

    Google Scholar 

  45. Schwarzenbach, G., Z. physik. Chem., A176 (1936) 133.

    Google Scholar 

  46. Harvey, S.C. and Hoekstra, P., J. Phys. Chem., 76 (1972) 2987.

    PubMed  Google Scholar 

  47. Pennock, B.D. and Schwan, H.P., J. Phys. Chem., 73 (1969) 2600.

    PubMed  Google Scholar 

  48. Takashima, S. and Schwan, H.P., J. Phys. Chem., 69 (1965) 4176.

    PubMed  Google Scholar 

  49. Hasted, J.B., Ritson, D.M. and Collie, C.H., J. Chem. Phys., 16 (1948) 1.

    Google Scholar 

  50. Mehler, E.L., In: Murray, J.S. and Sen, K. (Eds), Molecular Electrostatic Potential: Concepts and Applications, Elsevier Science, Amsterdam, p. 371–405 (1996).

    Google Scholar 

  51. Hassan, S.A. and Mehler, E.L., PROTEINS: Stru. Func. Genet., 47(2002) 45.

    Google Scholar 

  52. Noguti, T. and Go, N., Biopolymers, 24 (1985) 527.

    PubMed  Google Scholar 

  53. Lazaridis, T. and Karplus, M., PROTEINS: Struc. Func. Gen., 35 (1999) 133.

    Google Scholar 

  54. Shenkin,6P.S. and McDonald, D.Q., J. Comput. Chem., 15 (1994) 899.

    Google Scholar 

  55. Ballesteros, J.A. and Weinstein, H., Meth. Neurosci., 25 (1995) 366.

    Google Scholar 

  56. Visiers, I., Ballesteros, J.A. and Weinstein, H., In: Iyengar, I. and edJ. Hildebrandt, (Eds), Methods Enzymol, Academic Press: New York (2001).

    Google Scholar 

  57. Wong, S.K., Slaughter, C., Ruoho, A.E. and Ross, E.M., J. Biol. Chem., 263 (1988) 7925.

    PubMed  Google Scholar 

  58. Konig, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A. and Hoffman, K.P., Proc. Natl. Acad Sci., 86 (1989) 6878.

    PubMed  Google Scholar 

  59. Cypess, A.M., Unson, C.G., Wu, C.R. and Sakmar, T.P., J. Biol. Chem., 274 (1999) 19455.

    Google Scholar 

  60. Niswender, C.M., Copeland, S.C., Herrick-Davis, K, Emeson, R.B. and Sanders-Bush, E., J. Biol. Chem., 274 (1999) 9472.

    PubMed  Google Scholar 

  61. Tartaglia, M., Mehler, E.L., Goldberg, R., Zampino, G., Brunner, H.G., Kremer, H., vav der Burgt, I., Crosby, A.H., Ion, A., Jeffery, S., Kalidas, K., Patton, M.A., Kucherlapati, R.S. and Gelb, B.D., Nature Genet., 29 (2001) 465.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehler, E., Periole, X., Hassan, S. et al. Key issues in the computational simulation of GPCR function: representation of loop domains. J Comput Aided Mol Des 16, 841–853 (2002). https://doi.org/10.1023/A:1023845015343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023845015343

Navigation