Skip to main content
Log in

Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

For the successful identification and docking of new ligands to a protein target by virtual screening, the essential features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the running time for docking increases exponentially with the number of points representing the protein and each ligand candidate, it is important to place these points where the best interactions can be made between the protein and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In this paper, we present an alternative method of protein template and ligand interaction point design that identifies the most favorable points for making hydrophobic and hydrogen–bond interactions by using a knowledge base. The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and glutathione S–transferase (GST) ligands against the apo structures of these proteins. There was also improved scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands and a ∼15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the most important points of interaction between proteins and their ligands can equally well be used in other docking and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnecke, V. and Kuhn, L.A., Perspectives in Drug Discovery and Design, 20 (2000) 171.

    Google Scholar 

  2. Schnecke, V. and Kuhn, L.A., Intell. Syst. Mol. Biol., (1999) 242.

  3. Schnecke, V. and Kuhn, L.A., Thorpe, M.F. and Duxbury, P.M. (Eds.) Rigidity Theory and Applications, Kluwer Academic/ Plenum Publishers, New York, NY, 1999, pp. 385–400.

    Google Scholar 

  4. Schnecke, V., Swanson, C.A., Getzoff, E.D., Tainer, J.A. and Kuhn, L.A., Proteins, 33 (1998) 74.

    Google Scholar 

  5. Hobohm, U. and Sander, C., Protein Sci., 3 (1994) 522.

    Google Scholar 

  6. Raymer, M.L., Sanschagrin, P.C., Punch, W.F., Venkataraman, S., Goodman, E.D. and Kuhn, L.A., J. Mol. Biol., 265 (1997) 445.

    Google Scholar 

  7. Ippolito, J.A., Alexander, R.S. and Christianson, D.W.J., Mol. Biol., 215 (1990) 457.

    Google Scholar 

  8. McDonald, I. and Thornton, J.M., Atlas of Side-Chain and Main-Chain Hydrogen Bonding, http://www.biochem.ucl.ac.uk/?mcdonald/atlas/.

  9. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  10. Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6 (1993) 723.

    Google Scholar 

  11. Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.

    Google Scholar 

  12. Jones, G, Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    Google Scholar 

  13. Ruppert, J., Welch, W. and Jain, A.N., Protein Sci., 6 (1997) 524.

    Google Scholar 

  14. Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999) 228.

    Google Scholar 

  15. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comp. Chem., 19 (1998) 1639.

    Google Scholar 

  16. Boobbyer, D.N., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  17. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Research, 28 (2000) 235.

    Google Scholar 

  18. Allen, F.H. and Kennard, O., Chemical Design Automation News, 8 (1993) 1& 31.

    Google Scholar 

  19. Bergner, A., Günther, J., Hendlich, M., Klebe, G. and Verdonk, M., Biopolymers, 61 (2002), 99.

    Google Scholar 

  20. Gohlke, H., Hendlich, M. and Klebe, G., J. Mol. Biol., 295 (2000) 337.

    Google Scholar 

  21. Gohlke, H., Hendlich, M. and Klebe, G., Perspectives in Drug Discovery and Design, 20 (2000) 115.

    Google Scholar 

  22. Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V. and Willett, P., J. Mol. Biol., 307 (2001) 841.

    Google Scholar 

  23. Boer, D.R., Kroon, J., Cole, J.C., Smith, B. and Verdonk, M.L., J. Mol. Biol., 312 (2001) 275.

    Google Scholar 

  24. Moreno, E. and Leon, K., Proteins, 47 (2002) 1.

    Google Scholar 

  25. Sanschagrin, P. and Kuhn, L.A., Protein Sci., 7 (1998) 2054.

    Google Scholar 

  26. Dekker, R.J., Eichinger, A., Stoop, A.A., Bode, W., Pannekoek, H. and Horrevoets, A.J.G., J.Mol.Biol., 293 (1999) 613.

    Google Scholar 

  27. Oakley, A.J., Lo Bello, M., Ricci, G., Federici, G. and Parker, M.W., Biochemistry, 37 (1998) 9912.

    Google Scholar 

  28. Oakley, A.J., Rossjohn, J., Lo Bello, M., Caccuri, A.M., Federici, G. and Parker, M.W., Biochemistry, 36 (1997) 576.

    Google Scholar 

  29. Oakley, A.J., Lo Bello, M., Nuccetelli, M., Mazzetti, A.P. and Parker, M.W., J. Mol. Biol., 291 (1999) 913.

    Google Scholar 

  30. Prade, L., Huber, R., Manoharan, T.H., Fahl, W.E. and Reuter, W., Structure, 5 (1997) 1287.

    Google Scholar 

  31. Bissantz, C., Folkers, G. and Rognan, D., J. Med. Chem., 43 (2000) 4759.

    Google Scholar 

  32. Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem., 42 (1999) 5100.

    Google Scholar 

  33. Stahl, M. and Rarey, M., J. Med. Chem., 44 (2001) 1035.

    Google Scholar 

  34. Baxter, C.A., Murray, C.W., Waszkowycz, B., Li, J., Sykes, R.A., Bone, R.G., Perkins, T.D. and Wylie, W. J., Chem. Inf. Comput. Sci., 40 (2000) 254.

    Google Scholar 

  35. Knegtel, R.M., Bayada, D.M., Engh, R.A., von der Saal, W., van Geerestein, V.J. and Grootenhuis, P.D., J. Comput. Aided. Mol. Des., 13 (1999) 167.

    Google Scholar 

  36. Knegtel, R.M. and Wagener, M., Proteins, 37 (1999) 334.

    Google Scholar 

  37. Fradera, X., Knegtel, R.M. and Mestres, J., Proteins, 40 (2000) 623.

    Google Scholar 

  38. Fox, T. and Haaksma, E.E., J. Comput. Aided. Mol. Des., 14 (2000) 411.

    Google Scholar 

  39. Sotriffer, C.A., Gohlke, H. and Klebe, G., J. Med. Chem., 45 (2002) 1967.

    Google Scholar 

  40. Murray, C.W., Baxter, C.A. and Frenkel, A.D., J. Comput. Aided. Mol. Des., 13 (1999) 547.

    Google Scholar 

  41. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Comp. Chem., 18 (1997) 934.

    Google Scholar 

  42. Sadowski, J. and Gasteiger, J., Chem. Rev., 93 (1993) 2567.

    Google Scholar 

  43. Chen, Y.Z. and Ung, C.Y., J. Mol. Graph. Model., 20 (2001) 199.

    Google Scholar 

  44. Koehler, R.T., Villar, H.O., Bauer, K.E. and Higgins, D.L., Proteins, 28 (1997) 202.

    Google Scholar 

  45. Connolly, M.L., J. Mol. Graphics, 11 (1993) 139.

    Google Scholar 

  46. Weir, M.P., Bethell, S.S., Cleasby, A., Campbell, C.J., Dennis, R.J., Dix, C.J., Finch, H., Jhoti, H., Mooney, C.J., Patel, S., Tang, C.M., Ward, M., Wonacott, A.J. and Wharton, C.W., Biochemistry, 37 (1998) 6645.

    Google Scholar 

  47. Böhm, H.-J., J. Comput. Aided Mol Design, 6 (1992) 61.

    Google Scholar 

  48. Fischer, D., Norel, R., Wolfson, H. and Nussinov, R., Proteins, 16 (1993) 278.

    Google Scholar 

  49. Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R., J. Mol. Biol. 248 (1995), 459.

    Google Scholar 

  50. Kuhn, L.A., Swanson, C.A., Pique, M.E., Tainer, J.A., Getzoff, E.D., Proteins, 23 (1995), 536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(These authors contributed equally to this work)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavodszky, M.I., Sanschagrin, P.C., Kuhn, L.A. et al. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J Comput Aided Mol Des 16, 883–902 (2002). https://doi.org/10.1023/A:1023866311551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023866311551

Navigation